Decomposition of infinite eulerian graphs with a small number of vertices of infinite degree

François Laviolette*

Université de Montréal, Département de Mathématiques et de Statistique, C.P. 6128, Succ. A, Montréal, Québec, H3C 3J7, Canada

Received 3 May 1989

Abstract

We consider the question whether an infinite eulerian graph has a decomposition into circuits and rays if the graph has only finitely many, say n, vertices of infinite degree, and only finitely many finite components after the removal of the vertices of infinite degree. It is known that the answer is affirmative for $n < 2$ and negative for $n \geq 4$. We settle the remaining case $n = 3$, showing that a decomposition into circuits and rays also exists in this case.

1. Preliminaries

In this paper we shall deal with a special case of the problem of decomposing infinite eulerian graphs (i.e., graphs whose vertices are of even or infinite degree) into edge disjoint (finite or infinite) circuits and rays (one-way infinite paths). In general an eulerian graph does not admit such a decomposition. Sabidussi [2] raised the question whether a circuit-ray decomposition exists under the additional assumptions that the graph

1. has only finitely many, say n, vertices of infinite degree and
2. has only finitely many finite components after the removal of the vertices of infinite degree.

It is easily seen that for $n \leq 2$ this is indeed the case (see [2]). On the other hand, Thomassen [3] gave an example (Fig. 1) showing that for $n = 4$ a circuit-ray decomposition need not exist. Thomassen's counterexample is easily generalized to arbitrary $n \geq 4$. Thus there remains the case $n = 3$. The purpose of this note is to prove that in this case the answer is affirmative.

* Corresponding author.
Definitions For convenience, all graphs considered in this paper are without multiple edges or loops. Given an arbitrary graph G we denote by I_G the set of all vertices of infinite degree of G, and by J_G the set of all vertices whose degree is either odd or infinite. G is eulerian if all vertices are of even or infinite degree (we do not require connectedness). A circuit is a nonempty, connected, 2-regular graph, a cycle is a finite circuit. A ray is a one-way infinite path; its unique vertex of degree 1 is its origin. A ray whose origin is x will be called an x-ray.

A decomposition of a graph G is a set of pairwise edge-disjoint subgraphs of G whose union is G. A CR-decomposition is a decomposition consisting of circuits and rays.

Given a graph G and a subgraph H of G we denote by $G \setminus H$ the subgraph of G consisting of the edges of G which are not in H, and their incident vertices (i.e., the edge-induced subgraph). Note that by definition $G \setminus H$ never has an isolated vertex. For $A \subseteq V(G)$ we denote by $[A, \bar{A}]$ the set of all edges of G having one vertex in A and the other in $\bar{A} = V(G) \setminus A$. A set of the form $[A, \bar{A}]$ will be called a cut of G.

We will use the following two classical theorems.

König's Theorem (König [1]). Let G be an infinite, locally finite connected graph. Then for any $x \in V(G)$, there exists an x-ray in G.

Veblen's Theorem (König [1]). Let G be a locally finite eulerian graph. Then G has a circuit decomposition.

2. Results

Lemma 2.1 (folklore). If F is an infinite rayless forest without isolated vertices then J_G is infinite.
Proof. \(F \) has infinitely many pendant vertices. \(\square \)

Lemma 2.2. If \(G \) is a graph with at most one vertex of odd or infinite degree, then \(G \) has a CR-decomposition.

Proof. If there is no such vertex we are in the case of Veblen's theorem. Suppose, then, that \(G \) has a unique vertex \(x_0 \) whose degree is odd or infinite. Let \(\mathcal{D} \) be a maximal set of pairwise edge-disjoint circuits and \(x_0 \)-rays. We claim that \(\mathcal{D} \) is a decomposition of \(G \). Consider \(D = \bigcup \mathcal{D} \). By the maximality of \(\mathcal{D} \) and the fact that all vertices of \(G \) except \(x_0 \) are of even degree, it follows that \(G \setminus D \) is rayless, acyclic, without isolated vertices, and has at most one vertex of odd or infinite degree, namely \(x_0 \). Since any nonempty rayless forest without isolated vertices has at least two pendant vertices, we therefore obtain that \(G \setminus D = \emptyset \). Thus \(\mathcal{D} \) is a CR-decomposition of \(G \). \(\square \)

Lemma 2.3. Let \(G \) be a graph such that \(I_G \) is finite and \(G - I_G \) has only finitely many finite components. Then any \(x \in I_G \) is the origin of a ray in \(G \).

Proof. Let \(x \in I_G \). Since \(x \) has infinite degree and the number of finite components of \(G - I_G \) is finite, \(x \) has a neighbor \(y \) in some infinite component \(H \) of \(G - I_G \). \(H \) being locally finite, \(y \) is the origin of some ray \(R \subset H \) (by König's theorem). Thus the edge \((x, y)\) together with \(R \) form an \(x \)-ray in \(G \). \(\square \)

The following lemma can also be proved without any restrictions on the cardinality of \(I_G \). We consider here only the case where \(I_G \) is finite or countable as this is all we need in the sequel.

Lemma 2.4. Let \(G \) be an eulerian graph having at most countably many vertices of infinite degree. If \(G \) has no CR-decomposition, then there is a finite cut \([A, \overline{A}]\) of \(G \) which separates some vertices of infinite degree, i.e., \(A \cap I_G \neq \emptyset \) and \(\overline{A} \cap I_G \neq \emptyset \).

Proof. Suppose by way of contradiction that for any finite cut \([A, \overline{A}]\) of \(G \) either \(I_G \subset A \) or \(I_G \subset \overline{A} \). This implies that given any finite subgraph \(F \) of \(G \), \(I_G \) is contained in some component of \(G \setminus F \).

Note that by Lemma 2.2 \(|I_G| \geq 2\). Since \(I_G \) is finite or countable, we can form a countable sequence \(p_0, p_1, \ldots \) of pairs of distinct vertices of \(I_G \), say \(p_i = \{x_i, y_i\} \), in which every pair of distinct vertices of \(I_G \) occurs infinitely often. Using the pairs \(p_i \), construct an infinite sequence \(P_0, P_1, \ldots \) of pairwise edge-disjoint paths as follows. Let \(P_0 \) be any \(x_0 \)-path in \(G \), and assuming \(P_0, \ldots, P_n \) already constructed, let \(P_{n+1} \) be an \(x_{n+1} \)-path in \(G \setminus (P_0 \cup \cdots \cup P_n) \).

Extend the set \(\{P_0, P_1, \ldots\} \) to a maximal set \(\mathcal{D} \) of pairwise edge-disjoint paths in \(G \) having both endpoints in \(I_G \). It follows from the choice of the pairs \(p_i \) that given any two distinct vertices \(x, y \in I_G \) there are infinitely many \(xy \)-paths in \(\mathcal{D} \).
Let $D = \bigcup \mathcal{D}$ and consider $G \setminus D$. As the vertices of odd or infinite degree of $G \setminus D$ are among the vertices of I_G, the maximality of \mathcal{D} implies that each component of $G \setminus D$ has at most one vertex of odd or infinite degree. Hence by Lemma 2.2 each component of $G \setminus D$ has a CR-decomposition and therefore so does $G \setminus D$.

To complete the proof we show that D has a decomposition into cycles. Given $x, y \in I_G, x \neq y$, let D_{xy} be the union of all xy-paths in \mathcal{D}. As already mentioned there are infinitely many such paths. They can be paired to form finite eulerian graphs all of whose vertices are of degree 2 or 4. These can be decomposed into cycles and hence give rise to a cycle decomposition of D_{xy}. Moreover, the graphs $D_{xy}, x, y \in I_G, x \neq y,$ form a decomposition of D. Hence combining the cycle decompositions of the D_{xy}’s we obtain a cycle decomposition of D. \square.

Theorem 2.5. Let G be a graph such that $|I_G| = 3$ and $G - I_G$ has only finitely many finite components. Then G has a CR-decomposition.

Proof. Suppose G has no such decomposition. Let $I_G = \{x_1, x_2, x_3\}$. By Lemma 2.4 there is a finite cut $[A, \bar{A}]$ such that w.l.o.g. $x_1 \in A$ and $x_2, x_3 \in \bar{A}$.

Denote by G_1, G_2 the induced subgraphs of G on A and \bar{A}, respectively, and abbreviate I_G by $I_i, i = 1, 2$. Clearly $I_1 = \{x_1\}$ and $I_2 = \{x_2, x_3\}$. Moreover, since $[A, \bar{A}]$ is finite, both $G_1 - I_1$ and $G_2 - I_2$ have only a finite number of finite components. Therefore by Lemma 2.3, G_i contains an x_i-ray $R_i (i = 1, 2)$, and obviously R_1 and R_2 are disjoint. Let $H = G \setminus (R_1 \cup R_2)$.

Consider a maximal set \mathcal{D} of pairwise edge-disjoint circuits and x_i-rays ($i = 1, 2, 3$) in H, and let $D = \bigcup \mathcal{D}$. We will show that \mathcal{D} can be extended to a CR-decomposition of G, i.e., that $G \setminus D$ has a CR-decomposition.

Observe that $H \setminus D$ is acyclic and rayless and that $J_{H \setminus D} = \{x_1, x_2, x_3\}$. Hence by Lemma 2.1, $H \setminus D$ is finite and the only vertices which may have odd degree are x_1, x_2, x_3. Moreover, since any finite graph has an even number of vertices of odd degree we conclude that $G \setminus D$ has at most two vertices of odd degree, because otherwise $H \setminus D$ would have only one, viz. x_3. There are now two cases.

Case 1. $G \setminus D$ has at most one vertex of odd degree. Then by Lemma 2.2, $G \setminus D$ has a CR-decomposition.

Case 2. $G \setminus D$ has exactly two vertices of odd degree. This means that at least one of x_1 and x_2 has odd degree in $G \setminus D$, say x_1. Since R_1 is an x_1-ray, $(G \setminus D) \setminus R_1$ has a CR-decomposition (Lemma 2.2), and hence so does $G \setminus D$.

Thus in either case we reach a contradiction. \square

Acknowledgement

The author wishes to thank Gert Sabidussi for very useful comments.
References