

On Learning Perceptrons with Binary Weights

Mostefa Golea∗, Mario Marchand†

Ottawa-Carleton Institute for Physics
University of Ottawa

Ottawa, Ont., Canada K1N 6N5

Submitted to Neural Computation, third draft, Dec 22, 1992

Abstract

We present an algorithm that PAC learns any perceptron with binary weights and arbitrary
threshold under the family of product distributions. The sample complexity of this algorithm
is of O((n/ε)4 ln(n/δ)) and its running time increases only linearly with the number of
training examples. The algorithm does not try to find an hypothesis that agrees with
all of the training examples; rather, it constructs a binary perceptron based on various
probabilistic estimates obtained from the training examples. We show that, under the
restricted case of the uniform distribution and zero threshold, the algorithm reduces to
the well known clipped Hebb rule. We calculate exactly the average generalization rate
(i.e. the learning curve) of the algorithm, under the uniform distribution, in the limit of
an infinite number of dimensions. We find that the error rate decreases exponentially as
a function of the number of training examples. Hence, the average case analysis gives a
sample complexity of O(n ln(1/ε)); a large improvement over the PAC learning analysis.
The analytical expression of the learning curve is in excellent agreement with the extensive
numerical simulations. In addition, the algorithm is very robust with respect to classification
noise.

∗e-mail: 050287@acadvm1.uottawa.ca
†e-mail: mmmsj@acadvm1.uottawa.ca

1 Introduction

The study of neural networks with binary weights is well motivated from both the theoretical and
practical points of view. Although the number of possible states in the weight space of a binary network
is finite, the capacity of the network is not much inferior to that of its continuous counterpart (Barkai
and Kanter 1991). Likewise, the hardware realization of binary networks may prove simpler.

Although networks with binary weights have been the subject of intense analysis from the capacity
point of view (Barkai and Kanter 1991; Köhler et al. 1990; Krauth and Mézard 1989; Venkatesh 1991),
the question of the learnability of these networks remains largely unanswered. The reason for this
state of affairs lies perhaps in the apparent strength of the following distribution-free result (Pitt and
Valiant 1988): learning perceptrons with binary weights is equivalent to Integer Programming and so,
it is an NP-Complete problem. However, this result does not rule out the possibility that this class of
functions is learnable under some reasonable distributions.

In this paper, we take a close look at this possibility. In particular, we investigate, within the PAC
model (Valiant 1984; Blumer et al. 1989), the learnabilty of single perceptrons with binary weights
and arbitrary threshold under the family of product distributions. A distribution of examples is a
product distribution if the the setting of each input variable is independent of the settings of the other
variables. The result of this investigation is a polynomial time algorithm that PAC learns binary
perceptrons under any product distribution of examples. More specifically, the sample complexity of
the algorithm is of O((n/ε)4 ln(n/δ)), and its running time is linear in the number of training examples.
We note here that the algorithm produces hypotheses that are not necessarily consistent with all the
training examples, but that nonetheless have very good generalization ability. These type of algorithms
are called “inconsistent algorithms” (Meir and Fontanari 1992).

How does this algorithm relate to the learning rules proposed previously for learning binary percep-
trons? We show that, under the uniform distribution and for binary perceptrons with zero-threshold,
this algorithm reduces to the clipped Hebb rule (Köhler et al. 1990) (also known as the majority
rule (Venkatesh 1991)).

To understand the typical behavior of the algorithm, we calculate exactly, under the uniform
distribution, its average generalization rate (i.e. the learning curve) in the limit of an infinite number
of input variables. We find that, on average, the generalization rate converges exponentially to 1
as a function of the number of training examples. The sample complexity in the average case is of
O(n ln(1/ε)); a large improvement over the PAC learning analysis. We calculate also the average
generalization rate when learning from noisy examples and show that the algorithm is very robust with
respect to classification noise. The results of the extensive simulations are in very good agreement with
the theoretical ones.

2 Definitions

Let I denote the set {−1,+1}. A perceptron g on the instance space In is specified by a vector of n
weight values wi and a single threshold value θ. For an input vector x = (x1, x2, ..., xn) ∈ In, we have:

g(x) =

{
+ 1 if

∑i=n
i=1 wixi > θ

−1 if
∑i=n
i=1 wixi ≤ θ

(1)

A perceptron is said to be positive if wi ≥ 0 for i = 1, ..., n.
We are interested in the case where the weights are binary valued (±1). We assume, without loss

of generality (w.l.o.g.), that θ is integer and −n− 1 ≤ θ ≤ n.

2

An example is an input-output pair < x, g(x) >. A sample is a set of examples. The examples are
assumed to be generated randomly according to some unknown probability distribution D which can
be any member of the family D of all product distributions. Distribution D belongs to D if and only if
the setting of each input variable xi is chosen independently of the settings of the other variables. The
uniform distribution, where each xi is set independently to ±1 with probability 1/2, is a member of D.

We denote by P (A) the probability of event A and by P̂ (A) its empirical estimate based on a given
finite sample. All probabilities are taken with respect to the product distribution D on In. We denote
by E(x) and V ar(x) the expectation and variance of the random variable x.

If a, b ∈ {−1,+1}, we denote by P (g = b|xi = a) the conditional probability that g = b given the
fact that xi = a.

The influence of a variable xi, denoted Inf(xi), is defined as

Inf(xi) = P (g = +1|xi = +1)− P (g = +1|xi = −1)
− P (g = −1|xi = +1) + P (g = −1|xi = −1) (2)

Intuitively, the influence of a variable is positive (negative) if its weight is positive (negative).

3 PAC Learning Single Binary Perceptrons

3.1 The Learning Model

In this section, we adopt the PAC learning model (Valiant 1984; Blumer et al. 1989). Here the
methodology is to draw, according to D, a sample of a certain size labeled according to an unknown
target perceptron g and then to find a “good” approximation g′ of g. The error of the hypothesis
perceptron g′, with respect to the target g, is defined to be P (g′ 6= g) = P (g′(x) 6= g(x)), where x is
drawn according to the same distribution D used to generate the training sample.

An algorithm PAC learns from examples the class G of binary perceptrons, under a family D of
distributions on In, if for every g ∈ G, any D ∈ D and any 0 < ε, δ < 1, the algorithm runs in time
polynomial in (n, ε, δ) and outputs, with probability at least 1− δ, an hypothesis g′ ∈ G that makes an
error at most ε with g.

3.2 The Learning Algorithm

We assume that the examples are generated according to a (unknown) product distribution D on
{−1,+1}n and labeled according to a target binary perceptron g given by eq.(1). The learning
algorithm proceeds in three steps:

1. Estimating, for each input variable xi, the probability that it is set to +1. If this probability is
too high (too low), the variable is set to +1 (−1). Note that setting a variable to a given value
is equivalent to neglecting this variable because any constant can be absorbed in the threshold.

2. Estimating the weight values (signs). This is done by estimating the influence of each variable.

3. Estimating the threshold value.

To simplify the analysis, we introduce the following notation. Let y be the vector whose components
yi are defined as

yi = wi × xi (3)

3

Then eq.(1) can be written as

g(y) =

{
+ 1 if

∑i=n
i=1 yi > θ

−1 if
∑i=n
i=1 yi ≤ θ

(4)

In addition, we define Inf(yi) by:

Inf(yi) = P (g = +1|yi = +1)− P (g = +1|yi = −1)
− P (g = −1|yi = +1) + P (g = −1|yi = −1) (5)

Note that if D(x) is a product distribution on {−1,+1}n, then so is D(y).

Lemma 1 Let g be a binary perceptron. Let xi be a variable in g. Let a ∈ {−1,+1}. Let g′ be a
perceptron obtained from g by setting xi to a. Then, if P (xi = −a) ≤ ε

2n ,

P (g 6= g′) ≤ ε

2n

Proof: follows directly from the fact that P (g 6= g′) ≤ P (xi = −a).2
Lemma 1 implies that we can neglect any variable xi for which P (xi = ±1) is too high (too low).

In what follows, we consider only variables that have not been neglected.
As we said earlier, intuition suggests that the influence of a variable is positive (negative) if its

weight is positive (negative). The following lemma strengthens this intuition by showing that there is
a measurable gap between the two cases. This gap will be used to estimate the weight values (signs).

Lemma 2 Let g be a perceptron such that P (g = +1), P (g = −1) > ρ, where 0 < ρ < 1. Then for
any product distribution D,

Inf(xi)

{
> ρ

n+1 if wi = +1
< − ρ

n+1 if wi = −1

Proof: We first note that from the definition of the influence and eq. 3 and 5, we can write:

Inf(xi) =

{
+Inf(yi) if wi = +1
−Inf(yi) if wi = −1

We exploit the independence of the input variables to write

Inf(yi) = P (
∑
j 6=i

yj + 1 > θ)− P (
∑
j 6=i

yj − 1 > θ)

−P (
∑
j 6=i

yj + 1 ≤ θ) + P (
∑
j 6=i

yj − 1 ≤ θ)

= 2P (
∑
j 6=i

yj = θ) + 2P (
∑
j 6=i

yj = θ + 1) (6)

One can also write

P (g = +1) = P (
∑
j

yj > θ)

= P (yi = +1)× P (
∑
j 6=i

yj + 1 > θ) + P (yi = −1)× P (
∑
j 6=i

yj − 1 > θ)

≤ P (
∑
j 6=i

yj + 1 > θ) =
n∑
r=θ

P (
∑
j 6=i

yj = r) (7)

4

Likewise,

P (g = −1) = P (
∑
j

yj ≤ θ)

= P (yi = 1)× P (
∑
j 6=i

yj + 1 ≤ θ) + P (yi = −1)× P (
∑
j 6=i

yj − 1 ≤ θ)

≤ P (
∑
j 6=i

yj − 1 ≤ θ) =
r=θ+1∑
r=−n

P (
∑
j 6=i

yj = r) (8)

Let p(r) denote P (
∑
j 6=i yj = r). From the properties of the generating function associated with

product distributions, it is well known (Ibragimov 1956; MacDonald 1979) that p(r) is always unimodal
and reaches its maximum at a given value of r, say rmax. We distinguish two cases:
θ ≥ rmax: in this case, using eq (7)

P (g = +1) ≤
n∑
r=θ

P (
∑
j 6=i

yj = r)

≤ (n− θ + 1)× p(θ) (9)

Using eq. (6) and eq. (9), it easy to see that

Inf(yi) ≥
2P (g = 1)
n− θ + 1

>
ρ

n+ 1

θ ≤ rmax − 1: in this case, using eq (8)

P (g = −1) ≤
r=θ+1∑
r=−n

P (
∑
j 6=i

yj = r)

≤ (n+ θ + 2)× p(θ + 1) (10)

Using eq. (6) and eq. (10), it easy to see that

Inf(yi) ≥
2P (g = −1)
n+ θ + 2

>
ρ

n+ 1

2

So, if we estimate Inf(xi) to within a precision better than the gap established in lemma 2, we
can determine the value of wi with enough confidence. Note that if θ is too large (small), most of the
examples will be negative (positive). In this case, the influence of any input variable is very weak. This
is the reason we require P (g = +1), P (g = −1) > ρ.

The weight values obtained in the previous step define the weight vector of our hypothesis perceptron
g′. The next step is to estimate an appropriate threshold for g′, using these weight values. For that,
we appeal to the following lemma.

Lemma 3 Let g be a perceptron with a threshold θ. Let g′ be a perceptron obtained from g by substi-
tuting r for θ. Then, if r ≤ θ,

P (g 6= g′) ≤ 1− P (g = +1|g′ = +1)

5

Proof:

P (g 6= g′) ≤ P (g = −1|g′ = +1) + P (g = +1|g′ = −1)
= 1− P (g = +1|g′ = +1) + P (g = +1|g′ = −1)
= 1− P (g = +1|g′ = +1)

The last equality follows from the fact that P (g = +1|g′ = −1) = 0 for r ≤ θ.2
So, if we estimate P (g = +1|g′ = +1) for r = −n− 1,−n,−n+ 1, ... and then choose as a threshold

for g′ the least r for which P (g = +1|g′ = +1) ≥ (1 − ε), we are guaranteed to have P (g 6= g′) ≤ ε.
Obviously, such an r exists and is always ≤ θ because P (g = +1|g′ = +1) = 1 for r = θ.

A sketch of the algorithm for learning single binary perceptrons is given in fig. 1.

Theorem 1 The class of binary perceptrons is PAC learnable under the family of product distributions.

Proof: Using Chernoff bounds (Hagerup and Rub 1989), one can show that a sample of size m =
[160n(n+1)]2

ε4
ln 32n

δ is sufficient to ensure that:

• |P̂ (g = a)− P (g = a)| ≤ ε/4 with confidence at least 1− δ/2.

• |P̂ (xi = a)− P (xi = a)| ≤ ε/4n with confidence at least 1− δ/4n.

• | ˆInf(xi)− Inf(xi)| ≤ ε
4(n+1) with confidence at least 1− δ/8n.

• |P̂ (g = +1|g′ = +1)− P (g = +1|g′ = +1)| ≤ ε/4 with confidence at least 1− δ/16n.

Combining all these factors, it is easy to show that the hypothesis g′ returned by the algorithm will
make an error at most ε with the target g, with confidence at least 1− δ.

Since it takes m units of time to estimate a conditional probability using a sample of size m, the
running time of the algorithm will be of O(m× n).2

4 Reduction to the Clipped Hebb Rule

The perceptron with binary weights and zero-threshold has been extensively studied by many au-
thors (Krauth and Mézard 1989; Köhler et al. 1990; Opper et al. 1990; Venkatesh 1991). All these
studies assume a uniform distribution of examples. So, we come to ask how the algorithm of fig. 1
relates to the learning rules proposed previously.

To answer this, let us first rewrite the influence of a variable as:

Inf(xi) =
P (xi = +1|g = +1)

P (xi = +1)
− P (xi = −1|g = +1)

P (xi = +1)
+
P (xi = −1|g = −1)

P (xi = −1)
− P (xi = +1|g = −1)

P (xi = +1)

and observe that under the uniform distribution, P (xi = +1) = P (xi = −1). Next, we notice that in
the algorithm of fig. 1, each weight wi is basically assigned to the sign of ˆInf(xi). Hence apart from ε
and δ, the algorithm can be summarized by the following rule:

wi = sgn
(

ˆInf(xi)
)

= sgn

(∑
ν

g(xν)xνi

)
(11)

6

where sgn(x) = +1 when x > 0 and −1 otherwise and xνi denotes the ith component of the νth training
example.

Equation 11 is simply the well known clipped Hebb rule (Opper et al. 1990), also called the majority
rule in (Venkatesh 1991). Since this rule is just the restriction of the learning algorithm of fig. 1 for
uniform distributions, theorem 1 has the following corollary:

Corollary 1 The clipped Hebb rule PAC learns the class of binary perceptrons with zero thresholds
under the uniform distribution.

5 Average Case Behavior in the Limit of Infinite n

The bound on the number of examples needed by the algorithm of fig. 1 to achieve a given accuracy
with a given confidence is overly pessimistic. In our approach, this overestimate can be traced to the
inequalities present in the proofs of lemma 2 and 3 and to the use of the Chernoff bounds (Hagerup
and Rub 1989). To obtain the typical behavior of the algorithm we will calculate analytically, for any
target perceptron, the average generalization rate (i.e. the learning curve). By generalization rate we
mean the curve of the generalization ability as a function of the size of the training set m. The central
limit theorem will tell us that the average behavior becomes the typical behavior in the limit of infinite
n and infinite m with α = m/n kept constant.

As it is generally the case (Vallet 1989; Opper et al. 1990; Opper and Haussler 1991), we limit
ourselves, for the sake of mathematical simplicity, to the case of uniform distribution and zero threshold.
Therefore, we will calculate the average generalization rate of the clipped Hebb rule (hereafter CHR)
(eq. 11) for both noise-free and noisy examples.

5.1 Zero Noise

Let wt = (wt1, w
t
2, · · · wtn) be the target weight vector and let w = (w1, w2, · · · wn) be the hypothesis

weight vector constructed by the CHR with m training examples. The generalization rate G is defined
to be the probability that the hypothesis agrees with the target on a random example x chosen according
to the uniform distribution. Let us start by defining the following sums of random variables:

X =
n∑
i=1

wixi (12)

Y =
n∑
i=1

wtixi , (13)

The generalization rate is given by

G = P [sgn(X) = sgn(Y)] (14)
= P [XY > 0] (15)

where we have assumed w.l.o.g. that n is an odd number. Since x is distributed uniformly, we easily
find that:

E(X) = E(Y) = 0 (16)
V ar(X) = V ar(Y) = n (17)

n× ρ = E(XY) =
n∑
i=1

wiw
t
i (18)

7

where −1 ≤ ρ ≤ +1 is defined to be the normalized overlap between the target and the hypothesis
weight vector.

According to the central limit theorem, in the limit n→∞, X and Y will be distributed according
to a bivariate normal distribution with moments given by eq. 16, 17 and 18. Hence, for fixed wt and
w, the generalization rate G is given by:

G = 2
∫ ∞

0
dx

∫ ∞
0

dy p(x, y)

where the joint probability distribution p(x, y) is given by

p(x, y) =
1

2πn
√

(1− ρ2)
× exp

[
−x

2

2n
− (y − ρx)2

2n(1− ρ2)

]

This integral easily evaluates to give:

G(ρ) = 1− 1
π

arccos ρ (19)

So, as n→∞, the generalization rate depends only on the angle between the target and the hypothesis
weight vectors.

Now, to average this result over the all training samples of size m, we argue that for large n, the
distribution of the random variable ρ becomes sharply peaked at its mean. Denoting the average over
the training samples by << . . . >>, this amounts to approximating << G(ρ) >> by G(<< ρ >>) as
n→∞.

Using eq. 18, we can write (for a fixed wt):

<< ρ >> =
1
n

n∑
i=1

wti << wi >> (20)

=
1
n

n∑
i=1

(2pi − 1) (21)

where pi is the probability that wtiwi = +1. We introduce the independent random variables ξνi = wtix
ν
i ,

and use eq. 11 to write:

wtiwi = sgn

 m∑
ν=1

sgn

ξνi n∑
j=1

ξνj

 (22)

Let us define the new random variables ηνi

ηνi = sgn

ξνi n∑
j=1

ξνj

 (23)

With that, pi can be written as

pi = P

[(
m∑
ν=1

ηνi

)
> 0

]
(24)

Let q be the probability that ηνi = +1. From eq. 23, we can write q as:

q = P

 n∑
j 6=i

ξνi ξ
ν
j

 > −1

8

=
n−1∑

k=(n−1)/2

(
n− 1
k

)(
1
2

)k (1
2

)n−1−k

=
1
2

+
1
2n

(
n− 1
n−1

2

)

=
1
2

+
1√
2πn

as n→∞ (25)

where, by using Stirling’s formula, we have kept only the leading term in 1/
√
n as n → ∞. Hence,

in this limit, each ηνi has unit variance and a mean of 2/
√

2πn. Since ηνi and ηµ6=νi are statistically
independent, the central limit theorem tells us that, when m→∞, the variable

Z =
m∑
ν=1

ηνi

becomes a Gaussian variable with mean µz = m ×
√

2/πn and variance m. Hence, as m → ∞ and
α = m/n is kept constant, eq. 24 becomes:

pi =
1√

2πm

∫ ∞
0

dz exp

[
−(z − µz)2

2m

]
(26)

=
1
2

+
1
2

erf
(√

α/π

)
(27)

Hence, using eq. 19, 21 and 27, we have finally:

<< ρ >> = erf
(√

α/π

)
(28)

<< G >> = 1− 1
π

arccos
[
erf
(√

α/π

)]
(29)

This results is independent of the target wt.
The average generalization rate and normalized overlap are plotted in fig. 2 and compared with

numerical simulations. We see that the agreement with the theory is excellent, even for moderate
values of n. Notice that the agreement is slightly better for << ρ >> than it is for << G >>. This
illustrates the difference between << G(ρ) >> and G(<< ρ >>).

To compare this average-case analytic result to the bounds given by PAC learning, we use the fact
that we can bound erf(z) by an exponential (Abramowitz and Stegun 1972) and thus bound the error
rate 1− << G >>= εrr by:

εrr < exp
(
− α

2π

)
(30)

That is, the error rate decreases exponentially with the number of examples and, on average, a
training set of size of O(n ln(1/ε)) is sufficient to produce an hypothesis with error rate ε. This is an
important improvement over the bound of O((n/ε)4 ln(n/δ)) given by our PAC learning analysis.

Thus, the CHR is a striking example of a very simple “inconsistent” algorithm that does not always
produce hypotheses that agrees with all the training examples, but nonetheless produce hypotheses with
outstanding generalization ability. Moreover, the exponential convergence outlines the computational
advantage of learning binary perceptrons using binary perceptrons. In fact, if one allows real weights,
no algorithm can outperform the Bayes optimal algorithm (Opper and Haussler 1991). The latter’s
error rate improves only algebraically, approximately as 0.44/α.

9

On the other hand, for consistent learning rules that produce perceptrons with binary weights, a
phase transition to perfect generalization is known to take place at a critical value of α (Sompolinsky
et al. 1990; Gyorgyi 1990). Thus, these rules have a slightly better sample complexity than the CHR.
Unfortunately, they are much more computationally expensive (with a running time that generally
increases exponentially with the number of inputs n). Since it is an “inconsistent” learning rule, the
CHR does not exhibit a phase transition to perfect generalization. We think that the exponential
convergence is the reminiscence of the “lost” phase transition.

An interesting question is how the CHR behaves when learning binary perceptrons on product
distributions. To answer this, we first note that the CHR works by exploiting the correlation between
the state of each input variable xi and the classification label (eq. 11). Under the uniform distribution,
this correlation is positive if wti = +1 and negative if wti = −1. This is no more true for product distri-
butions: one can easily craft some malicious product distributions where, for example, this correlation
is negative although wti = +1. The CHR will be fooled by such distributions because it does no take
into account the fact that the settings of the input variables do not occur with the same probability.
The algorithm of fig. 1 fix this problem by taking this fact into consideration, through the conditional
probabilities.

Finally, it is important to mention that binary perceptrons trained with the CHR on examples
generated uniformly will perform well even when tested on examples generated by non-uniform distri-
butions, as long as these distributions are reasonable (for a precise definition of reasonable distributions,
see (Bartlett and Williamson 1990)).

5.2 Classification Noise

In this section we are interested in the generalization rate when learning from noisy examples. We
assume that the classification label of each training example is flipped independently with some prob-
ability σ. Since the object of the learning algorithm is to construct an hypothesis w that agrees the
most with the underlying target wt, the generalization rate G is defined to be the probability that the
hypothesis agrees with the noise-free target on a new random example x.

The generalization rate for a fixed w and wt is still given by eq. 19. To calculate the effect of noise
on << ρ >>, let us define q′ as the probability that ηνi = +1 in the presence of noise whereas q denotes
this probability in the noise-free regime (i.e. eq. 25). These two probabilities are related by:

q′ = q(1− σ) + (1− q)σ (31)

=
1
2

+
1− 2σ√

2πn
as n→∞ (32)

where we have used eq. 25 for the last equality. This leads to the following expressions for the normalized
overlap and the generalization rate, in the presence of noise:

<< ρ >> = erf
(

(1− 2σ)
√
α/π

)
(33)

<< G >> = 1− 1
π

arccos
[
erf
(

(1− 2σ)
√
α/π

)]
(34)

One can see that the algorithm is very robust with respect to classification noise: the average
generalization rate still converges exponentially to 1 as long as σ < 1/2. The only difference with the
noise-free regime is the presence of the prefactor (1− 2σ).

The average generalization rate for different noise levels σ is plotted in fig. 3. We see that the
numerical simulations are in excellent agreement with the theoretical curves.

10

6 Summary

We have proposed a very simple algorithm that PAC learns the class of perceptrons with binary
weights and arbitrary threshold under the family of product distributions. The sample complexity of
this algorithm is of O((n/ε)4 ln(n/δ)) and its running time increases only linearly with the sample size.

We have shown that this algorithm reduces to the clipped Hebb rule when learning binary per-
ceptrons with zero threshold under the uniform distribution. We have calculated exactly its learning
curve in the limit n → ∞ where the average behavior becomes the typical behavior. We have found
that the error rate converges exponentially to zero and have thus improved the sample complexity to
O(n ln(1/ε)). The analytic expression of the learning curve is in excellent agreement with the numerical
simulations. The algorithm is very robust with respect to random classification noise.

Acknowledgments: This work was supported by NSERC grant OGP0122405.

References

[1] Abramowitz M. and Stegun I. A., “Handbook of Mathematical Functions”, Dover Publ., 1972,
eq. 7.1.13.

[2] Barkai, E. & Kanter, I., “Storage Capacity of a Multilayer Neural Network with Binary weights”,
Europhys. Lett., Vol. 14, 1991, 107–112.

[3] Bartlett, P. L. and Williamson, R. C., “Investigating the Distribution Assumptions in the PAC
Learning Model”, in Proc. of the 4th Workshop on Computational Learning Theory, Morgan
Kaufman, 1991, 24–32.

[4] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, K., “Learnability and the Vapnik-
Chervonenkis Dimension”, J. ACM , Vol. 36, (1989), 929–965.

[5] Gyorgyi G., “First-order transition to perfect generalization in a neural network with binary
synapses”, Phys. Rev. A, Vol. 41, (1990), 7097–7100.

[6] Hagerup, T., & Rub, C., “A Guided Tour to Chernoff Bounds”, Info. Proc. Lett., Vol. 33, (1989),
305–308.

[7] Ibragimov I. A., “On the composition of unimodal distributions”, Theory of Probability and its
applications, Vol. 1, (1956) 255–260.

[8] Köhler H.,Diederich S., Kinzel W., and Opper M., “Learning Algorithm for a Neural Network
with Binary Synapses”, Z. Phys. B, Vol. 78, (1990), 333–342.

[9] Krauth W., Mézard M., “Storage Capacity of Mémory Networks with Binary Couplings”, J. Phys.
France, Vol. 50, (1989), 3057–3066.

[10] MacDonald D. R., “On local limit theorems for integer-valued random variables”, Theory of Prob-
ability and Statistics Acad. Nauk., Vol. 3 (1979), 607–614.

[11] Meir R., Fontanari J. F., “Calculation of learning curves for inconsistent algorithms”, Phys. Rev.
A, Vol. 92, (1992), 8874–8884.

[12] Opper M,, Haussler H., “Generalization Performance of Bayes Optimal Classification Algorithm
for Learning a Perceptron”, Phys. Rev. Lett. Vol. 66, (1991), 2677–2680.

11

[13] Opper M., Kinzel W., Kleinz J., Nehl R., “On the Ability of the Optimal Perceptron to Generalize”,
J. Phys. A: Math. Gen., Vol. 23, (1990), L581–L586.

[14] Pitt, L. & Valiant, L.G., “Computational Limitations on Learning from Examples”, J. ACM ,
Vol. 35, 1988, 965–984.

[15] Sompolinsky H., Tishby N, Seung H. S., “Learning from Examples in Large Neural Networks”,
Phys. Rev. Lett, Vol. 65, (1990), 1683–1686.

[16] Vallet, F., “The Hebb Rule for Learning Linearly Separable Boolean Functions: Learning and
Generalization.”. Europhys. Lett, Vol. 8, (1989), 747–751.

[17] Valiant, L.G., “A Theory of the Learnable”, Comm. ACM , Vol. 27, 1984, 1134–1142.

[18] Venkatesh, S., “On Learning Binary Weights for Majority Functions”, in Proc. of the 4th Workshop
on Computational Learning Theory, Morgan Kaufman, 1991, 257–266.

12

Algorithm LEARN-BINARY-PERCEPTRON(n,ε,δ)
Parameters: n is the number of input variables, ε is the accuracy parameter and δ is the
confidence parameter.
Output: a binary perceptron g′ defined by a weight vector (w1, . . . , wn) and a
threshold r.
Description:

1. Call m = [160n(n+1)]2

ε4
ln 32n

δ examples. This sample will be used to estimate the differ-
ent probabilities. Initialize g′ to the constant perceptron −1.

2. (Are most examples positive?) If P̂ (g = +1) ≥ (1− ε
4) then set g′ = 1 and return g′.

3. (Are most examples negative?) If P̂ (g = +1) ≤ ε
4 then set g′ = −1 and return g′.

4. Set ρ = ε
2 .

5. (Is P (xi = +1) too low or too high ?) For each input variable xi:

(a) Estimate P (xi = +1).

(b) If P̂ (xi = +1) ≤ ε
4n or 1− P̂ (xi = +1) ≤ ε

4n , neglect this variable.

6. (Determine the weight values) For each input variable xi:

(a) If ˆInf(xi) > 1
2

ρ
n+1 , set wi = 1.

(b) Else if ˆInf(xi) < −1
2

ρ
n+1 , set wi = −1.

(c) Else set wi = 0 (xi is not an influential variable).

7. (Estimating the threshold) Initialize r (the threshold of g′) to −(n+ 1).

(a) Estimate P (g = +1|g′ = +1).

(b) If P̂ (g = +1|g′ = +1) > 1− 1
4ε, go to step 8.

(c) r = r + 1. Go to step 7a.

8. Return g′ (that is (w1, ..., wn; r)).

Figure 1: An algorithm for learning single binary perceptrons on product distributions.

13

20151050
0.0

0.2

0.4

0.6

0.8

1.0

n = 50
n = 100

n = 500
Theory

α

A
v

e
ra

g
e

O

v
e

rl
a

p

(b)

20151050
0.5

0.6

0.7

0.8

0.9

1.0

n = 50
n = 100

n = 500
Theory

α

A
v

e
ra

g
e

G

e
n

e
ra

li
za

ti
o

n

(a)

Figure 2: (a) The average generalization rate << G >> and (b) the average normalized overlap
<< ρ >> as a function of normalized number of examples α = m/n. Numerical results are shown for
n = 50, 100, 500. Each point denotes an average over 50 different training samples and the error bars
denote the standard deviations.

14

302520151050
0.5

0.6

0.7

0.8

0.9

1.0
noise = 0.0

noise = 0.1

noise = 0.2

noise = 0.4

Theory: noise=0.0

Theory: noise=0.1

Theory: noise=0.2

Theory: noise=0.4

α

A
v

e
ra

g
e

G

e
n

e
ra

li
za

ti
o

n

Figure 3: The average generalization rate << G >> for different noise levels σ. Numerical results are
shown for n = 100. Each point denotes the average over 50 different simulations (i.e. 50 different noisy
training sets). The error bars (indicated only for σ = 0.4 for clarity) denote the standard deviations.

15

