

On Learning Simple Deterministic and
Probabilistic Neural Concepts

Mostefa Golea and Mario Marchand

Ottawa-Carleton Institute for Physics
University of Ottawa

Ottawa, Ont., Canada K1N 6N5
e-mail: (golea,mario)@physics.uottawa.ca

Abstract

We investigate the learnability, under the uniform distribution,
of deterministic and probabilistic neural concepts that can be repre-
sented as simple combinations of nonoverlapping perceptrons with bi-
nary weights. Two perceptrons are said to be nonoverlapping if they
do not share any input variables. In the deterministic case, we inves-
tigate, within the distribution-specific PAC model, the learnability
of perceptron decision lists and generalized perceptron decision lists.
In the probabilistic case, we adopt the approach of learning with a
model of probability introduced by Kearns and Schapire [10] and Ya-
manishi [14], and investigate a class of concepts we call probabilistic
majorities of nonoverlapping perceptrons. We give polynomial time
algorithms for learning these restricted classes of networks. The al-
gorithms work by estimating various statistical quantities that yield
enough information to infer, with high probability, the target con-
cept.

1 Introduction

Despite the excitement generated recently by neural networks, learning in
these systems has proven to be very difficult from a theoretical perspec-
tive. In fact, if one adopts the PAC learning’s point of view, neural networks
have accumulated far more negative (non-learnability) results than positive
ones [2, 3]. The reasonable approach in such situations is to look for pos-
itive results by considering restricted classes of the problem, by providing
the learning algorithm with additional information in the form of queries,
and/or by restricting the distribution of examples.

A restriction that has been well studied with respect to boolean formulas
is the read-once or the µ restriction on specific distributions. In particular,
positive learnability results have been obtained for read-once DNF [4, 5]

1

2 Learning Simple Neural Concepts

on the uniform distribution and read-once boolean formulas over the basis
{AND,OR,NOT} on product distributions [6].

Nonoverlapping perceptron networks seem to be the natural neural
version of read-once boolean formulas. Two perceptrons are said to be
nonoverlapping if they do not share any input variables [7]. Standard tech-
niques [4] show that under an arbitrary distribution, such networks are
no easier to learn than networks with overlapping perceptrons. Recently,
Hancock et al. [7] proved this class to be PAC learnable from examples and
membership queries under an arbitrary distribution. Golea et al. [9] proved
the PAC learnability of the class of unions (intersections) of nonoverlap-
ping perceptrons with binary weights and arbitrary thresholds under the
uniform distribution.

In this paper, we restrict ourselves to the case where the distribution
of examples is uniform, and investigate the problem of learning concepts
that can be represented as simple combinations of nonoverlapping percep-
trons with binary weights and arbitrary thresholds. We will consider both
deterministic and probabilistic neural concepts. In the deterministic case,
we move substantially beyond the results of Golea et al. [9] and investi-
gate within the distribution-specific PAC model, the learnability of decision
lists and generalized decision lists built from nonoverlapping perceptrons
(fig. 1). In the probabilistic case, we adopt the approach of learning with
a model of probability introduced by Kearns and Schapire [10] and Yaman-
ishi [14], and investigate a class of concepts we call probabilistic majorities
of nonoverlapping perceptrons (see definitions below). We give polynomial
time algorithms for learning these restricted classes of networks. The algo-
rithms work by estimating various statistical quantities that yield enough
information to infer, with high probability, the target concept. Because our
algorithms are statistical in nature, they are robust against a large amount
of random classification noise [11].

While the high-level structure of our algorithms is somewhat similar to
Schapire’s [6], the specific tests used here are new. Furthermore, under the
uniform distribution, our results imply simpler algorithms for learning µ-
DNF [5] and read-once boolean formulas over the basis {AND,OR,NOT} [6].
They also imply the learnability of certain classes of µ-DNF formulas where
the satisfiability of a given term does not imply the satisfiability of the
whole formula but only increases its likelihood. Due to space limitations,
only some of the main ideas for some of the proofs are presented here. The
complete proofs will appear in the full paper [8].

2 Definitions and Simplifying Reductions

Let X = {x1, x2..., xn} be the set of n input variables and let the input
space In be the set {0, 1}n. We assume throughout the paper that the

Mostefa Golea and Mario Marchand 3

g g
(1) (2)

g(3)

AND AND AND

OR

OROROR

g(4)

g(5)
g (6)

---------Level 0--------

---------Level 2--------

-------Level 1------

g
g

(1)
(2)

g(3)

AND

OR

OR

g(4)

g(5)

(a)

---------Level 2--------

---------Level 1--------

---------Level 0--------

(b)

Figure 1. A perceptron decision list (a) and its generalization (b). Input units

are represented as black dots, perceptrons as small circles, and OR/AND gates

as large circles.

distribution D generating the examples is uniform on In.
We denote by P (A) the probability of an event A, and by P (A|B) the

conditional probability of an event A given the fact that event B has been
observed. All probabilities are taken with respect to D.

Let f be a boolean function defined on X. The influence of a variable
xi on f , denoted Inf(xi), is defined as:

Inf(xi)
def= P (f = 1|xi = 1)− P (f = 1|xi = 0)

The correlation of a variable xj with xi with respect to f , denoted C(xi, xj),
is defined as

C(xi, xj)
def=

P (f = 1|xi = xj = 1)− P (f = 1|xi = 1, xj = 0)
P (f = 1|xj = 1)− P (f = 1|xj = 0)

Intuitively, C(xi, xj) reflects the effect of setting xi to 1 on the influence of
xj . Note that, in general, C(xi, xj) 6= C(xj , xi).

4 Learning Simple Neural Concepts

A perceptron g on X is specified by a vector of n weights wi and a
single threshold θ. For x = (x1, x2, ..., xn) ∈ In, we have:

g(x) =
{

1 if
∑i=n
i=1 wixi ≥ θ

0 if
∑i=n
i=1 wixi < θ

Two perceptrons are said to be nonoverlapping if they do not share any
input variables. We are interested in the learnability of simple neural con-
cepts built from nonoverlapping perceptrons with binary valued weights
(wi = ±1).

Deterministic Concepts

We generalize the notion of decision lists, introduced by Rivest [12], to
perceptron decision lists (hereafter PDL). A PDL is a list of pairs:

(g(1), v(1)), . . . , (g(i), v(i)), . . . , (g(r), v(r))

where each g(i) is a perceptron and v(i) is a value in {0, 1}. The last
perceptron g(r) is the constant function +1. This defines a function f :
In → {0, 1} as follows: for any x, f(x) is defined to be equal to v(j) where
j is the least index for which g(j)(x) = 1. Compared to Rivest’s decision
lists, PDLs have the same structure but the complexity of the decision
allowed at each node is greater.

A PDL can be converted to an equivalent feedforward neural net in an
obvious manner. The result is a network of alternating levels of disjunction
(OR) and conjunction (AND) of perceptrons (fig. 1a). A possible generaliza-
tion of PDL is to allow multiple AND/OR nodes at each level (fig. 1b). Such
networks represent arbitrary boolean formulas over the basis {AND,OR}
whose inputs are perceptrons. We call such networks (functions) genera-
lized PDL. If each variable appears at most once, the PDL is referred to
as nonoverlapping perceptron decision list (hereafter NPDL). Similarly, we
refer to generalized PDLs with the same property as generalized NPDLs.
The equivalent network can be then viewed as a rooted tree. The root is
the output node and each leaf in the tree is labeled with an input variable
in a way such that no variable appears on more than one leaf. We will refer
to the AND/OR nodes as gates.

We will assume w.l.o.g. that the input variables feed the gates only
through perceptrons (may be single-variable perceptrons) and that each
gate has, as input, at least one multi-variable perceptron or another gate
(otherwise, it is a perceptron).

The parent of a variable is the perceptron to which the variable is an
immediate input. We say perceptron g (or gate Γ) is an uncle of variable
xi if g (respectively, Γ) is an immediate input to a gate fed by xi, but g
(respectively, Γ) is not itself fed by xi.

Mostefa Golea and Mario Marchand 5

The depth of a gate Γ (or a variable xi) is the number of gates on the
path from Γ (respectively, xi) to the output gate. We say xi is a zero-level
variable with respect to Γ if its parent is an immediate input to Γ.

The least common ancestor of two variables xi and xj , denoted lca(xi,xj),
is the deepest gate fed by both xi and xj . We say two variables are siblings
if they share a common parent (perceptron), and not siblings otherwise.

Probabilistic Concepts

A probabilistic concept (or p-concept), as defined by Kearns and Schapire [10]
and Yamanishi [14], is a mapping c : In → [0, 1]. For each x ∈ In, c(x) is
interpreted as the probability that x is a positive example of the p-concept
c. Thus, in the p-concept model, a labeled example is generated as follows:
first, an instance x is chosen according to the target distribution on In;
then, with probability c(x), the labeled example < x, 1 > is observed, and
with probability 1− c(x), the labeled example < x, 0 > is observed. Thus,
the learning algorithm has no direct access to c: the only access it has is
through labeled examples < x, σ >, where σ ∈ {0, 1}.

The p-concept we will investigate is what we call probabilistic majority
of nonoverlapping perceptrons (with binary weights), defined as

c(x) =
r∑
s=1

psg
(s)(x) + p0 (2.1)

where ps ≥ 0 for s = 0, . . . , r, and 0 ≤
∑r
s=0 ps ≤ 1. Such p-concepts have

a simple neural representation: a two-layer network with r hidden percep-
trons and one (probabilistic) output unit that outputs 1 with a probability
equal to the weighted sum of its inputs.

3 Learning Models

For learning the deterministic concepts, we adopt the PAC model [13]
specified to the uniform distribution. Here the methodology is to draw
a sample of a certain size labeled according to the unknown target func-
tion f and then to find a “good” approximation f ′ of f . The error of
the hypothesis function f ′, with respect to the target f , is defined to be
P (f ′ 6= f) = Px∈D(f ′(x) 6= f(x)). More specifically, a class of concepts F
is said to be PAC learnable from examples under the uniform distribution
D if there is an algorithm A such that, for the distribution D, for every
f ∈ F , and any 0 < ε, δ < 1, A runs in time polynomial in (n, 1/ε, 1/δ)
and outputs an hypothesis f ′ such that, with probability at least (1 − δ):
P (f ′ 6= f) < ε.

As in [6], we view the problem of learning a p-concept c as that of
inferring a good approximation of c itself. This is called in [10] learning with

6 Learning Simple Neural Concepts

a model of probability. Specifically, let C be the class of p-concepts. Then
C is said to be learnable with a model of probability under the uniform
distribution D if there is an algorithm A such that, for the distribution
D, for any c ∈ C, and any 0 < ε, δ < 1, A runs in time polynomial
in (n, 1/ε, 1/δ) and outputs a real-valued hypothesis c′ such that, with
probability at least (1− δ): Ex∈D|c′(x)− c(x)| < ε.

4 Learning Nonoverlapping Perceptron Decision Lists

In this section, we describe a polynomial time algorithm for learning NPDLs
with binary weights from random examples drawn according to the uniform
distribution D. Actually, what we will be learning is the equivalent net-
work of the NPDL (fig. 1a). The next section will provide the necessary
additional processing to handle generalized NPDLs (fig. 1b).

We assume w.l.o.g. that the target network contains no two successive
AND or two successive OR gates, as such nodes can always be merged. We
also assume w.l.o.g. that the target network has the maximum possible
number of perceptrons, the minimum possible number of weights, and it
contains negative weights only for those inputs that lead directly from input
variables. The learning algorithm proceeds in three steps:

1. In the first step, the algorithm determines the “relevant” input vari-
ables and the values (signs) of their weights. To achieve this, for each
variable xi, the algorithm estimates its influence Inf(xi) using exam-
ples drawn randomly according to D. We prove that if the variable
xi is relevant, then its influence is significantly greater or less than
zero, depending on whether wi = 1 or wi = −1. If the influence is
too small, the algorithm concludes that the variable is “irrelevant”
and so, neglects it in later stages. Once the weights are estimated,
the algorithm reduces the target function to a monotone NPDL by
simply changing xi to 1− xi whenever wi = −1.

2. In the second step, the algorithm infers the architecture of the net-
work, i.e. determines which variables appear in a given level, and
among those, which are siblings. To do this, the algorithm estimates
the correlation C(xi, xj) of each ordered pair of variables using exam-
ples drawn randomly according to D. We show that these correlations
contain enough information to infer the architecture of the network.

3. In the last step, the algorithm estimates a threshold value for each
perceptron. We will see below that the correlations provide enough
information to do that.

Intuition suggests that the influence of a variable is positive (negative)
if its weight is positive (negative). The following lemma strengthens this

Mostefa Golea and Mario Marchand 7

intuition by showing that there is a measurable gap between the two cases.
This gap is used to estimate the weight values (signs).

Lemma 1. Let f be a NPDL. Let g be a perceptron in f and let xi ∈ g.
Let {λ(s)} be the set of xi’s uncles and let {f (s)} be the set of subformulas
computed by these uncles. Let a(s) = 1 if λ(s) feeds immediately an AND
gate and a(s) = 0 if λ(s) feeds immediately an OR gate. Then, if P (g = 1),
P (g = 0) > ρ and

∏
s P (f (s) = a(s)) > γ,

Inf(xi)
{

> γρ
n+2 if wi = 1

< − γρ
n+2 if wi = −1

Proof idea: First note that:

Inf(xi) =
∏
s

P (f (s) = a(s))[P (g(x) = 1|xi = 1)− P (g(x) = 1|xi = 0)]

The lemma then follows from Bahadur’s expansion [1].2

Note that we can assume w.l.o.g. that ρ, γ > ε/2n, for otherwise
we can neglect perceptron g without introducing much error. Under this
assumption, the gap is wide enough to be estimated efficiently using a
sample of polynomial size. Once we determine the weight values, we reduce
f to a monotone NPDL by changing xi to 1 − xi whenever wi = −1. In
the following, we concentrate on the monotone case.

The next step is to infer the architecture of the network. It turns
out that the correlation measure contains enough information to determine
which variables appear at a given level, and among those, which are siblings.
First, some facts about the correlations.

Lemma 2. Let f be a monotone NPDL. Let xi and xj be two influential
variables in f . Assume that xi ∈ g. Then

1. If xi and xj are siblings:

C(xi, xj) = CI =
P (g = 1|xi = xj = 1)− P (g = 1|xi = 1, xj = 0)

P (g = 1|xj = 1)− P (g = 1|xj = 0)
.

2. If xi and xj are not siblings, xi is not deeper than xj, and lca(xi,xj)
is an OR:

C(xi, xj) = CII =
1− P (g = 1|xi = 1)

1− P (g = 1)
.

8 Learning Simple Neural Concepts

3. If xi and xj are not siblings, xi is not deeper than xj, and lca(xi,xj)
is an AND:

C(xi, xj) = CIII =
P (g = 1|xi = 1)

P (g = 1)
.

Moreover, if g contains p variables and has a renormalized threshold v:

CI = 2
v − 1
p− 1

; CII = 1−

(
p− 1
v − 1

)
∑v−1
i=0

(
p
i

) ; CIII = 1 +

(
p− 1
v − 1

)
∑p
i=v

(
p
i

) (4.1)

CI − CII ≥
1
p2
≥ 1
n2

for v ≥ 2 (4.2)

CI − CIII ≤ −
1
2p
≤ − 1

2n
for v ≤ p− 1 (4.3)

Proof idea: The different expressions of C(xi, xj) can be derived using
the inclusion-exclusion property and the fact that perceptrons in f do not
share any variables. The derivation of eq. 4.1 is straightforward. Eqs. 4.2
and 4.3 follow using Bahadur’s expansion [1].2

Note that the correlation gaps established in this lemma are wide enough
to be estimated using a polynomial number of examples.

Let X ′ ⊆ X. We call two variables xi and xj OR-potential-siblings
(w.r.t. X ′) if C(xi, xj) ≥ C(xi, xk) for all xk ∈ X ′, and AND-potential-
siblings (w.r.t. X ′) if C(xi, xj) ≤ C(xi, xk) for all xk ∈ X ′. The following
lemma enables us to determine which variables appear in a given level, and
among those, which are siblings.

Lemma 3. Let f be a monotone NPDL. Let Γ be a gate in f and let
X ′ ⊆ X be the set of all variables that feed Γ. Let xi ∈ X ′. Then, xi is
not a zero-level variable with respect to Γ iff there exist xj, xk ∈ X ′ such
that, for some permutation {i1, i2, i3} of {i, j, k}:
xi1 and xi2 are OR-potential-siblings (w.r.t. X ′),
xi2 and xi3 are OR-potential-siblings (w.r.t. X ′), but
xi1 and xi3 are not OR-potential-siblings (w.r.t. X ′).

Moreover, if xi is a zero-level variable with respect to Γ, and xi and xj
are OR-potential-siblings (w.r.t. X ′), then xi and xj are siblings in f .
The same holds if we replace OR by AND in the lemma.

Proof: We need to consider the different possible situations and apply the
facts established in lemma 2. The details will appear elsewhere [8].2

Mostefa Golea and Mario Marchand 9

Assume that the output gate Γ is an OR. To decide whether a variable
xi is a zero-level w.r.t. Γ, we determine the set of its OR-potential-siblings
(w.r.t to X), call it Ti. If xi is a zero-level variable, then every pair of
variables in Ti will themselves be OR-potential-siblings. But if xi is not a
zero-level variable, then some pair in Ti will not be OR-potential siblings.
There may be several different sets of zero-level siblings determined in this
manner, which will form the various perceptrons that feed immediately the
output gate 1. A similar process applies if the output gate is an AND, using
the AND-potential-siblings technique. We repeat this recursively, removing
from X the variables already used and noting that the gates switches from
OR to AND (or vice versa).

The last step of the algorithm is to estimate the threshold of each
(monotone) perceptron g. Two cases are possible:

case 1: g is a single-variable perceptron. Then the only possible threshold
value is 1.

case 2: g is a multi-variable perceptron. Let p be the number of variables
in g and let v be its threshold. Let xi, xj ∈ g. Then:

C(xi, xj) = CI = 2
v − 1
p− 1

Thus, a good estimation of C(xi, xj) yields a good estimation of the
threshold v (and hence the original threshold).

Theorem 4. The class of NPDL with binary weights are PAC learnable
under the uniform distribution. The sample complexity is O(n

8

ε4 log(n2/δ))
and the time complexity is O(n

10

ε4 log(n2/δ)).

5 Learning Generalized Nonoverlapping Perceptron De-
cision Lists

We extend the results of the previous section to handle the case where the
target function f is a generalized NPDL (fig. 1b). The basic ideas behind
the algorithm are just like those of the preceding section. First, we note
that lemmas 1, 2, and 3 hold also for generalized NPDLs. In fact, the
problem of learning generalized NPDLs presents only one difficulty that is
not encountered in learning NPDLs: because a given level in the network
may contain more than one gate, we need to determine not only which vari-
ables appear at that level and which are siblings, but also which variables

1This argument can be phrased in terms of type-graphs that are usually used for
read-once formulas.

10 Learning Simple Neural Concepts

appear in same subtree rooted at one of the gates of that level. This extra
difficulty can be solved fairly easily. The following subroutine, when called
with a set X ′ and a variable xi, returns the set S ⊆ X ′ of all variables that
feed some AND gate fed by xi:

AND-test:

1. Set S = {xi}.

2. For each variable xj ∈ X ′ and xj /∈ S:
If there exists xk ∈ S such that C(xk, xj) + C(xj , xk) > 2, set

S = S ∪ xj and Go to 2.

3. If no variable can be added, return S.

Likewise, the following subroutine, when called with a set X ′ and a variable
xi, returns the set S ⊆ X ′ of all variables that feed some OR gate fed by xi:

OR-test:

1. Set S = {xi}.

2. For each variable xj ∈ X ′ and xj /∈ S:
If there exists xk ∈ S such that C(xk, xj) + C(xj , xk) < 2, set

S = S ∪ xj and Go to 2.

3. If no variable can be added, return S.

The intuition behind the above subroutines is that if two variables meet
at an AND gate, setting one of them to 1 increases the influence of the other,
whereas if they meet at an OR gate, setting one of them to 1 decreases the
influence of the other. The following lemma strengthens this intuition by
showing that there is measurable gap between the two cases.

Lemma 5. Let f be a monotone generalized NPDL. Let xi and xj be two
variables in f . Then, if xi and xj are not siblings

C(xi, xj)+C(xj , xi) > 2+
1
2

min(Inf(xi), Inf(xj)) if lca(xi, xj) is an AND

C(xi, xj)+C(xj , xi) < 2− 1
2

min(Inf(xi), Inf(xj)) if lca(xi, xj) is an OR

Proof: Will appear elsewhere [8].2

Assume w.l.o.g. that the output gate Γ is an OR (fig. 1b). The zero-
level variables w.r.t. Γ are determined as in the previous section, using the

Mostefa Golea and Mario Marchand 11

OR-potential-siblings technique. These variables are then removed and the
AND-test is invoked to determine which set of variables feed the same
AND gate in the next level. There may be several different sets deter-
mined in this manner; each set Si will be assigned an AND gate Γi in that
level. Then, for each set Si we use the AND-potential-siblings technique to
determine which variables are zero-level w.r.t. Γi. This may yield several
different subsets, which will form the various perceptrons that feed immedi-
ately the gate Γi. We repeat this subdivision process recursively, removing
the variables already used and noting that the gates switches from OR to
AND (or vice versa). The threshold of each perceptron can be estimated
by the same method used in the previous section.

Finally, the sample and time complexities are the same as that for
NPDLs.

Theorem 6. The class of generalized NPDL with binary weights are PAC
learnable under the uniform distribution. The sample complexity is of the
O(n

8

ε4 log(n2/δ)) and the time complexity is of O(n
10

ε4 log(n2/δ)).

5.1 Learning Probabilistic Majorities of Nonoverlapping Per-
ceptrons

Recall that, when learning a p-concept, we have no direct access to c: the
only access we have is through labeled examples < x, σ >. So in what
follows, the different estimations are taken with respect to the label σ.

Let the target c be a probabilistic majority of nonoverlapping percep-
trons defined by (2.1). We are interested in learning, with a model of
probability, the equivalent neural network of c. The learning algorithm
proceeds in four steps:

1. Estimating the weight values using the influences. Once this is done,
the target p-concept is reduced to its monotone form by simply chang-
ing xi to 1− xi whenever wi = −1.

2. Inferring the architecture, i.e. which variables are siblings (appear in
the same perceptron).

3. Estimating the threshold of each perceptron.

4. Estimating the different probabilities p0, p1, . . . , pr.

The following lemma establish that there exists a measurable gap in terms
of the influence between the two cases wi = 1 and wi = −1.

Lemma 7. Let c be a probabilistic majority of nonoverlapping perceptrons
as in eq. 2.1. Let g(s) be a perceptron in c and let xi ∈ g(s). Then if

12 Learning Simple Neural Concepts

P (g(s) = 1), P (g(s) = 0) > ρ, and ps > γ,

Inf(xi)
{

> γρ
n+2 if wi = 1

< − γρ
n+2 if wi = −1

Again, we can assume w.l.o.g. that ρ, γ > ε/2n, for otherwise we
can neglect perceptron g(s) without introducing much error. Under this
assumption, the gap is wide enough to be estimated efficiently using a
sample of polynomial size.

Once we have an estimate of the weight values, we reduce c to its
monotone form by changing xi to 1−xi whenever wi = −1. The next step
is to infer the architecture of the monotone p-concept c.

Lemma 8. Let c be a monotone probabilistic majority of nonoverlapping
perceptrons. Let g be a (monotone) perceptron in c with p variables and a
threshold v. Let xi ∈ g and let xj be another variable in c. Then

C(xi, xj) =
{

2v−1
p−1 if xj ∈ g

1 if xj /∈ g

One implication of this lemma is that as long as g is not a majority function
(v 6= (p + 1)/2), we can determine whether or not xi and xj are siblings.
But if g is a majority function (v = (p+ 1)/2), estimating C(xi, xj) yields
no information on whether or not xi and xj are actually siblings 2. To
overcome this difficulty, we introduce a new measure of correlation that
depends on triples of variables. More precisely, we define the correlation of
a variable xk with two variables xi and xj , denoted C(xi, xj , xk), as

C(xi, xj , xk) def=
P (σ = 1|xi = xj = xk = 1)− P (σ = 1|xi = xj = 1, xk = 0)

P (σ = 1|xk = 1)− P (σ = 1|xk = 0)

The following lemma shows that this new correlation measure solves our
problem.

Lemma 9. Let c be a monotone probabilistic majority of nonoverlapping
perceptrons. Let xi, xj , and xk be three variables in c and assume that the
parents of these variables compute majority functions. Assume that xi ∈ g
where g is a perceptron with p variables. Then

C(xi, xj , xk) =
{

1− 1
p−2 if xj , xk ∈ g

1 otherwise

2This is related to the fact that the amplification function is independent of the level
at which the two variables meet[6].

Mostefa Golea and Mario Marchand 13

To infer the architecture, we first estimate the correlation C(xi, xj) of each
(ordered) pair of variables. Whenever C(xi, xj) is strictly different from
one, we conclude that xi and xj are siblings. For the unsolved cases, we
estimate the correlation C(xi, xj , xk) of each (ordered) triple of variables.
We conclude that xi, xj , and xk are siblings if C(xi, xj , xk) is strictly less
than one, and not siblings otherwise.

The next step is to estimate the threshold of each perceptron. This can
be done exactly as in section 4. The final step is to estimate the different
probabilities p0, . . . , pr. For this, note that

ps = P (σ = 1|g(s) = 1)− P (σ = 1|g(s) = 0) for s = 1, . . . , r.

p0 = P (σ = 1)−
r∑
s=1

psP (g(s) = 1)

Since we have already determined the different perceptrons g(1) . . . , g(r),
the different probabilities p0, p1, . . . , pr can be estimated easily using the
above expressions.

Theorem 10. The class of probabilistic majorities of nonoverlapping per-
ceptrons with binary weights is learnable with a model of probability under
the uniform distribution. The sample complexity is O(n

8

ε4 log(n2/δ)).

6 Conclusion

As we will outline in the full paper, the techniques developed in the pre-
vious sections can be extended to learn other (deterministic/probabilistic)
nonoverlapping neural concepts on the uniform distribution.

The general class of nonverlapping perceptron networks has recently
been shown to be PAC learnable from examples and membership queries [7].
It is still an open problem whether this class is PAC learnable from exam-
ples only on the uniform distribution. A more tractable problem would be
to extend the techniques of this paper to handle the class of nonverlapping
perceptron networks with binary weights and arbitrary thresholds.

Finally, it is important to investigate if these techniques can be made
to work when the requirement of nonoverlapping is relaxed by going to the
2µ or read-twice case.

Acknowledgments

We thank Thomas Hancock for helpful comments on earlier drafts of this
paper. Work supported by NSERC grant OGP0122405.

14 Learning Simple Neural Concepts

Bibliography

1. Bahadur R.,“Some Approximations to the Binomial Distribution
Function”, Annals Math. Stat., Vol.31, (1960), 43–54.

2. Blum A. and Rivest R.L., “Training a 3-node neural network is NP-
complete”, in Proc. of the 1st Workshop on Computational Learning
Theory , Morgan Kaufman, pp. 9–18, 1988.

3. Lin J.H. and Vitter J.S., “Complexity results on learning by neural
nets”, Machine Learning , Vol. 6 , pp. 211–230, 1991.

4. Kearns M., Li M., Pitt L., and Valiant L., “On the learnability of
boolean formulas”, in Proceedings of the 9th Annual ACM Symposium
on Theory of Computing , New York, NY, 1987.

5. Pagallo G. and Haussler D., “A greedy method for learning µDNF
functions under the uniform distribution”. Technical Report UCSC-
CRL-89-12, Santa Cruz: Dept. of Computer and Information Science,
University of California at Santa Cruz, 1989.

6. Schapire R.E., The Design and Analysis of Efficient Learning Algo-
rithms, Cambridge MA: MIT Press, 1992.

7. Hancock T., Golea M., and Marchand M., “Learning Nonoverlapping
Perceptron Networks From Examples and Membership Queries”, To
appear in Machine Learning .

8. Golea M., Marchand M., and Hancock T.R., “On Learning µ-
Perceptron Networks On the Uniform Distribution”, submitted to
Neural Networks.

9. Golea M., Marchand M., and Hancock T.R., “On Learning µ-
Perceptron Networks with Binary Weights”, Advances in Neural In-
formation Processing Systems, Vol. 5 , pp. 591–598, 1993.

10. Kearns M. and Schapire R.E. “ Efficient Distribution-free Learning
of Probabilistic Concepts”, in Proceedings of the 31st Symposium on
Foundations of Computer Science, pp. 382, 1990.

11. Kearns M., “Efficient Noise-Tolerant Learning from Statistical
Queries”, AT&T manuscript 1992.

12. Rivest R.L., “Learning Decision Lists”, Machine Learning , Vol. 2 ,
pp. 229, 1987.

13. Valiant L.G., “A theory of the learnable”, Communications of the
ACM , Vol. 27 , pp. 1134–1142, 1984.

Mostefa Golea and Mario Marchand 15

14. Yamanishi K., “A Learning Criteria for Stochastic Rules”, Machine
Learning , vol. 9, 165–203, 1992.

