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Abstract

In this paper we propose a notion of bisimulation for labelled Markov processes parame-
terised by negligible sets (LMPns). The point is to allow us to say things like two LMPs are
“almost surely” bisimilar when they are bisimilar everywhere except on a negligible set. Usually
negligible sets are sets of measure 0, but we work with abstract ideals of negligible sets and so
do not introduce an ad-hoc measure.

The construction is given in two steps. First a refined version of the category of measurable
spaces is set up, where objects incorporate ideals of negligible subsets, and arrows are identified
when they induce the same homomorphisms from their target to their source σ-algebras up to
negligible sets. Epis are characterised as arrows reflecting negligible subsets. Second, LMPns
are obtained as coalgebras of a refined version of Giry’s probabilistic monad. This gives us the
machinery to remove certain counterintuitive examples where systems were bisimilar except for
a negligible set. Our new notion of bisimilarity is then defined using cospans of epis in the
associated category of coalgebras, and is found to coincide with a suitable logical equivalence
given by the LMP modal logic. This notion of bisimulation is given in full generality - not
restricted to analytic spaces. The original theory is recovered by taking the empty set to be the
only negligible set.

Some of the results of this paper have appeared in an earlier paper by the same au-
thors [DDLP05] devoted to the introduction of the notion of event bisimulation. As a result
of developing the theory of this paper it becomes clear that the points of the state space are
less natural than the measurable sets. This suggests working with a “pointless” version of the
theory and introducing a Stone-type duality for LMPs. We explore these ideas in a preliminary
way in the last section.

∗Research supported by NSERC.
†Research supported by NSERC (Canada) and EPSRC (U.K.). Research carried out at Computing Laboratory,

Oxford University.
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1 Introduction

Markov processes with continuous state spaces or continuous time evolution (or both) arise naturally
in several fields of chemistry, physics, biology, economics and computer science. Examples of
such systems are Brownian motion, noisy control systems, systems of chemical species undergoing
reactions, computer networks, robots and communications systems.

Labelled Markov Processes (LMPs) were formulated [BDEP97, DEP02] to study such general
interacting Markov processes. In an LMP, instead of one transition probability function (or Markov
kernel) there are several, each associated with a distinct label1. Each such transition probability
function represents the (stochastic) response of the system to an external stimulus represented by
the label. In our work we do not associate probabilities with these external stimuli; in other words,
we do not intend to quantify the behaviour of the environment. Thus, for those familiar with
process algebra terminology, an LMP is a labelled transition system with probabilistic transitions.
The interaction is captured by synchronizing on labels in the manner familiar from process algebra.

The following example, taken from [DGJP03], illustrates these ideas.

Example 1.1 Consider the flight management system of an aircraft. It is responsible for mon-
itoring the state of the aircraft – the altitude, windspeed, direction, roll, yaw etc. – periodically
(usually several times a second), it also monitors navigational data from satellites and makes cor-
rections, as needed, by issuing commands to the engines and the wing flaps. The physical system is
a complex continuous real-time stochastic system; stochastic because the response of the physical
system to commands cannot be completely deterministic and also because of unexpected situations
like turbulence. From the point of view of the flight management system, however, the system is
discrete-time and has continuous space (and one can consider the set of labels corresponding to the
commands to be discrete as well). The time unit is the sampling rate. The entire system consists
of many interacting concurrent components and programming it correctly – letting alone verifying
that the system works – is very challenging. A formal model of this type of software brings us
into the realm of process algebra, because of the concurrent interacting components, stochastic
processes and real-time systems, the last because the responses may have hard deadlines.

The study of discrete probabilistic systems from the viewpoint of process algebra was initiated
by Larsen and Skou [LS91]. They introduced strong probabilistic bisimulation for discrete processes
in a style similar to the queueing theory notion of “lumpability” invented in the late 1950s [KS60].
In a series of previous papers [BDEP97, DEP98, DEP02] such Markov processes with continuous
state spaces and independently acting components were studied, and the phrase “labelled Markov
processes” appeared in print explicitly referring to the continuous state space case. Of course,
closely related concepts were already around: for example, Markov decision processes [?]. The
papers by Desharnais, Edalat and Panangaden gave a definition of bisimulation between LMPs,
and gave a logical characterization of this bisimulation. Subsequently an approximation theory was
developed [DGJP00, DGJP03, ?] and metrics were defined [DGJP99, ?, ?, ?].

Before we begin the present paper we will briefly review the prior results. The notion of strong
probabilistic bisimulation - henceforth just “bisimulation” - was based on the idea that if two
states are bisimilar then their transition probabilities to bisimulation equivalence classes should
match. This notion works well for the discrete case, but has to be generalised appropriately to
the continuous case. One idea was to mimic this definition exactly with a few measure-theoretic

1We do not consider internal nondeterminism in the present paper.
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conditions imposed to deal with the fact that not all sets need be measurable. This was the approach
followed in [DGJP00, DGJP03]. However, in an earlier approach [BDEP97, DEP98, DEP02] the
authors had defined a bisimulation - they called it a “zigzag” - morphism and then defined a
bisimulation relation as a span of such morphisms. This also generalises the discrete case but it
turned out to be very painful to prove that one gets a transitive relation and one had to restrict to
Polish or analytic spaces. Polish spaces are the topological spaces underlying complete separable
metric spaces and as such are very natural: any manifold is a Polish space. However, a quotient
construction that we needed does not preserve the Polishness of a space so we had to move to
analytic spaces which are, roughly speaking, continuous (or measurable) images of Borel sets in
Polish spaces. For analytic spaces (which subsumes Polish) the two notions coincide.

One of the nice things about the theory is the logical characterization of bisimulation. There
was already such a theorem for the discrete case in the paper of Larsen and Skou [LS91] but it
was not clear that such a theorem would work in the continuous state case. Not only did such a
theorem exist but logical characterization worked with a much more parsimonious logic than one
was led to expect from the previous work on the discrete case.

There turned out to be a very spartan logic:

> | φ1 ∧ φ2 | 〈a〉qφ

which characterises bisimulation for both continuous and discrete systems. There are two striking
things about this logic: there is no negative construct at all and one only needs binary conjunction
even though the branching may be uncountable. The proof heavily uses special properties of analytic
spaces that a priori have nothing to do with anything logical.

This is an irritating fact: one has to restrict to state-spaces that were analytic. In one sense this
is not very restrictive: almost every process that one can imagine has an analytic state space. In
particular Rn with the usual Borel sets is analytic and indeed any manifold is analytic - as we have
already remarked. But in another sense it is conceptually unsatisfying that these notions specific
to measure theory on certain topological spaces should turn out to be so crucial. Why doesn’t the
theory work for general measure spaces? Certainly the statement of the logical characterization
theorem does not suggest anything about analytic spaces.

1.1 The road to event bisimulation

The first attempt to define LMPs for continuous systems [BDEP97] did not have any assumptions
about the σ-algebra on the state space. LMPs were organized in a category and bisimulation
was defined in terms of spans of particular morphisms of this category, called zigzag morphisms.
However, buried in the proofs was an alternative view of bisimulation as a cospan: in fact this is
the germ of the co-congruence idea that we developed in a previous paper [DDLP05]. With this
new definition, one could prove that the logic L characterizes bisimulation. In the original proof of
logical characterization of bisimulation given in [DEP02] this was viewed as an intermediate step. It
was not realized that cospans could serve as the defining property of bisimulation. Instead we were
obsessed with the idea of bisimulation in terms of spans of morphisms because spans correspond
more naturally to relations between objects of a category.

For the general theory of bisimulation for processes defined on arbitrary measure spaces, spans
could not be used because one could not show that bisimulation was transitive; indeed, this is
equivalent to constructing a span given a cospan, and to this day, only analytic spaces have been
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proven to satisfy this property [Eda99, ?]. Secondly, the definition of bisimulation was not given on
the state-space of a process but, rather, through morphisms in the category: this is not what one
was used to working with in the finite case or in the non-probabilistic case. Consequently, a new
relational definition of bisimulation (called state bisimulation in this paper) was formulated that
looked like a nice generalization of non-probabilistic bisimulation as well as of finite probabilistic
bisimulation. However, for this definition as well, characterization of bisimulation by the logic was
only proven for analytic spaces.

In the paper [DDLP05], we gave a new definition of bisimulation, called event bisimulation,
that is equivalent to the cospan definition and hence is characterised by the simple logic given
above. This is proved without any analyticity assumption: it works for arbitrary measure spaces.
Moreover, it has the nice property that the logic yields the biggest possible event bisimulation on
any process. We also compare this definition with the state bisimulation mentioned above, and
show that the two notions are exactly the same for analytic spaces. More precisely, the largest
state bisimulation is an event bisimulation on these spaces. However, viewed as relations we show
that roughly speaking, the former is finer that the latter, and hence equates fewer states than the
latter in general (in both analytic and non analytic spaces). The following simple example is useful
for intuition.

Example 1.2 Consider a set of states equiped with a σ-algebra that does not separate points. For
example, one can take {1, 2, 3, 4} with the σ-algebra, {∅, {1, 2}, {3, 4}, {1, 2, 3, 4}}. The identity
relation is a state bisimulation, but it is not an event bisimulation because it distinguishes states
that are undistinguishable by the σ-algebra. Indeed states 1 and 2 are not related, whereas no
transition probability function may distinguish them, since such functions must respect the σ-
algebra in an LMP, by being measurable. Since event bisimulation is based on the σ-algebra, it
cannot be finer.

We believe that event bisimulation is the correct generalization of state bisimulation to the
category of all LMPs defined for arbitrary measure spaces. This is justified by three arguments: (i)
the two notions agree on analytic spaces, (ii) event bisimulation is shown to be characterised by
the logic for any measurable space (analytic and non analytic spaces) and (iii) the notion of event
bisimulation integrates nicely with the categorical approach to LMPs, and in particular, transitivity
of event bisimilarity can be proven categorically without the analyticity assumption.

The use of σ-algebras as means of controlling how much processes know about a particular ran-
dom outcome is commonplace in probability theory. In that respect, substituting event bisimulation
for state bisimulation reconciles the theory of probabilistic processes with traditional probability
theory; it allows one to use the σ-algebra as a vector of information to define event bisimulation
between processes.

1.2 Outline of the paper

The nice integration of event bisimulation with categorical language (point (iii) above) will prove
useful for our present purpose which is to enrich the usual notion of LMPs with a notion of negligi-
bles, and carry over the notions of event bisimulation and logical characterization to this enriched
framework.

The paper is organised in a way that it is practically self-contained. We start with a brief
reminder of the basic concepts and notations which we will need, including a definition of LMPs
and the now traditional notion of state bisimulation. Next, we turn to the definition of event
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bisimulation, because for all the reasons explained above this is the one we want to work with.
Together with this definition comes a comparison of the two notions. We show in particular that
these notions coincide on analytic state spaces (point (i) above). This last point is not needed for
the rest of the paper, but by relating our working notion of bisimulation to the traditional one, it
helps in building an intuition about the former. As a further step, we recall the LMP modal logic
and show the equivalence with event bisimulation (point (ii) above). The final preparation step is
to recast event bisimulation in categorical terms, that is to say as a co-span of surjective coalgebra
morphisms of Giry’s monad (point (iii) above). This ends the first part of the paper which has
essentially appeared in an earlier paper by the same authors [DDLP05].

When this is all in place, we proceed to the second part which constitutes the proper topic of
the paper. First, we refine the ambient category of measurable spaces to that of measurable spaces
with negligibles. Second, we refine Giry’s monad to cope with the newly introduced negligible sets.
As a result, we obtain our definition of LMPns and the associated notion of event bisimulation,
which parallels the coalgebraic description of LMPs and event bisimulation within our new ambient
category and monad. To complete the picture, we turn to the logical side of the matter, and propose
a definition of logical equivalence up to negligibles which we prove is indeed a characterization of
our refined notion of event bisimilarity.

The introduction of negligibles in the picture promotes a view of MPs where points of the state
space are less important, and events become the main characters. A natural step to take then is
to develop a pointfree LMP theory and the paper ends with a sketch of what such a theory would
look like; this last section also illustrates the algebraic inspiration driving the various choices made
in the second part.

1.3 Motivations

At that point, it might be useful to spend some time in motivating the development of a pointfree
approach to LMPs. An evident motivation is that there are compelling examples (see the beginning
of section 6) of concrete LMPs on continuous spaces which differ only in a point, or in negligibly
many points, and which some theory should allow to declare equal, or almost so. When LMPs can
be said to be almost equal, and what becomes of the notion of LMP bisimulation in this context,
is indeed the question we address in this paper.

A second motivation is that the induced notion of equality in the refined category is rooted
in convincing algebraic intuitions, where one sees a measurable function as inducing a morphism
between σ-algebras, very much as one sees a continuous function as a frame morphism in pointfree
topology. The same can be said of the modified notion of logical equivalence of two systems. The
last section of the paper, which by no means constitutes a definitive answer, tries to solidify to
some extent these algebraic intuitions by developing rudiments of a Stone duality for LMPs.

One could think of another way to escape from points by switching to a functional description
of MPs. Typically, given an MP kernel h, one would define a linear positive functional Fh(f)(x) =∫
f dh(x) over some space of µ-integrable functions, where µ is some measure. Such function spaces

have a natural notion of µ-almost equality attached and are a good starting point for a pointfree
perspective. For sure, there are conditions to require for this to make sense, such as the fact that
for all x, h(x) should be absolutely continuous with respect to µ. Even more interesting is the fact
that functional MPs allow conditional expectation based constructions of approximants [DDP03],
where conditioning can be done under arbitrary σ-algebras and not only finite ones, and therefore
deliver a more flexible approximation theory for LMPs. On the downside, it seems one has to leave
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the coalgebraic approach since functional MPs are no longer morphisms in the state space category,
and one also has to equip state spaces with somewhat extrinsic measures.

We plan to pursue this functional lead in further work, and compare it with the one we propose
here. It is likely that both approaches will end up being close enough, so that conditional expecta-
tion based approximation will work to some extent also in the framework which we present here,
and this constitutes another if somewhat indirect motivation for our construction.

2 Background

2.1 General background

For S a set and A ⊆ S, we write 1A for A’s indicator function. When A, B are disjoint sets,
we sometimes write A + B for the disjoint union, and conversely each time we write A + B it is
understood that A and B are indeed disjoint. We write ↑ An when An is an increasing sequence of
sets, that is An ⊆ An+1.

Given a set S, one says Σ ⊆ P(S) is a σ-algebra over S if (0) Σ contains ∅, (1) Σ is closed
under countable union, and (2) Σ is closed under complement.

This implies that Σ is closed also under countable intersection, and hence under symmetric
difference defined as A4B := (A ∩Bc) ∪ (Ac ∩B).

Examples are the trivial σ-algebra {∅, S}, and the discrete one P(S). Given a subset C of
P(S), we write σ(C) for the smallest σ-algebra containing C, and say that C generates σ(C); then
by definition, if C ⊆ Σ and Σ is a σ-algebra, σ(C) ⊆ Σ.

A measurable space is a pair (S,Σ) where S is a set and Σ is a σ-algebra over S. Well-known
examples are [0, 1] and R equipped with their respective Borel σ-algebras, written B, generated by
intervals.

A subset N of a σ-algebra Σ is said to be a σ-ideal of Σ if (0) N contains ∅, (1) N is a downset
of Σ, i.e., if A ∈ N , B ∈ Σ, B ⊆ A, then B ∈ N , and (2) N is closed under countable union.

Say A ∼N B if A4B ∈ N , this is an equivalence relation over Σ (shown later, see subsec-
tion 6.1).

Examples of σ-ideals of Σ are {∅} and Σ. For a non-trivial example, take the collection of all
countable subsets of [0, 1] with the Borel algebra. Given a subset C of Σ, we write N (C) for the
smallest σ-ideal of Σ containing C, and say that C generates N (C).

Suppose Σ is a σ-algebra, N is a σ-ideal of Σ, and Λ ⊆ Σ is a sub-σ-algebra of Σ, and define:

Λ +N := {A4N | A ∈ Λ, N ∈ N}

It is easy to see that Λ +N is a sub-σ-algebra of Σ, and the smallest one containing both Λ and
N : Λ +N = σ(Λ ∪N ). This can be described equivalently as the closure of Λ under ∼N :

Λ +N = {B ∈ Σ | ∃A ∈ Λ : A ∼N B}

A map f between two measurable spaces (S,Σ) and (S′,Σ′) is said to be measurable if for all
A′ ∈ Σ′, f−1(A′) ∈ Σ. The smallest σ-algebra such that a given f is measurable is the pointwise
inverse image of Σ′ and will be denoted by σ(f). Hence, f is measurable iff σ(f) ⊆ Σ.

Whether a given f is measurable depends on both σ-algebras Σ and Σ′. For instance, if Σ is
the trivial σ-algebra, and Σ′ is the discrete one, then f is measurable iff it is constant.
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A subprobability on (S,Σ) is a map p : Σ → [0, 1], such that for any sequence (An) of pairwise
disjoint sets in Σ, p(

∑
nAn) =

∑
n p(An). This condition is called σ-additivity; it implies p(∅) = 0,

as well as a continuity property, namely that for all ↑ An in Σ, p(∪An) = supn p(An). If in addition
p(S) = 1 then one says p is probability. When S is finite and Σ is discrete, a subprobability can be
equivalently described as a map p from S to [0, 1] such that

∑
s∈S p(s) ≤ 1.

Given such a probability p, one defines N (p) := {A ∈ Σ | p(A) = 0}. This is a σ-ideal of Σ.
Indeed it is non empty, since p(∅) = 0, it is a downset, since if B ⊆ A, then p(B) ≤ p(A), and it is
closed under countable unions. (Indeed, given a sequence Bn ∈ N (p), one can define an increasing
sequence An = ∪i≤nBi, and then by additivity p(An) ≤

∑
i≤n p(Bi) = 0, so p(∪Bn) = p(∪An) = 0

by continuity.)
Given two subprobabilities, p, q on a same mesurable space (S,Σ), one says p is absolutely

continuous with respect to q, written p � q, if for all A ∈ Σ, whenever q(A) = 0 then p(A) = 0,
or in other words, if N (p) ⊇ N (q). When S is finite and Σ discrete, N (p) is the set of subsets N
such that for all s ∈ N , p(s) = 0, and p� q iff whenever p(s) is 0, so is q(s).

For R a binary relation on a set S, we say that A ⊆ S is R-closed if for all a ∈ A, s ∈ S,
whenever (a, s) ∈ R, or (s, a) ∈ R, then s ∈ A. For s ∈ S, we write [s]R for the R-closure of {s},
which supposing R is an equivalence relation is just the equivalence class of s.

We write Υ(R) for the set of R-closed subsets of S; this is a σ-algebra, since it is clearly closed
under any union or intersection, and also closed under complement because our notion of closure is
symmetric in R (i.e., a set is R-closed iff it is R−1-closed). We also write Σ(R) for Σ∩Υ(R) which
is the set of R-closed subsets in Σ, and forms a sub-σ-algebra of Σ.

If C is a subset of S, we define a binary relation R(C) on S by (s, t) ∈ R(C) if for all A ∈ C,
s ∈ A ⇔ t ∈ A, or in words if s and t cannot be separated by a set in C. This is an equivalence
relation.

2.2 Background on LMPs

Labelled Markov processes are probabilistic versions of labelled transition systems. Corresponding
to each label a Markov process is defined. The transition probability is given by a Markov kernel.
In brief, a labelled Markov process can be described as follows. There is a set of states and a
set of labels. The system is in a state at each point in time. The environment selects an action,
and the system reacts by moving to another state. The transition to another state is governed by
a probabilistic law. For each label there is a transition probability distribution which gives the
probability distribution of the possible final states given the initial state. For discrete state spaces,
this is essentially the model developed by Larsen and Skou [LS91].

We extended this to continuous-state systems, thus forcing our formalism to be couched in
measure-theoretic terms. For instance, we cannot impose requirements on the transition probabil-
ities to arbitrary sets of states — we need to restrict ourselves to measurable sets. The classical
theory of Markov processes is typically carried out in the setting of Polish spaces rather than on
abstract measure spaces. In previous papers analytic spaces - which generalise Polish spaces - were
used. However, in this paper we eliminate the need for restricting to analytic spaces.

A key ingredient in the theory is the Markov kernel, which we sometimes call a transition
kernel2.

2In earlier papers, following Feller, we called it a stochastic kernel.

7



Definition 2.1 A Markov kernel on a measurable space (S,Σ) is a function h : S × Σ → [0, 1]
such that for each fixed s ∈ S, the set function h(s, ·) is a subprobability measure, and for each fixed
X ∈ Σ the function h(·, X) is a measurable function.

One interprets h(s,X) as the probability of the process starting in state s making a transition into
one of the states in X. The Markov kernel is really a conditional probability : it gives the probability
of the process being in one of the states of the set X after the transition, given that it was in the
state s before the transition.

We will work with transition kernels where h(s, S) ≤ 1 rather than h(s, S) = 1. The mathe-
matical results go through in this extended case. We view processes where the transition kernels
are only subprobabilities as being partially defined.

Definition 2.2 A labelled Markov process (LMP) S with label set A is a structure (S,Σ, {ha|a ∈
A}), where S is the set of states, Σ is a σ-algebra on S, and for all a ∈ A

ha : S × Σ −→ [0, 1]

is a Markov kernel.

We will fix the label set to be A once and for all, and often forget altogether about actions since
it does not restrict the results. In such cases, we will drop the subscript of h. We will use the
following notational convention: we write S(S,Σ, h), using the calligraphic font to stand for the
LMP and the ordinary capital for the state space.

The all important notion is that of a zigzag morphism.

Definition 2.3 A zigzag morphism f from S to S ′ is a surjective measurable function f : S → S′

satisfying
∀a ∈ A, s ∈ S,B ∈ Σ′ : ha(s, f−1(B)) = h′a(f(s), B).

We originally defined a bisimulation in terms of spans of zigzags. In order to show transitiv-
ity we had to use a subtle construction due to Edalat [Eda99] and later refined and clarified by
Doberkat [?].

Later we gave the following direct relational definition and finessed the use of Edalat’s lemma.

Definition 2.4 Given an LMP S, a (state) bisimulation relation R is a binary relation on S
such that whenever (s, t) ∈ R and C ∈ Σ(R), then for all labels a, ha(s, C) = ha(t, C). We say that
s and t are (state) bisimilar if there is any bisimulation R such that (s, t) ∈ R.

Note that the reflexive, symmetric, and transitive closure of any binary R relation satisfying the
condition of Definition 2.4, also satisfies this condition (because Σ(R) is invariant under this clo-
sure). We may then assume for the rest of the paper that state bisimulations are equivalence
relations. This will ease the comparison with event bisimulation (to be defined in the next section).

One can define a simple modal logic called L which has the following syntax:

> | φ1 ∧ φ2 | 〈a〉rφ

where a is an action and r is a rational number between 0 and 1. The last formula is interpreted
as follows. We say s |= 〈a〉qφ if s can make an a-transition with probability greater than or equal
to the rational number r and end up in a state satisfying φ.
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Despite the fact that L is a very parsimonious logic, since it has no negation and no infinitary
constructs, one can establish that two states are (state) bisimilar if and only if they satisfy exactly
the same formulas. Indeed for finite-state processes one can decide whether two states are bisimilar
and effectively construct a distinguishing formula in case they are not [DGJP02]. This theorem is
refered to as the logical characterization theorem, and, for (state) bisimulation, it works only when
the state space is an analytic space.

In a later section we will show that the new notion of bisimulation leads to a new logical
characterization theorem for LMPs where the analyticity condition is no longer needed. That is to
say the new characterization theorem will be seen to hold for arbitrary measurable spaces. Since
both notions of bisimulations agree on analytic spaces (this is proved in the next section), one sees
that the new characterization theorem extends the older one.

3 Event and state bisimulation

In defining a notion of probabilistic bisimulation one is forced to add transition probabilities. It
makes no sense to compare labels and transition probabilities between individual transitions. If
one were to do so then obvious examples would fail to be bisimilar. Consider a three-state system
with a-transitions from state 1 to states 2 and 3, each with a probability 1

2 , and compare it with
a two-state system with a probability 1 a-transition from state 1 to state 2. Clearly we need to
aggregate the transition probabilities in the first system in order to realize that the two systems
are really bisimilar. The question is how should one aggregate?

Equivalence relations are the first thing that leaps to mind and this leads to state bisimula-
tion [DGJP03]. One can think of relations as spans of appropriate functions; in this case we may
use the zigzags [DEP02] described in the last section. On the other hand there is a natural family
of subsets at hand: the measurable sets. One can think of the σ-algebra and sub-σ-algebras as
defining families of interesting sets of states. It is curious that measurability does not crop up
as a restriction on the possible bisimulation relations. To be sure, one has to look at R-closed
measurable sets but there is no restriction such as that R should be an equivalence relation with
measurable equivalence classes (it would be hard to prove transitivity if measurability was imposed
on R). The notion of event bisimulation puts measurability front and centre.

It is helpful to reformulate state bisimulation in order to facilitate the switch to event bisimu-
lation.

Lemma 3.1 Given an LMP (S,Σ, h), R is a state bisimulation iff (S,Σ(R), h) is an LMP.

Proof: Let A be in Σ, and a be an action, we show first that ha(·, A) is Σ(R)-measurable iff it is
constant on R-classes.
⇐: Since ha(·, A) is Σ-measurable, 〈a〉r(A) := {s | h(s,A) ≥ r} = ha(·, A)−1[r, 1] is in Σ, and since
ha(·, A) is constant on R-classes, 〈a〉r(A) is also R-closed. Hence 〈a〉r(A) ∈ Σ(R), for all r, which
is equivalent to saying that ha(·, A) is Σ(R)-measurable.
⇒: Since ha(·, A) is Σ(R)-measurable, for every r ∈ [0, 1], 〈a〉r(A) is in Σ(R), and therefore R-closed,
which is equivalent to saying that ha(·, A) is constant on R-classes.

By definition, R is a state bisimulation iff for all A in Σ(R), a ∈ A, ha(·, A) is constant on
R-classes, which by the argument above is iff ha(·, A) is Σ(R)-measurable, which by definition is iff
(S,Σ(R), h) is an LMP.
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This shows that one can work with a smaller σ-algebra closely connected with bisimulation
equivalence, but note that different state bisimulations can yield the same σ-algebra. In fact one
has a new LMP with the same kernel and state space but with a reduced σ-algebra. Note that if
R is the identity relation, then Σ(R) = Σ. It is easy to see that

Lemma 3.2 R is a state bisimulation iff the identity map i : (S,Σ, h)→ (S,Σ(R), h) is a zigzag.

Ideally one would like it to be the case that any zigzag induces a state bisimulation on its domain.
However this is false. Given a zigzag f : (S,Σ, h)→ (S′,Σ′, h′) and R the relation induced on S by
f we can conclude that if f(s1) = f(s2) then h(s1, A) = h(s2, A) for every A in f−1(Σ′) ⊆ Σ(R)
and not for every A in Σ(R). Thus the equivalence induced by a zigzag is too fine in general. The
crucial point is that we are making the equivalence relation primary and the σ-algebra secondary.
Instead we should work with the structure naturally associated with a σ-algebra: in other words
we should look for a sub-σ-algebra.

Definition 3.3 An event bisimulation on an LMP (S,Σ, h) is a sub-σ-algebra Λ of Σ such that
(S,Λ, h) is an LMP.

We will refer to both Λ and its associated equivalence R(Λ) as event bisimulation.
The phrase “event bisimulation” is meant to suggest that the focus of interest has shifted from

the individual points of S to the measurable sets, or - to emphasize the probabilistic interpretation
- the events. What has happened here is that the notion of bisimulation qua relation has been
replaced by an arbitrary sub-σ-algebra rather than Σ(R), the sub-σ-algebra generated by a relation
R. The key point is that the transition kernels have to have the appropriate measurability properties
with respect to Λ. We can more sensibly say that Λ, rather than R(Λ), is an event bisimulation.

The similarity with state bisimulation can be made quite striking.

Lemma 3.4 If Λ is an event bisimulation, then the identity function on S defines a zigzag mor-
phism from (S,Σ, h) to (S,Λ, h).

If we compare this result to Lemma 3.2, we can see that it fits more nicely in the category of LMPs
in that it does not talk about relations. Moreover, we get a perfect correspondence with zigzags.

Lemma 3.5 If f : (S,Σ, h) → (S′,Σ′, h′) is a zigzag morphism, then f−1(Σ′) is an event bisimu-
lation on S.

In order to facilitate the study of the relation between state and event bisimulation, we need
some elementary mathematical observations connecting σ-algebras and binary relations.

Given a measurable space (S,Σ), we have two maps back and forth between sub-σ-algebras
of Σ and equivalence relations over S: Λ 7→ R(Λ) and R 7→ Σ(R). Note that these maps are
antimonotone, indeed if Λ ⊆ Λ′, then R(Λ) ⊇ R(Λ′) because Λ being smaller it separates less
points, and conversely R ⊆ R′, then Σ(R) ⊇ Σ(R′), since R′-closed subsets are a fortiori R-closed.

Lemma 3.6 Let (S,Σ) be a measurable space, R a relation on S and Λ ⊆ Σ a sub-σ-algebra:
(i) Λ ⊆ Σ(R(Λ)).
(ii) R ⊆ R(Σ(R)).
(iii) If R-equivalence classes are in Σ, then R = R(Σ(R)).

10



Proof . (i) Suppose A is in Λ, then A ∈ Σ, and also A is R(Λ)-closed (since if there is x ∈ A,
y 6∈ A, then y ∈ Ac ∈ Λ, so (x, y) is not in R(Λ)). Thus A ∈ Σ ∩ Υ(R(Λ)) = Σ(R(Λ)). (ii) Next,
we have [s]R(Σ(R)) = ∩A 3 s with A ∈ Σ and R-closed; and [s]R = ∩B 3 s with B R-closed; so
[s]R ⊆ [s]R(Σ(R)), and the conclusion follows. Now for ⊇ in (iii), if [s]R itself is in Σ then it qualifies
as an A in the big intersection above and the result follows.

Proposition 3.7 Let (S,Σ) be a measurable space and Λ ⊆ Σ a sub-σ-algebra:
(i) R(Λ) = R(Υ(R(Λ))).
(ii) If Λ ⊆ Σ then R(Λ) = R(Σ(R(Λ))).

Proof . (i) Set R := R(Λ), Σ := Υ(R(Λ)), obviously one has that R-classes are in Σ, so (by
Lemma 3.6 (iii)) R = R(Σ(R)), on the other hand Σ(R) = Σ, and the conclusion follows. (ii)
One has Λ ⊆ Σ(R(Λ)) := Σ ∩ Υ(R(Λ)) ⊆ Υ(R(Λ)), so by antimonotony R(Λ) ⊇ R(Σ(R(Λ))) ⊇
R(Υ(R(Λ))) = R(Λ) by (i).

These lemma and proposition show how to transfer results between sub-σ-algebras and equiv-
alence relations.

We presented event bisimulation as a weakening of state bisimulation. Consequently, we would
like to prove that the latter is always an event bisimulation. However, this is not actually the case
in general: essentially because there is not enough measure theoretic control on the relations used
to define state bisimulation.

We know from Lemma 3.6 that R ⊆ R(Σ(R)). The following lemma shows that if a state
bisimulation satisfies the reverse inclusion, then it is an event bisimulation.

Lemma 3.8 Let R be a state bisimulation over (S,Σ, h), then R is an event bisimulation if and
only if R = R(Σ(R)).

Proof . ⇒: If R is an event bisimulation, then by definition R = R(Λ) for some sub-σ-algebra Λ
of Σ. We have that Λ ⊆ Σ(R) because every A ∈ Λ is evidently R(Λ)-closed. Thus R = R(Λ) ⊇
R(Σ(R)), and the reverse inclusion is given by Lemma 3.6 (ii).
⇐: If R is a state bisimulation we know that (S,Σ(R), h) is an LMP by Lemma 3.1, so R is an
event bisimulation for Λ = Σ(R), since by assumption R(Σ(R)) = R.

Putting together this result and Lemma 3.6 (iii), we obtain:

Corollary 3.9 If relation R is a state bisimulation with equivalence classes in Σ, then R is an
event bisimulation.

This immediately implies that a state bisimulation is an event bisimulation in the case of a countable
space with every set being measurable; because in this case any equivalence relation will have
measurable classes.

Corollary 3.10 If S is countable with discrete σ-alegbra, any state bisimulation is an event bisim-
ulation.
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The condition that Σ = P(S) is necessary in this corollary as one can see from Example 1.2.
Note that this is a necessary and sufficient condition for a countable measurable space to be analytic.
This represents the essential difference between analytic and non analytic state spaces for discrete
LMPs.

We cannot expect that every state bisimulation satisfies the equality in Lemma 3.8, as the
following example shows.

Example 3.11 Clearly there exists equivalence relations R such that R ⊂ R(Σ(R)), even on the
analytic space (R,B). Pick V ⊆ R not in B, and define R by the two equivalence classes V and V c.
Since Σ(R) is the trivial σ-algebra, R(Σ(R)) equates everything and therefore is different from R.

We may even define an LMP h over (R,B) such that R is a state bisimulation and yet R = R(Λ)
for no event bisimulation Λ. First we remark that if R = R(Λ), then Λ cannot separate V , so the
only possibility is Λ = {∅, V, V c,R}. Pick s, s′ ∈ V distinct (V not being a Borelian is necessarily
uncountable), and define h such that h(s, {s}) = 1 and h(s′, {t}) = 1 for some t 6∈ V ; R is a
state bisimulation because the only non-empty measurable in Σ(R) is R, but as follows also from
Lemma 3.8, R is not an event bisimulation for Λ because the kernel h is not Λ-measurable.

The conclusion is that, even on an analytic space, not every state bisimulation is an event bisim-
ulation. This may seem to kill any hope to show that a state bisimulation is an event bisimulation.
However, one can observe that when this is the case, the state bisimulation distinguishes too many
states, in particular it distinguishes states that are not separable by Σ. This is a liberty that an
event bisimulation never has. The following result shows that assuming the fact that “a bigger
state bisimulation is better”, we do have that result.

Proposition 3.12 If R is a state bisimulation, then R(Σ(R)) is a state bisimulation and an event
bisimulation.

Proof . By Lemma 3.1, R is a state bisimulation iff Σ(R) is an event bisimulation, that is iff
R(Σ(R)) is an event bisimulation. It remains to show that R(Σ(R)) is also a state bisimulation.
Again by lemma 3.1 this amounts to saying that Σ(R(Σ(R))) is an event bisimulation, but by
Lemma 3.13 below, Σ(R(Σ(R))) is no other than Σ(R), which we have shown to be an event
bisimulation.

Lemma 3.13 If R is a state bisimulation, then Σ(R) = Σ(R(Σ(R))).

Proof . Σ(R) ⊇ Σ(R(Σ(R))) because R ⊆ R(Σ(R)). For inclusion, let X ∈ Σ(R), then X is
R(Σ(R))-closed and in Σ. Thus it is in Σ(R(Σ(R))).

Proposition 3.12 implies that if a state bisimulation is not an event bisimulation, then it can be
expanded to one that is. One example is the identity relation, which is not an event bisimulation
when Σ does not separate points, but it is a state bisimulation. This is an example of a relation
that sees more differences than Σ can see.

Lemma 3.14 The identity relation I is a state bisimulation; it is an event bisimulation iff Σ
separates points.
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Proof . Σ(I) = Σ and lemma 3.1 proves the first point. For the second one, suppose I = R(Λ) for
some Λ ⊆ Σ; then Λ separates points in S, so Σ also does; in fact I = R(Σ) in this case.

Conversely if Σ separates points, then I = R(Σ) and obviously (S,Σ, h) is an LMP, so I is an
event bisimulation.

One interpretation of this is that the correct “identity relation” in measure spaces is the one
generated by the σ-algebra rather than the usual one defined on the points.

An important remark has to be made. We know from Proposition 3.12 that the largest state
bisimulation is an event bisimulation. We will see in the next section that the largest event bisim-
ulation is also a state bisimulation for analytic spaces. We do not know if it is the case for non
analytic spaces. The question is equivalent to asking if state bisimulation is characterised by the
logic in any LMP. Indeed, we know from previous work [DEP98, DEP02] that state bisimulation is
characterised by the logic for analytic spaces, and we will prove in Section 5 that event bisimulation
is also, for any LMP.

3.1 Analytic spaces

We have already shown that for countable spaces with discrete σ-algebras the two notions, state
and event bisimulation coincide. In fact they coincide for the vastly larger class of analytic spaces.
Indeed the proofs of logical characterization of bisimulation given in previous papers essentially
establish this fact though it is hidden in the proofs. They hinge on the special properties of
countably generated σ-algebras. The following lemma from [?] uses the unique structure theorem
of analytic spaces, and is all we need to know about these spaces in the context of this paper.
Recall that, if C ⊆ Σ, we write σ(C) for the smallest σ-algebra containing C.

Lemma 3.15 Let (S,Σ) be an analytic space, and C ⊆ Σ be countable, with S ∈ C, then Σ(R(C)) =
σ(C).

Lemma 3.16 If S(S,Σ, h) be an LMP with (S,Σ) an analytic space, and Λ be a countably generated
event bisimulation, then R(Λ) is a state bisimulation.

Proof . Pick C countable, containing S, and generating Λ. One has that R(C) = R(Λ) (suppose s,
t are not separated within some D, then they are not separated either by complements of sets in D,
nor by arbitrary unions, so R(D) = R(σ(D))) so by Lemma 3.15, one also has Σ(R(Λ)) = σ(C) = Λ,
so that Σ(R(Λ)) is an event bisimulation, and by Lemma 3.1, R(Λ) is a state bisimulation.

Proposition 3.17 An LMP (S,Σ, h) always has a maximal state bisimulation R, and a minimal
event bisimulation Λ; if furthermore (S,Σ) is analytic, then R = R(Λ).

Proof . There is always a minimal event bisimulation which is just the intersection of all event
bisimulations. Likewise, there is always a maximal state bisimulation which is the union of all
state bisimulations, because state bisimulations are closed under arbitrary unions. To see this, let
R = (∪iRi), and notice first that Σ(R) = ∩iΥ(Ri) ∩ Σ, indeed a set is R-closed iff for all i it is
Ri-closed. Now, R is a state bisimulation iff Σ(R) is an event bisimulation iff for all B ∈ Σ(R),
a ∈ A, r ∈ [0, 1], one has 〈a〉r(B) ∈ Σ(R). Since Σ(R) ⊆ Σ(Ri), and Ri is a state bisimulation,
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〈a〉r(B) ∈ Σ(Ri), for all i, so is in Σ(R). Hence, Σ(R) is stable under the 〈a〉r, and Σ(R) is an
event bisimulation, and, by Lemma 3.1 and Definition 3.3, R is therefore a state bisimulation.

As we will see in the next section (Proposition 4.5), the minimal event bisimulation Λ of any
LMP is countably generated. Since we suppose (S,Σ) analytic, R(Λ) is also a state bisimulation
(by Lemma 3.16). To show it is maximal, pick another state bisimulation R, one has Λ ⊆ Σ(R)
because Λ is minimal, hence R(Λ) ⊇ R(Σ(R)) ⊇ R.

Moreover, Lemma 3.16 implies Corollary 3.10 and its counterpart:

Corollary 3.18 If S is countable with discrete σ-algebra, state bisimulation is exactly event bisim-
ulation.

Proof . Let Λ be an event bisimulation over S, it is obviously countably generated by the equiv-
alence classes because S is countable. Since a countable space with discrete σ-algebra is analytic,
we have that R(Λ) is a state bisimulation (by Lemma 3.16).

4 Logical characterization

The logical characterization of probabilistic bisimulation [DEP98, DEP02] as it was originally
proved worked with what we are now calling state bisimulation and was established for analytic
spaces. In the present section we establish the logical characterization of bisimulation for event
bisimulation for LMPs defined on general measure spaces. In conjunction with the results of the
previous section - that the two notions are essentially the same on analytic spaces - it implies the
earlier logical characterization of bisimulation result. Moreover, it shows that the role of analytic
spaces can be confined to a single lemma, namely Lemma 3.15. At the end of the section we
explicate the measure theoretic significance of the particular logic L that we used.

We recall the logic
> | φ1 ∧ φ2 | 〈a〉qφ.

Given a formula φ we write [[φ]] for the set of states satisfying the formula φ. It is easy to see that
these are all measurable sets. We write [[L]] for the collection of sets of the form [[φ]]. The key
point that we shall establish is that the σ-algebra generated by the logic is an event bisimulation;
moreover it is the maximal event bisimulation. From this the logical characterization of event
bisimulation is immediate.

The proofs depend on properties of π-systems and d-systems. We recall the basic definitions
from the literature [Wil91].

Definition 4.1 Let S be a set: (1) a π-system on S is a subset of P(S) closed under (finite)
intersection and containing S, (2) a d-system D on S is a subset of P(S) containing S, closed
under countable increasing unions and relative complements (i.e., if A,B ∈ D and A ⊆ B, then
B \A ∈ D).

The point of π-systems is that one can often work with them instead of the σ-algebras that they
generate; usually the sets of a π-system are much simpler than the sets in the generated σ-algebra.

Another key concept, and the one that brings out the special role of the logic L is stability.
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Definition 4.2 Let (S,Σ, h) be an LMP and C ⊆ Σ, we say that C is stable with respect to (S,Σ, h)
if for all A ∈ C, r ∈ [0, 1], a ∈ A,

〈a〉rA := {s | ha(s,A) > r} ∈ C

Clearly both 〈a〉rA is measurable if A is and h is a Markov kernel. Note also that Λ is an event
bisimulation on (S,Σ, h) if and only if it is a stable sub-σ-algebra of Σ, and that the condition of
measurability of a kernel h(·, A) is exactly that Σ be stable. Sometimes we write simply 〈〉r(A)
when the actions are not taken into account (as will be often the case in the remainder of the
paper).

Proposition 4.3 [[L]] is the smallest stable π-system of (S,Σ, h).

Proof . Evident.

Lemma 4.4 If C is a stable π-system of (S,Σ, h), then σ(C) is also stable.

Proof . We show that D = {A ∈ Σ | ∀a∀q 〈a〉q(A) ∈ σ(C)} is a d-system.
(i) S ∈ D because S ∈ C and C is stable;
(ii) if A, B ∈ D and A ⊂ B, then

{s | ha(s,B \A) < q} = ∪r≥q(〈a〉r(B))c ∩ (〈a〉r−q(A)),

because ha(s,B \A) < q iff there exists r such that ha(s,B) ≤ r and ha(s,A) > r− q, where r can
always be chosen rational, so we have a countable union of measurable sets and the lhs is in σ(C),
and so is clearly 〈a〉q(B \A), implying that B \A ∈ D;
(iii) if An ∈ D and An ↑, then 〈a〉r(∪nAn) = ∪n〈a〉r(An), because ha(s,∪nA) = supn ha(s,An)
(continuity property for increasing unions), and hence ∪nAn ∈ D.

This shows that D is a d-system, and since C ⊂ D, because C is stable, by the monotone class
theorem [Wil91], we have that σ(C) ⊂ D. In other words, σ(C) is stable.

This gives us characterization of event bisimulation by the logic L.

Proposition 4.5 σ([[L]]) is the smallest stable σ-algebra included in Σ.

Proof . Let Σm be the smallest stable σ-algebra included in Σ.
By Lemma 4.3, [[L]] ⊆ Σm, because Σm is a stable π-system, and hence σ([[L]]) ⊆ Σm.
Conversely, [[L]] is a stable π-system by Lemma 4.3, and hence, by Lemma 4.4, σ([[L]]) is stable and
hence contains Σm.

Corollary 4.6 The logic L characterizes event bisimilarity.

Proof . From Proposition 4.5, stability tells us that σ([[L]]) is an event bisimulation and the fact
that it is the smallest implies that any event bisimulation preserves L formulas.

Moreover, Proposition 4.5 yields an interesting definition of L on a pure measurability basis, by
providing a countable set of generators for the smallest event bisimulation, which we used in the
course of the proof of Proposition 3.17.
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5 Event bisimulation as probabilistic cocongruence

Whether one wants to specify a process, or to prove some relevant properties - perhaps by automated
methods as in model-checking - transition systems offer a convenient description language which is
perhaps the single most widely used model in computer science.

Depending on the particulars of the process of interest, the associated transition systems may
have to incorporate various computational ingredients. As explained in the introduction, one may
want to include labels to model the interaction of the process with its context or environment, and
to give means to describe a whole system out of simpler components. One may also want to include
probabilities, giving a quantitative measure of the likelihood of events related to the evolution of
the process, as well as non-deterministic behaviour, when quantitative information is not available
or meaningful.

This diversity of computational features has been a strong incentive to recast transition systems
into categorical language and specifically to obtain them as coalgebras of certain functors. In this
section we recall this categorical - more precisely, coalgebraic - treatment of LMPs [Gir81, dVR97, ?]
and event bisimulation [DDLP05]. This will prepare the ground for our refinement of the notion of
LMP in the next section.

For simplicity we will elide labels. In talking about bisimulation categorically it makes more
sense to think of it as a relation between different LMPs rather than as a relation on the state
space of a single LMP. This is a very slight shift in point of view. At the beginning we will mention
the connection but as the discussion proceeds we will just talk about state and event bisimulation
between different LMPs.

We start with a reminder of the usual coalgebraic construction of LMP.

5.1 The category Mes and Giry’s monad Π

Objects in Mes are measurable spaces (S,Σ), and arrows are measurable functions. This data
clearly defines a category. This category has pullbacks and finite products constructed just as in
Set. More importantly in the context of this paper, it has coequalizers and finite coproducts - also
constructed just as in Set - and hence, all finite colimits; in particular, it has pushouts. These are
useful in the study of bisimulation.

Giry [Gir81] defines an endofunctor Π on Mes taking (S,Σ) to

ΠS := {ν | Σ→ [0, 1] | ν is a (sub)probability on (S,Σ)}.

For A ∈ Σ, the evaluation map eA : ΠS → ([0, 1],B) is given as eA(ν) = ν(A). To complete the
definition of ΠS as an object, one equips it with the smallest σ-algebra such that all evaluation
maps eA are measurable. Equivalently:

ΣΠS := σ{e−1
A (α, 1]; α ∈ [0, 1], A ∈ Σ}

The arrow part of the endofunctor Π is Π(f)(ν) := ν ◦ f−1. This is the familiar image measure
construction, and it is clearly functorial in f . Just as clearly this map Π(f) is measurable since
eA(Π(f)(ν)) > α iff ν(f−1(A)) > α iff ef−1(A)(ν) > α.

Labelled Markov processes are just coalgebras of Π, that is to say morphisms of the form
S → ΠS for some object S in Mes. Indeed, a measurable function h : S → ΠS is - if curried
appropriately - exactly a Markov kernel as in Definition 2.1. Indeed, such an h is a morphism, by
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Figure 1: Bisimulation as a span in a coalgebra category.

definition of ΣΠS , iff for all A ∈ ΣS , α ∈ [0, 1], h−1 ◦e−1
A (α, 1] ∈ ΣS , which is iff h(., A)−1(α, 1] ∈ ΣS

is measurable (modulo currying).
The category of coalgebras of Π has for objects Π-coalgebras. A morphism from h : S →

ΠS to k : T → ΠT is a morphism f : S → T in Mes, such that kf = Π(f)h. It is easy to
see that a coalgebra morphism is precisely a zigzag morphism minus the surjectivity condition.
This coalgebraic construction and its relation to bisimulation were developed by de Vink and
Rutten [dVR97, ?] and noted in passing in [BDEP97].

Moreover, a multiplication map µS : Π2S → ΠS is given by

µ(Ω)(A ∈ Σ) =
∫

ΠS eAdΩ

and a unit map ηS : S → ΠS is η(x) = δx, the Dirac measure concentrated at x. Together with the
unit and multiplication maps, Π constitutes a monad, so that LMPs can be composed, and can be
seen as morphisms of the so-called Kleisli category associated to Π.

Incidentally, MPs and variations thereof can also be presented via distributive laws between
various monads [Bur03].

5.2 Bisimulation as cospans

Usually bisimulation is defined as a span in the coalgebra category as shown in Fig. 1. Here α and
β define Π-coalgebras on X and Y respectively; in other words they define LMPs. The span of
zigzags given by f and g - with f and g both surjective - defines a bisimulation relation between
(X,α) and (Y, β).

Any bisimulation defined in this way also produces a state bisimulation. Specifically, suppose
f, g : T → S is a pair of zigzags, and write R for the associated relation over S, defined as (s, s′) ∈ R
if s = f(t) and g(t) = s′ for some t. One has that if (s, s′) ∈ R and B ∈ ΣS is R-closed:

hS(s,B) = hT (t, f−1B) = hT (t, g−1B) = hS(s′, B)

where the second step is because if B is R-closed then f−1B = g−1B, supposing R to be symmetric
as we do. So one obtains indeed a state bisimulation from a (symmetric) span. However, note that
the converse is not clear; i.e., it is not clear that given a state bisimulation over S, one can define
a span of zigzags over S such that the associated state bisimulation is the one one started with.

Let us think nevertheless of bisimulation as a span between two LMPs. One needs to show that
bisimulation is transitive. That is, given spans from S1 to S2 and from S2 to S3 we would like to
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Figure 3: Composing spans given weak pullbacks.

construct a span from S1 to S3. Given this situation we have a co-span formed by U1, U2, S2 and
the zigzags f2 and g1 as shown in Fig. 2.

Usually one postulates the existence of pullbacks, or at least weak pullbacks, in order to complete
the square as shown in Fig. 3.

However, these weak pullbacks need to exist in the category of coalgebras, not just in the
category Mes. In order for this to happen one needs to have that Π preserves weak pullbacks.
This rarely happens. In the original de Vink and Rutten papers [dVR97, ?] the existence of weak
pullbacks in the category of coalgebras was shown in the discrete setting. Edalat [Eda99] produced
a much weaker construction - he called it a “semi-pullback” - which allows one to complete the
square, but has no universal properties, in the category of coalgebras of Π over the base category
of analytic spaces equipped with their Borel σ-algebra. The semi-pullback construction shows
immediately that the span definition of bisimulation [BDEP97, DEP02] is transitive.

With cospans everything works much more smoothly. In fact, cospans are the natural structure
to use if one is interested in equivalence relations. To begin, we observe that if we work with
cospans then we can compose using pushouts and this does not require Π to preserve anything. We
consider the situation shown in Fig. 4 where we have omitted labels for some of the arrows, for
example Πf : ΠX → ΠU , where they can be inferred by functoriality. The arrows f , g, f ′ and g′

are zigzags.
One way to construct a cospan from X to Z is to construct a pushout in the coalgebra category.

In Mes we can construct a pushout for the arrows g and f to obtain the situation shown in Fig. 5.
Here W is the object constructed as the tip of the pushout in Mes. In order to have a pushout in
the category of coalgebras we need to put a coalgebra structure on W , i.e., we need to construct a
morphism ρ : W → ΠW , shown dotted in the diagram. Consider the following calculation:

g;h; Πi
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= β; Πg; Πi g is a zigzag,
= β; Π(g; i) functoriality,
= β; Π(h; j) pushout,
= β; Πh; Πj functoriality,
= h; η; Πj h is a zigzag.

Thus, the outer square formed by Y,U, V and ΠW commutes and couniversality implies the
existence of the morphism ρ from W to ΠW . It is a routine calculation that this gives a pushout in
the category of coalgebras. This does not require any special properties of Π; it holds in the most
general case, that is to say in Mes.

The categorical definitions can now be given.

Definition 5.1 An event bisimulation on S = (S,Σ, h) is an epimorphism in the category of
coalgebras of Π to some T .

We have already noted that such arrows are zigzags and that a zigzag induces an event bisimulation
on its source S; conversely -and contrary to the span based definition- given an event bisimulation
Λ on S, the identity map from S to (S,Λ, h) will be a zigzag inducing Λ (see Lemmas 3.4, 3.5).

For the case of a binary event bisimulation, that is to say a bisimulation between two different
LMPs, we have:

Definition 5.2 An event bisimulation between S and S ′ is a cospan of epimorphism in the
category of coalgebras to some object T .

This can be viewed as ordinary event bisimulation on S + S ′.
Since cospans compose, it is clear that viewed as a relation between LMPs event bisimulation

(properly called probabilistic cocongruence) is an equivalence relation. Since our work it has come
to our attention that Bartels, Sokolova and de Vink [?] have also advocated using cocongruences
as the way to define bisimulation. We do not quite have a category of LMPs with cospans as the
morphisms since associativity only holds up to isomorphism: we have a bicategory. Incidentally,
one can define a nice epi-mono factorization on the category Mes that carries over to the category
of coalgebras.

Remark 5.3 It is easy to see that an epimorphim of Mes that is a morphism of coalgebra is also
an epimorphism of coalgebras. The converse is also true. Indeed, let g : S → S ′ be an epimorphism
of coalgebra. We show that its projection into Mes is a surjection (and hence an epimorphism
of Mes). If it is not the case, let z ∈ S′ \ g(S) and consider S′′ = (S′ \ {z}) ∪ {z1, z2} with the
corresponding σ-algebra of sets X ′ for X ′ ∈ Σ′ where X ′ is X ′ if z 6∈ X ′, and (X ′ \ {z}) ∪ {z1, z2}
otherwise. It remains to define the arrow h′′ : S ′′ → ΠS ′′. For s′ ∈ S′\{z}, h′′(s′)(X ′) = h′(s′)(X ′).
Finally, h′′(zi)(X ′) = h′(z)(X ′). Now define fi : S ′ → S ′′ as the identity on S′ \{z} and fi(z) = zi,
i = 1, 2. Then f1 ◦ g = f2 ◦ g as coalgebra morphisms and hence f1 = f2, a contradiction. Hence
an epimorphism of coalgebra induces a surjection between the underlying sets of states.

6 Construction of Mes′′, Π′′

A major virtue of the categorical presentation of the previous section is that one can modify the
monad to deal with other, closely related situations. One does not then have to develop the theory
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again from scratch; one can just use the abstract machinery with a slightly different instantiation.
In this section, we modify Giry’s monad to deal with negligible sets.

In one of the early papers on LMPs [BDEP97], the question of negligible sets was raised.
Consider the LMPs U = ([0, 1],B, h), where B are the Borel sets and h(x,A) = λ(A) where λ is
Lebesgue measure; and U ′ with the same state space and σ-algebra but with Markov kernel given
by h′(x,A) = h(x,A) if x is irrational and h′(x,A) = 0 if x is rational. These two processes behave
identically “almost always”: except for a set of measure zero they are bisimilar. If we were to
observe these systems the probability that we would detect the difference is zero. We would like to
formalize this concept by introducing a notion of almost sure bisimulation.

There is an obvious gap in the discussion of the last paragraph. According to what measure
should one say that the rationals have measure zero? One immediately thinks of Lebesgue measure
in this example but what of other examples? Should the state space come equipped with additional
structure - perhaps a measure - in order to define what the sets of measure zero are? We introduce
such additional structure, but one does not need to introduce a measure just to define the sets of
measure zero. Instead we introduce an axiomatically defined class of negligible sets. This can be
smoothly incorporated into Giry’s monad and then one has the notion of almost sure bisimulation
“almost free” with the discussion of the previous section.

6.1 The category Mes′

We introduce in this subsection a refinement, Mes′, of the category Mes of measurable spaces.
The purpose of this refinement is to give a means of taking morphisms differing only on negligibly
many points to be equal. Refined objects in Mes′ are triples (S,Σ,N ) where N is an ideal of
negligible sets. An ideal of negligible sets gives rise to a congruence ∼N on Σ; arrows are required
to respect such congruences. When the refined category Mes′ is in place, we will define a quotient
category Mes′′, where arrows defining the same homomorphism at the level of σ-algebras up to
negligibles will be taken to be equal.

This notion of equivalence relaxes the notion introduced earlier [DDLP05]. It is algebraically
more natural, as we will see below when we compare the two definitions. Besides, it allows for a
nice correspondence with the logical characterization of LMP bisimulation. This will be explained
in section 8.

Definition 6.1 An object of Mes′ is a triple (S,Σ,N ) where (S,Σ) is an object in Mes, that is
a measurable space, and N ⊆ Σ is a σ-ideal of Σ.

The additional component in objects, N , is to be thought of intuitively as a setN (ν) of negligible
sets with respect to some measure ν.

We will write S for an object (S,Σ,N ), or (S,ΣS ,NS) and propagate indices or primes as in
S1 = (S1,Σ1,N1) and S ′ = (S′,Σ′,N ′).

Suppose we are given such an object (S,Σ,N ). Clearly the symmetric difference 4 defines a
binary operation over Σ, and it is easily verified that (Σ,4,∩) is a commutative Boolean ring with
neutral elements ∅ and S for 4 and ∩ respectively.

One has the useful following properties of the symmetric difference, where (Ai), (Bi) are families
of subsets indexed by the same indexing set I:

Ac4Bc = A4B (1)
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∪iAi4∪iBi ⊆ ∪i(Ai4Bi) (2)
∩iAi4∩iBi ⊆ ∪i(Ai4Bi) (3)

The first equation is obvious. For the second formula: if x is in the lhs, then without loss of
generality, say x ∈ A0 and x 6∈ ∪Bi, then x 6∈ B0, so x ∈ A0 \ B0, so x is in the rhs. For the third
formula, without loss of generality, say x ∈ ∩Ai and x 6∈ B0, then x ∈ A0 \B0, therefore x is in the
rhs. Or equivalently, derive it from the first two formulas.

Define the following binary relation over Σ:

X ∼N Y := X4Y ∈ N

This relation is reflexive (since ∅ ∈ N ), symmetric (clear) and transitive (because X4Z ⊆
(X4Y ) ∪ (Y 4Z)), and thus is an equivalence relation over Σ. Intuitively, two related sub-
sets X and Y are to be thought of as being almost equal. Suppose p is a measure over (S,Σ),
then define N (p) as being the set of X ∈ Σ such that p(X) = 0, this is a σ-ideal. Moreover,
d(X,Y ) := p(X4Y ) is a pseudo-metrics on Σ.

A consequence of the properties of the symmetric difference listed above, and the fact that N is
stable under countable unions, is that ∼N is preserved under Σ’s operations, namely complement,
countable unions, countable intersections (and also 4 since it is definable in terms of the preceding
operations). We will write Σ/N for the quotient structure. This is no longer a σ-algebra but an
object in the category of (abstract) σ-complete Boolean algebra which has as arrows σ-complete
morphisms [Mon89, def. 1.28, 5.1]. In this setting, (abstract) σ-ideals can also be seen as kernels
for such σ-complete morphisms (referred to below simply as homomorphisms).

Definition 6.2 An arrow f in Mes′ from (S,Σ,N ) to (S′,Σ′,N ′), is a measurable map from
(S,Σ) to (S′,Σ′), such that one of the three following equivalent conditions hold:

∀X ′ ∈ N ′ : f−1(X ′) ∈ N (4)
∀X ′, Y ′ ∈ Σ′ : X ′ ∼N ′ Y ′ ⇒ f−1X ′ ∼N f−1Y ′ (5)
f−1 is an homomorphism from Σ′/N ′ → Σ/N (6)

We have to prove that these three conditions are equivalent.
(5)⇒ (4) : pick X ′ ∈ N ′, then X ′ ∼N ′ ∅, so f−1X ′ ∼N ∅, hence f−1X ′ ∈ N .
(5) ⇐ (4) : pick X ′, Y ′ ∈ Σ′ such that X ′ ∼N ′ Y ′, then X ′4Y ′ ∈ N ′, so f−1(X ′4Y ′) =
f−1X ′4 f−1Y ′ ∈ N , so f−1X ′ ∼N f−1Y ′.
(6)⇔ (5) : clear.

The additional condition (4) is obviously stable by composition, so our data actually defines a
category.

Condition (4) results in a serious restriction on Mes arrows. For instance, a measurable map
f from (S,Σ,N ) to ([0, 1],B,N (λ)), where λ is the Lebesgue measure, and with countable image,
will violate this condition unless S itself is in N , because countable subsets of [0, 1] are all in N (λ).
In particular, no measurable endomap on ([0, 1],B,N (λ)) with countable image is in Mes′.

On the other hand, if NS = {∅}, then ∼NS is the identity relation, and any measurable map
to S will verify (5).

Supposing in the definition above, both N and N ′ are given by measures p and q, we can
rephrase the condition on arrows by saying that f(p)� q, where f(p) is the image measure under
f . Indeed, (4) reads now as q(N) = 0 implies p(f−1(N)) = 0.

22



We now have our refined category Mes′, and the next thing is to check whether Giry’s monad
can be extended to this new setting.

6.2 Refining Giry’s monad

For (S,Σ,N ) in Mes′, Π′S and ΣΠ′S are given as in Mes; one chooses the additional component
NΠ′S to be generated by the following particular subsets NA of measures:

NA := {ν | ν(A) > 0}. (7)

where A ∈ N . Since A ∈ N ⊆ Σ, and NA = e−1
A (0, 1], one has NA ∈ ΣΠ′S , so our collection of

negligible sets is adapted to the σ-algebra structure. The intent of this definition is to neglect the
measures that ascribe nonzero weight to the negligible sets.

Equivalently one can define NΠ′S as N{e−1
A (α, 1]; α ∈ [0, 1], A ∈ N}, which nicely parallels the

definition of ΣΠS as σ{e−1
A (α, 1]; α ∈ [0, 1], A ∈ Σ}.

Had we chosen to define negligible sets via a measure, we would need one here. When is an
N obtainable as an N (ν) for some ν is not so clear. In any case, such a ν would only intervene
in the theory through sets of ν measure 0, so any two equivalent (meaning mutually absolutely
continuous) measures would define isomorphic objects.

The definition of Π′(f) is the same as that of Π, so functoriality of Π is obvious. We also have
to verify that Π and its associated natural transformations satisfy (4), which follows from:

Lemma 6.3 For all A ∈ Σ:
— (i) Π(f)−1(NA) = Nf−1(A)

— (ii) η−1(NA) = A;
— (iii) µ−1(NA) = NNA

.

Proof . (i) ν ∈ Π(f)−1(NA) ⇔ Π(f)(ν) ∈ NA ⇔ Π(f)(ν)(A) > 0 ⇔ ν(f−1(A)) > 0 ⇔ ν ∈
Nf−1(A).
(ii) a ∈ η−1(NA)⇔ δa(A) > 0⇔ a ∈ A.
(iii) P ∈ µ−1(NA)⇔ µ(P )(A) > 0⇔

∫
eAdP > 0⇔

∫
1NA

dP > 0 since NA := {eA > 0}, and the
last statement says precisely P (NA) > 0, that is to say P ∈ NNA

.

Naturality requirements and other conditions are still valid, so Π′ is a monad refining Π.

6.3 The quotient category Mes′′

One now defines the quotient category Mes′′: objects are as in Mes′; arrows are ∼ equivalence
classes where, for f , g : (S,Σ,N )→ (S′,Σ′,N ′):

f ∼ g := ∀X ′ ∈ Σ′ f−1(X ′) ∼N g−1(X ′). (8)

In other words arrows that correspond to the same homomorphism from Σ′/N ′ → Σ/N are identi-
fied. This definition of f ∼ g differs from our first attempt [DDLP05], where f and g were taken to
be equivalent only when {f 6= g} is included in a negligible of N . This is in fact too strong since,
as we will see later, it does not lead to a reasonable notion of epimorphism. In fact, it is equivalent
to requiring that

∃N ∈ N :
⋃
x∈S f

−1({x})4 g−1({x}) ⊂ N,
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which involves a very big union that was required to be negligible. However, the two notions
coincide when the target object has a countably generated σ-algebra which separates points, in
particular for analytic spaces. For example, when S′ = [0, 1] with the Borel σ-algebra, we have
that {f 6= g} = ∪rf−1[r, 1]4 g−1[r, 1]. This will be helpful when we will work with kernels.3

Example 6.4 Let S = (S,ΣS ,NS) be an object in Mes′′, and let X, Y be subsets of S. Define
1X : S → ({0, 1}, ℘({0, 1}),∅), the indicator function of X, as 1X(x) = 1 if x ∈ X, and 0 else.
Then 1X is an arrow of Mes′′ iff X ∈ ΣS, and 1X ∼ 1Y iff X4Y ∈ NS.

Example 6.5 η the unit of Π is equivalent to 0 : S → Π(S), with 0(s) being the null subprobability
iff ΣS = NS.

6.4 Compatibility of composition with the quotient

We first have to verify that the equivalence that we just defined is compatible with composition.

Lemma 6.6 The equivalence ∼ defined in (8) is stable by composition.

Proof . Let f1 : (S1,Σ1,N1) → (S,Σ,N ), g, h : (S,Σ,N ) → (S′,Σ′,N ′) and f2 : (S′,Σ′,N ′) →
(S2,Σ2,N2).

g ∼ h⇒ gf1 ∼ hf1: pick X ′ ∈ Σ′, one has

f−1
1 g−1(X ′)4 f−1

1 h−1(X ′) = f−1
1

(
g−1(X ′)4h−1(X ′)

)
and since g−1(X ′)4h−1(X ′) ∈ N , one concludes by condition (4).
g ∼ h⇒ f2g ∼ f2h: a straightforward consequence of the measurability of f2.

6.5 Π preserves ∼

The next thing to check is whether our probabilistic functor also preserves the equivalence between
maps. In order to do this, it will be convenient to first prove a set-theoretic lemma.

Lemma 6.7 Let S be a set, and N be a set of subsets of S closed under countable unions and
subset; let T be a set, and f , g be maps from S to T . Define ΣT as the set of subsets X of T such
that f−1X4 g−1X ∈ N , then ΣT is a σ-algebra.

Proof . Obviously T ∈ ΣT , since f−1(T )4 g−1(T ) = ∅. To prove what we want, it is enough to
prove that ΣT is closed under complement and countable unions.

Suppose X ∈ ΣT , then using equation (1), we get:

f−1(Xc)4 g−1(Xc) = f−1(X)c4 g−1(X)c = f−1(X)4 g−1(X)

so Xc is in ΣT as well.
3Actually, one could restrict the present category to that of ω-generated σ-algebras; it is readily seen that these

are preserved under Π. In this subcategory, the two notions of equivalence are the same.

24



Suppose Xi is a countable family in ΣT , then using inequation (2), we get:

f−1(∪iXi)4 g−1(∪iXi) =
⋃
i f
−1(Xi)4

⋃
i g
−1(Xi) ⊆

⋃
i( f
−1(Xi)4 g−1(Xi) )

Since for all i, f−1(Xi)4 g−1(Xi) ∈ N , and N is stable under countable unions and subset, one
sees that ∪iXi is in ΣT as well.

Now we turn to the proof that Π respects ∼.

Lemma 6.8 Let f , g be arrows from S = (S,ΣS ,NS) to T = (T,ΣT ,NT ), then: f ∼ g ⇒ Π(f) ∼
Π(g).

Proof . We have to show that Π(f)−1(W )4Π(g)−1(W ) ∈ NΠ(S) for all W ∈ ΣΠ(T ). Define:

WA,r := e−1
A (r, 1] = {ν | ν ∈ Π(T ) and ν(A) > r}

for A ∈ ΣT and r ∈ Q ∩ [0, 1]. By definition, ΣΠ(T ) is the smallest σ-algebra containing the WA,r,
and therefore by the preceding lemma, it suffices to show what we want to show for these particular
generating sets.

One has ν ∈ Π(f)−1(WA,r) iff ν(f−1(A)) > r, therefore:

ν ∈ Π(f)−1(WA,r)4Π(g)−1(WA,r) ⇔
(ν(f−1(A)) > r ∧ ν(g−1(A)) ≤ r) ∨ (ν(f−1(A)) ≤ r ∧ ν(g−1(A)) > r) ⇒
ν(f−1(A)) 6= ν(g−1(A)) ⇒
ν(f−1(A)4 g−1(A)) > 0

To see why the last step is correct, one argues as follows: by additivity of ν, ν(X∪Y ) = ν(X4Y )+
ν(X ∩ Y ), so if ν(X4Y ) = 0, one has ν(X ∪ Y ) = ν(X ∩ Y ), and then ν(X) = ν(Y ), since
ν(X ∩ Y ) ≤ ν(X) ≤ ν(X ∪ Y ).

It now follows from f ∼ g and A ∈ ΣT , that f−1(A)4 g−1(A) ∈ N . So ν(f−1(A)4 g−1(A)) > 0,
and ν ∈ Nf−1(A)4 g−1(A) ∈ NΠ(S); NΠ(S) being downward closed in ΣΠ(S), we are done.

Since we are working here with a notion of equivalence for morphisms which is larger than the
one given in our previous paper [DDLP05], it makes the statement above stronger and a bigger
machinery is needed in the proof. However, as said before, the point of this more flexible definition
is not to have a more complicated argument, but to derive a more satisfying notion of epimorphism.

6.6 Epimorphisms

The following proposition says that the only reason why f−1X may be small when f is an epi-
morphism is that X is small itself, which means X only grows under f−1, which in turn is fairly
intuitive as a description of a sort of “fuzzy surjection.” Note also that this condition is converse
to condition (4).

Proposition 6.9 Let f : (S,Σ,N ) → (S′,Σ′,N ′) be an arrow of Mes′′, the following are equiva-
lent:

f is an epimorphism (9)
f−1 is a monomorphism from Σ′/N ′ → Σ/N (10)

∀X ′ ∈ Σ′ : f−1(X ′) ∈ N ⇒ X ′ ∈ N ′ (11)
∀X ′, Y ′ ∈ Σ′ : f−1X ′ ∼N f−1Y ′ ⇒ X ′ ∼N ′ Y ′ (12)
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Proof . (9) ⇒ (11): Let f be an epimorphism and X ∈ Σ′ such that f−1(X) ∈ N . Now consider
the two morphisms 1X and 1∅ : (S′,Σ′,N ′) → ({0, 1},P{0, 1}, {∅, {1}}). We have that 1Xf ∼
1∅f because (1Xf)−1({1})4(1∅f)−1({1}) = f−1(X)4∅ = f−1(X) ∈ N , and since f is an
epimorphism, 1X ∼ 1∅, so (1X)−1({1})4(1∅)−1({1}) = X4∅ = X ∈ N ′.
(9)⇐ (11): Let g, h : (S′,Σ′,N ′)→ (S′′,Σ′′,N ′′) be such that gf ∼ hf . For any X ∈ Σ′′ we have

f−1(g−1(X)4h−1(X)) = (gf)−1(X)4(hf)−1(X) ∈ N

and condition (11) implies that g−1(X)4h−1(X) ∈ N ′, so g ∼ h.
It is clear that (10), (11) and (12) are equivalent.

Note that, as discussed after Equation (8), with a more stringent notion of ∼ an epimorphism
would satisfy the implication in Equation (11) for all X ′ ⊆ S′, instead of only for measurable sets.
This would be a very strong condition for a morphism to be an epimorphism. Indeed, when we
will take the quotient with respect to our logic, the quotient morphism will be an epimorphism
according to the new definition, but not with respect to the stronger one.

7 Π′′ coalgebras and bisimulation

Bisimulations give means to identify points in a given LMP, while negligibles give means to identify
measurable sets; the object of the present section is to show how the latter can be combined with
the former.

7.1 LMPs with negligibles

When we worked in Mes, a labelled process was a Π-coalgebra. This coalgebraic presentation was
developed by de Vink and Rutten [dVR97, ?] and noted in passing in [BDEP97]. We now have the
following natural extension.

Definition 7.1 A labelled Markov process with negligibles (LMPn) is a Π′′-coalgebra.

We recapitulate what this means.

Lemma 7.2 Equivalently, an LMPn is a structure (S,Σ,N , h), where S is the set of states, Σ is
a σ-algebra on S, and h : S × Σ −→ [0, 1] satisfies

1. for all s ∈ S, h(s) : Σ→ [0, 1] is a subprobability measure;

2. for all A ∈ Σ, h(·)(A) : S → [0, 1] is measurable;

3. for all A ∈ N , {s | h(s)(A) > 0} ∈ N .

Proof . 1: Clear from the definition of ΠS.
2: A morphism h : (S,Σ,N ) → Π′′(S,Σ,N )) must satisfy that for all measurable W of ΠS,
h−1W ∈ Σ. In particular, for W = {ν | eA(ν) > r} = {ν | ν(A) > r}. But h−1W = {s | h(s)(A) >
r}. So this is just the condition that h(·, A) be a measurable function from S to [0, 1].
3: By definition for all A ∈ N , h(·, A)−1(NA) ∈ N , which means that {s | h(s,A) > 0} ∈ N .

26



One will notice that Condition 2 is equivalent to the stability of Σ and Condition 3 is equivalent
to the stability of N . Indeed, Condition 3 implies {s | h(s)(A) > r} ∈ N for all r ∈ Q ∩ [0, 1] and
A ∈ N , because of Condition 2 and by the fact that N is a σ-ideal.

When negligibles are given via some measure ν defined on (S,Σ), that is to say N = Nν , then
Condition 3 amounts to

ν(A) = 0 ⇒ ν({s | h(s,A) > 0}) = 0,

which says that “negligibly many points may jump to a negligible set”.

Lemma 7.3 Suppose h is a kernel, and ν dominates h in the sense that for all s, h(s, ·)� ν, then
Nν is stable under h, that is to say:

∀B ∈ Nν : 〈a〉0(B) ∈ Nν .

Proof . If ν(B) = 0, then for all s, h(s,B) = 0, so that 〈a〉0(B) = ∅ ∈ Nν .

So the condition of stability with respect to negligibles is an abstract form of domination.
Recall that one interprets h(s)(X) (often written h(s,X)) as the probability of the process

starting in state s making a transition into one of the states in X.

Lemma 7.4 A morphism f : (S,Σ,N , h) → (S′,Σ′,N ′, h′) is a morphism of coalgebras iff for all
A′ ∈ Σ′

{h(·, f−1A′) 6= h′(f(·), A′)} ∈ N

Proof . For all A′ ∈ Σ′, and all B Borel set of [0, 1]:

((Π′′f)h)−1{ν | ν(A′) ∈ B} ∼ (h′f)−1{ν | ν(A′) ∈ B}
⇔ h−1{µ | (Π′′f)µ(A′) ∈ B} ∼ f−1{s′ | h′(s′, A′) ∈ B}
⇔ h−1{µ | µ(f−1A′) ∈ B} ∼ f−1{s′ | h′(s′, A′) ∈ B}
⇔ {s | h(s, f−1A′) ∈ B} ∼ {s | h′(fs,A′) ∈ B}

So that (Π′′f)h ∼ h′f iff h(·, f−1A′) ∼ h′(f(·), A′), which is iff {h(·, f−1A′) 6= h′(f(·), A′)} ∈ N ,
because ([0, 1],B) is ω-generated and separates points.

Recall (from def. 4.2) that for a given kernel h, and leaving aside the labels, 〈〉r is defined as
〈〉r(A) := {s | h(s,A) > r}; these endomaps of ΣS (which are not Boolean algebra homomorphisms)
are compatible with the quotient Σ/N .

Lemma 7.5 Let (S,Σ,N , h) be an LMPn, A, B in Σ, if A ∼N B then 〈〉r(A) ∼N 〈〉r(B).

Proof . Define 2r : ΣS → ΣΠ(S) as 2r(A) := {p | p(A) > r}, this [0, 1]-indexed family of maps
preserves ∼, because if A ∼N B, then:

{p | p(A) > r ∧ p(B) ≤ r} ⊆ {p | p(A \B) > 0} ⊆ NA\B

so 2r(A)42r(B) ⊆ NA\B ∪NB\A ∈ NΠ(S). Now 〈〉r = h−1 ◦2r : ΣS → ΣS must also preserve ∼,
since by definition of an arrow h−1 does.
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Here is a another argument: suppose A = B4N for some N ∈ N , then 〈〉r(B4N)4〈〉r(B) ⊆
〈〉0(N) and 〈〉0(N) ∈ N (by Lemma 7.2).

Before defining bisimulation, we introduce a negligible version of stability. Working with negli-
gible sets, it is natural that we are led to work with Λ +N .

Definition 7.6 Given an LMPn (S,Σ,N , h) and Λ ⊆ Σ a σ-algebra, one says that Λ is almost
stable if Λ +N is stable, or equivalently if for all A ∈ Λ, r ∈ [0, 1], 〈〉r(A) ∈ Λ +N .

Clearly saying Λ +N is stable implies the second condition; conversely, if A4N ∈ Λ +N , then by
the previous lemma, 〈〉r(A4N) ∼N 〈〉r(A) which is in Λ +N by the second condition.

7.2 Bisimulation and zizag morphisms

Event bisimulation is defined as before.

Definition 7.7 An event bisimulation on an LMPn (S,Σ,N , h) is a sub-σ-algebra Λ of Σ such
that (S,Λ +N ,N , h) is an LMPn, or equivalently such that Λ +N is stable.

The equivalence is clear.4 Here, one could define event bisimulation by asking (S,Λ,Λ ∩ N , h) to
be an LMP, or equivalently that Λ is stable, but the proofs seem more difficult. Yet, it follows from
Noether’s second isomorphism [?] that (Λ +N )/N and Λ/(Λ ∩ N ) are isomorphic as σ-complete
Boolean algebras, so both approaches could amount to the same.

For the case of a binary event bisimulation (i.e., between two different LMPn) we follow the
categorical lead by using cospans of zigzags. This will make bisimulation an equivalence relation,
as we will explain below.

Definition 7.8 A zigzag morphism is a coalgebra epimorphism; an event bisimulation be-
tween S and S ′ is a cospan of zigzag morphisms to some T .

Remark 7.9 As for Remark 5.3 we argue that a coalgebra epimorphism is exactly a coalgebra
morphism that is an epimorphism in Mes′′. That the second implies the former is clear. Now
let g : S → S ′ be an epimorphism of coalgebra. We show that its projection into Mes′′ is an
epimorphism in Mes′′. Let X ′ ∈ Σ′ such that g−1(X ′) ∈ N and consider S′′ = (S′\X ′)∪(X ′×{1, 2})
with the corresponding σ-algebra of sets Y ′ with Y ′ ∈ Σ′ where Y ′ = Y ′ \X ′ ∪ ((Y ∩X ′)× {1, 2}).
It remains to define the arrow h′′ : S ′′ → Π′′S ′′. For s′ ∈ S′ \X ′, h′′(s′)(Y ′) := h′(s′)(Y ′). Finally,
h′′((z, i))(X ′) = h′(z)(X ′). Now define fi : S ′ → S ′′ as the identity on S′ \ X ′ and for z ∈ X ′,
fi(z) = (z, i), i = 1, 2. Then f1 ◦ g ∼ f2 ◦ g as coalgebra morphisms and hence f1 ∼ f2, implying
that X ′ = f−1

1 (X ′)4 f−1
2 (X ′) ∈ N ′, as wanted.

The relation between the unary and binary versions of bisimulations is given by the canonical
correspondence between zigzag morphisms and unary event bisimulations (right below), together
with the fact that a binary event bisimulation can also be seen as a zigzag from the disjoint sum
S + S ′ to T .

Proposition 7.10 Any event bisimulation on S = (S,ΣS ,NS , hS) is given as f−1(ΣT ) with f a
zigzag morphism to some T , and conversely any coalgebra morphism f from S to some T defines
an event bisimulation given as f−1(ΣT ).

4Conditions 1, 2 are clear, and 3 also since 〈〉r(N ∈ N ) ∈ N because it is true for (S,Σ,N , h).
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Proof . For the first point, suppose Λ is an event bismulation, the identity from S to T = (S,Λ +
NS ,NS , hS) is clearly a morphism since Λ+NS ⊆ ΣS , and clearly also an epimorphism. Conversely,
suppose f : S → T is a coalgebra morphism, we want to prove that f−1(ΣT ) ⊆ ΣS is an event
bisimulation on S, which means 〈〉r(f−1(A′)) ∈ f−1(ΣT ) +NS for every A′ ∈ ΣT . Pick A′ in ΣT ,
since f is a coalgebra morphism:

〈〉r(f−1(A′)) := {s | hS(s, f−1(A′)) > r}
∼NS

{s | hT (f(s), A′) > r}
= f−1{s′ | hT (s′, A′) > r} ∈ f−1(ΣT )

as needed.

Theorem 7.11 Bisimilarity is an equivalence relation.

The proof is - just as before - given by the fact that if we work with cospans then we can compose
using pushouts and this does not require Π′′ to preserve anything. Everything works out in this
case by the same abstract arguments as before. We argued earlier that cospans are the natural
structure to use if one is interested in equivalence relations.

Since cospans compose, it is clear that viewed as a relation between LMPns event bisimulation
is an equivalence relation just as with LMPs. Once again we do not quite have a category of
LMPns with cospans as the morphisms since associativity only holds up to isomorphism: we have
a bicategory.

8 Logical characterization revisited

Recall that the logic L has the following syntax:

> | φ1 ∧ φ2 | 〈a〉rφ

where a is an action and r is a rational between 0 and 1.
Proposition 4.5 remains true for LMPn, and we can further say that σ([[L]]) +N is the smallest

stable σ-algebra containing N and included in Σ, that is to say, for every stable Λ ⊆ Σ, if Λ ⊇ N ,
then Λ ⊇ σ([[L]]) +N (since Λ is stable, Λ ⊇ σ([[L]]), and since it contains also N , it must contain
the smallest σ-algebra containing σ([[L]]) and N which we know is σ([[L]]) +N ); and this entails,
that for every almost stable Λ ⊆ Σ, one has Λ + N ⊇ σ([[L]]) + N . Note however, that we don’t
know whether σ([[L]]) +N is the smallest almost stable σ-algebra.

The notion of logical equivalence between states was trivial to define, but it is not as easy when
turning to the logical equivalence of two LMPns. For LMPs, one says that two LMPs are logically
equivalent if every state of any of them is equivalent to some state of the other (s1 ∈ S1 and s2 ∈ S2

being equivalent, written s1 ≈ s2, if they satisfy exactly the same formulas of L). Now that we
work with negligibles, bisimilarity is less demanding (since it is easier to be a zigzag because of the
equivalence between arrows in Mes′), therefore, to find the matching notion on the logical side, we
have to relax the usual notion of logical equivalence. This will be based on the following lemma
about “traditional” LMPs.

Lemma 8.1 Let S1 and S2 be LMPs, and define the relation ρ over [[L]]S1 × [[L]]S2 as ρ :=
{([[θ]]S1 , [[θ]]S2) | θ ∈ L}, then S1 ≈L S2 iff ρ extends to a σ-complete isomorphism between σ([[L]]S1)
and σ([[L]]S2).
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Proof . Suppose first S1 ≈L S2. Consider a test τ = ∧θεii , where the conjunction ranges over L
and we use the notation εi ∈ {±1} and [[θ−1

i ]] := ([[θ]]i)c. By definition of ≈L, it is inhabited in S1

iff it is in S2, and if inhabited it is an atom of both σ([[L]]S1) and σ([[L]]S2). To see why tests with
non empty denotation are atoms, observe first that two tests cannot denote equal sets unless they
are empty, and second that σ([[L]]S1) is by definition generated by the [[θ]]S1s which are closed under
the equivalence relation generated by the non-empty tests (because these are possibly uncountable
unions of tests). Hence, the relation ρ′ = {[[τ ]]1, [[τ ]]2} restricts to a bijection between atoms of the
respective algebras. Pick now a formula θ: θ can be written as a union of tests, those that set θ to
true; therefore θ and θ′ denote the same subset of S1 iff the tests that set one to true and the other
to false are empty, which is iff they denote also the same subset of S2, because tests are equally
inhabited in both LMPs. We infer that ρ is a bijection. Now both algebras have the same atoms
up to ρ′, and their generators, given by the θ with non empty denotations write as the same unions
of atoms, so there must be an isomorphism between them extending both ρ and ρ′.

Suppose now there exists an isomorphism ρ̂ extending ρ. Pick a test τ = ∧θεii inhabited in S1,
it maps to an atom of σ([[L]]S2) under ρ̂ given by ∩[[θi]]εiS2 because ρ̂ is a σ-complete homomorphism,
so this atom is the denotation of τ in S2.

This reformulation gives the key to the definition of logical equivalence for LMPns. We use the
following notation

σ([[L]]S)/N :=
σ([[L]]S) +N

N
for the set of ∼N -equivalence classes of σ([[L]]S) + N (of course, it may not be the case that
N ⊆ σ([[L]]S)). Just as for LMPs, formulas define a canonical relation ρ between σ([[L]]1)/N1 and
σ([[L]]2)/N2 given as ρ := {([[[θ]]1]N1 , [[[θ]]2]N2) | θ ∈ L}, relating the respective equivalence classes
of [[θ]]1 and [[θ]]2.

Definition 8.2 Let S1, and S2 be LMPns, one says S1 ≈L S2 if ρ extends to a σ-complete isomor-
phism between σ([[L]]S1)/N1 and σ([[L]]S2)/N2.

By Lemma 8.1, if only the empty set is taken as negligible, one gets back the ordinary notion of
logical equivalence for LMPs. Even if this definition looks more abstract than the one for ordinary
LMPs, it can be formulated in the same way for the particular case of discrete countable systems.
Indeed, since in this case negligible sets are exactly unions of negligible singletons and since the
isomorphism involved in the definition is σ-complete, Definition 8.2 is equivalent to requiring that
every non-negligible state of any of them is logically equivalent to some non-negligible state of the
other.

We now set up to prove the logical characterization of binary event bisimulation for LMPns.
We will first prove that if there is a cospan of zigzag morphisms between two LMPns, then these
are logically equivalent with respect to Definition 8.2. To do this, we only have to show that it is
the case for one zigzag morphism. We first need the following lemma.

Lemma 8.3 If f : S → S ′ is a morphism of coalgebras, then for all θ ∈ L, we have

f−1([[θ]]S′)4[[θ]]S ∈ N .
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Proof . The proof is by induction on θ. For >: [[>]]4 f−1[[>]]S′ = ∅. For θ0∧θ1: by inequation (3),
([[θ0]] ∩ [[θ1]])4(f−1[[θ0]]S′ ∩ f−1[[θ1]]S′) is included in ([[θ0]]4 f−1[[θ0]]S′) ∪ ([[θ1]]4 f−1[[θ1]]S′), so, by
induction, included in N0 ∪N1 ∈ N , for some N0, N1 in N . Finally, for 〈a〉rθ:

[[〈a〉rθ]] := {s : h(s, θ) ≥ r}
∼N {s | h(s, f−1[[θ]]S′) ≥ r}
∼N f−1{s′ | h′(s′, [[θ]]S′) ≥ r} =: f−1[[〈a〉rθ]]S′

where the second line uses Lemma 7.5 and the induction hypothesis, and the third line is because
f is a coalgebra morphism.

Note that Lemma 8.3 is also true for tests (see the proof of Lemma 8.1 for a definition of tests),
indeed, using equations (1) and (3):

f−1(∩i[[θi]]εiS′)4∩i[[θi]]
εi
S = (∩if−1([[θi]]S′)εi)4(∩i[[θi]]εiS )
⊆ ∩i(f−1([[θi]]S′)εi4[[θi]]εiS )
= ∩i(f−1([[θi]]S′)4[[θi]]S) ∈ N

Corollary 8.4 If f : S1 → S2 is a zigzag morphism, then S ≈L S ′.

Proof . Suppose f : S1 → S2 is a zigzag, we prove that f−1 restricts to an isomorphism between
σ([[L]]1)/N1 and σ([[L]]2)/N2. First, since f is a zigzag, one has f−1[[θ]]2 ∼N1 [[θ]]1 (by Lemma 8.3), so
f−1 indeed defines an homomorphim from σ([[L]]2)/N2 to σ([[L]]1)/N1 (because ∼ is preserved under
σ-algebraic operations and f−1), and clearly f extends ρ. Moreover, since f is an epimorphism,
f−1 is a monomorphism (by Prop. 6.9). To prove that f−1 is an epimorphism, it is enough to prove
that

F := {A ∈ σ([[L]]1) | ∃A′ ∈ σ([[L]]2) : A ∼N f−1(A′)}
is a σ-algebra containing [[L]]1. By Lemma 8.3, we do have [[θ]] ∈ F . Clearly F is closed under
complementation and contains the empty set; F is closed under countable intersection because if
Ai ∼N f−1(A′i), then ∩iAi4∩if−1(A′i) ⊆ ∪i(Ai4 f−1(A′i)) ∈ N .

We now prove the reverse direction. To do so, we plan to construct a cospan as follows. Given
LMPns S1 ≈L S2,

S1

in1

%%KKKKKKKKKK S2

in2

yyssssssssss

S1 + S2

q

��
(S1 + S2)≈

where S1+S2 is the disjoint sum LMPn (with the obvious definition) and (S1+S2)≈ is the logical quo-
tient of S1 +S2. In general, given an LMPn S, its logical quotient is the LMPn (S/≈,Σ≈,N≈, h≈),
≈ being the logical equivalence of states, and writing q for the associated quotient map q : S → S/≈:

Σ≈ := q(σ([[L]]))
N≈ := {X ∈ Σ≈ | q−1(X) ∈ N}

h≈([s], X) = h(s, q−1X)
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Proposition 8.5 The logical quotient is an LMP and the quotient morphism is a zigzag morphism.

Proof . We first prove that the quotient is an LMP. The fact that h≈ is well defined is routine,
using the fact that measures that agree on a π-system (formulas) agree on the σ-algebra generated
by it. We only have to check that Σ≈ and N≈ are stable; the former is easy, and we prove only the
latter. Let X ∈ N≈; then q−1X ∈ N by definition of N≈, and hence {s | hS(s, q−1X) > 0} ∈ N .
Now we have

q−1{s′ ∈ S≈ | h≈(s′, X) > 0} = {s | h≈(q(s), X) > 0}
= {s | h(s, q−1X) > 0} ∈ N ,

and hence {s′ ∈ S≈ | h≈(s′, X) > 0} ∈ N≈.
The fact that q is a morphism of coalgebra is given by definition of Σ≈ and h≈ and by Lemma 7.4.

That it is an epimorphism is given by definition of N≈.

Theorem 8.6 S1 ≈L S2 if and only if S1 and S2 are event bisimilar.

Proof . ⇐: is given by Corollary 8.4.
⇒: we know that q : S1 + S2 → (S1 + S2)/≈ is a zigzag. We have to prove that for i = 1, 2,
q ◦ ini : Si → S1 + S2 → (S1 + S2)/≈ also are. We first prove that q ◦ ini are coalgebra morphisms.
Let X ∈ Σ≈. Then for si ∈ Si,

h≈(q ◦ ini(si), X) = h1+2(ini(si), q−1X) = hi(si, in−1
i q−1X).

Finally, if A ∈ N≈, we have q−1A ∈ N1+2 which implies in−1
i (q−1A) ∈ Ni for i = 1, 2.

It remains to prove that q ◦ ini is an epimorphism. Pick an X ′ in Σ≈ such that (q ◦ ini)−1(X ′) ∈
Ni. We want to prove that X ′ is negligible, which by definition of N≈, amounts to saying that
q−1(X ′) ∈ N1+2. Now this would follow clearly from (q ◦ in1)−1(X ′) ∈ N1 iff (q ◦ in2)−1(X ′) ∈ N2.
Let us see why this last statement is true. By construction of the quotient, it downs to saying that
for every X ∈ σ([[L]]1+2), in−1

1 (X) ∈ N1 iff in−1
2 (X) ∈ N2.

Write Xi := in−1
i (X) for X in σ([[L]]1+2); since in−1

i (σ([[L]]1+2)) = σ([[L]]i), it follows that
Xi ∈ σ([[L]]i). By hypothesis, there is an isomorphism ρ̂ between σ([[L]]1)/N1 and σ([[L]]2)/N2 such
that for all θ ∈ L, ρ̂([[[θ]]1]) = [[[θ]]2]. Consider now the set:

{X | ρ̂([in−1
1 (X)]) = [in−1

2 (X)]}

1) it is a σ-algebra, since ρ̂ is a σ-complete morphism, 2) and since in−1
i ([[θ]]1+2) = [[θ]]i, it contains

[[L]]1+2. Therefore ρ̂([X1]) = [X2] holds for all X in σ([[L]]1+2), and in particular if X1 ∈ N1, then
X2 ∈ N2.

9 LMPs without states

It is clear that in the presence of the notion of negligible sets the role of states gets pushed to the
background. In this section we investigate the possibility that LMPs are described without states.
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As mentioned earlier, any lattice that corresponds to a σ-algebra over a set is a σ-complete
Boolean algebra. We recall that, in this setting, a set of negligibles is a proper σ-ideal (of a σ-
complete Boolean algebra), and, given any two morphisms f, g : (S,ΣS ,NS)→ (T,ΣT ,NT ) of Mes′,
and their corresponding homomorphisms of σ-complete Boolean algebra f̆−1, ğ−1 : ΣT /NT →
ΣS/NS , we have:

f ∼ g ⇔ f̆−1 = ğ−1

This fact together with our event bisimulation approach, enables us to capture our notions of
LMPns and bisimulation in a purely algebraic framework. An LMPn will be defined only by the
quotient of its σ-algebra over its σ-ideal of negligibles (viewed as an abstract σ-complete Boolean
algebra quotient) and by some “kernels” related to our logic L: no state will be involved in the
definition.

9.1 Boolean algebras and σ-complete Boolean algebras

A σ-Boolean algebra (Σ, 0, 1,∨ω,∧ω,¬) is a Boolean algebra closed under countable products (in-
fima) and sums (suprema).

Let σBA denote the category of σ-complete Boolean algebras equipped with σ-complete ho-
momorphisms of Boolean algebras, i.e., arrows ρ such that:

ρ(0) = 0, ρ(1) = 1
ρ(∧i∈ωai) = ∧i∈ωρ(ai)
ρ(∨i∈ωai) = ∨i∈ωρ(ai)
ρ(¬a) = ¬ρ(a)

so commuting to countable infima and complement (therefore to countable suprema).
A Boolean algebra B is called an algebra of sets (resp. a σ-algebra of sets) if B ⊆ P(X) for

some X, and B is closed under complementation and under finite (resp. countable) intersections.
A σ-algebra of sets is therefore exactly a σ-algebra.

By the famous Stone-Duality theorem [Joh82, Mon89], we know that every Boolean algebra is
isomorphic to some algebra of sets. Unfortunately this is no longer true for σ-complete algebras;
there are σ-complete algebras that are not (σ-complete) isomorphic to any σ-algebra. However, any
σ-complete algebra is (σ-complete) isomorphic to the quotient of a σ-algebra and a σ-ideal, see the
Loomis-Sikorski theorem [Mon89]. From that perspective, it seems therefore natural to generalise
our notion of LMPns to a purely algebraic setting.

9.2 Abstract LMPns

We want the underlying space of an abstract LMPn to be some σ-complete Boolean algebra A.
We also need something that will take the place of the transition kernels. In fact, we know from
the previous section that, since the logic characterizes bisimulation, it is a good candidate to help
us abstract LMPn while encoding all the information in the transition kernels. For every logical
formula of L, there is a corresponding set of A. We define the category LMPa of abstract LMPs
with negligibles.

Definition 9.1 An object of LMPa is a function [[·]] from L to a σ-complete Boolean algebra A.
A morphism from L → A to L → B is an homomorphism ρ : A → B of σ-complete Boolean
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algebras that makes the following diagram commute.

L
[[·]]A //

[[·]]B ��@@@@@@@ A

ρ

��
B

We will define a functor from the category LMPn to LMPa. The category LMPn has LMPn
as objects and coalgebra morphisms as morphisms.

Definition 9.2 The contravariant functor F : LMPn→ LMPa is defined as follows:

• F(S,Σ,N , h) = [[·]]Σ/N : L → Σ/N where [[φ]]Σ/N is the equivalence class of [[φ]]S .

• for f : S → T , F(f) = f̆−1 : ΣT /NT → ΣS/NS

Proof . It is easy to prove that F(idS) = idΣS/NS
and F(f ◦ g) = F(g) ◦ F(f). It remains

to prove that F(f) makes the triangle commute. Let φ ∈ L. We want to show that F (f) ◦
[[φ]]ΣT /NT

= [[φ]]ΣS/NS
. But the left part is simply f̆−1([[φ]]ΣT /NT

) and by Lemma 8.3, we have that
f−1([[φ]]T )4[[φ]]S ∈ N which implies the result.

Definition 9.3 Two abstract LMPs are bisimilar if they are related by a span of monomorphisms.
In other words, a bisimulation between A and B is represented in the following commutative dia-
gram.

A

L

[[·]]A
??~~~~~~~

[[·]]B ��@@@@@@@
[[·]]X // X

0 P

``AAAAAAA

N n

~~}}}}}}}

B

Since pullbacks exist in LMPa (being inherited from σBA) and since they preserve monomor-
phisms, bisimulation is an equivalence. The proof is summarized in the following commutative
diagram.

A

X
3 S

eeLLLLLLLLLLL

K k

yyrrrrrrrrrrr

L

[[·]]A

CC����������������

[[·]]B
//

[[·]]X
00

[[·]]Y ..
[[·]]C

��7777777777777777

[[·]]Z
,,

B Z
3 S

ff

K k

xx
Y

3 S

eeLLLLLLLLLLL

K k

yyrrrrrrrrrrr

C
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where Z = {(x, y) ∈ X × Y | f(x) = g(y)} and [[·]]Z ::= ([[·]]X , [[·]]Y ) are given by a pullback
construction.

The functor F acts on zigzag morphisms as we would expect, it yields a monomorphism of
Boolean σ-algebra.

Proposition 9.4 Let f : S → T be a zigzag, then F(f) is a monomorphism of coalgebras.

Proof . We have to show that ker(F(f)) = 0ΣT /NT
. A zigzag morphism being an epimorphism of

coalgebra, we have, from Proposition 6.9, that ∀X ∈ ΣT : f−1(X) ∈ NS ⇒ X ∈ NT , which yields
the result.

This proposition shows that abstract LMPn objects are a generalization of ordinary LMPn
objects.

Corollary 9.5 If two LMPns S and T are bisimilar, then F(S) and F(T ) also are.

Proof . The result follows from the fact that a cospan of zigzag morphisms between S and T
induces a span of monomorphisms between F(S) and F(T ).

The simplicity of the construction and the proofs of this section is not serendipitous. In fact,
for a few of the results of the previous sections, among all the possible definitions that we could
have chosen, the exact one that permitted us to prove the results were given naturally from this
idea that LMPn should be viewed as abstract LMPs. In particular, the definition of equivalence
between morphisms of Mes′ (see Eq. 8) and Definition 8.2 of logical equivalence.

It is important to note that these ideas could be extended to other equivalences, by replacing L
by other suitable logics. Moreover, there is also a possibility (especially due to the Loomis-Sikorski
theorem) that this idea of abstract LMPns gives rise to a full theory of pointless LMPn, and would
form a Stone-type duality with the ordinary LMPs in the same way that Frames (or Locales), are
“pointless” topological spaces [Joh82].

10 Conclusion

The enterprise described in the present paper consists of three parts. In the first part we develop
the idea that one should use cospans rather than spans or relations in formulating probabilistic
bisimulation. Others [?] have also voiced similar thoughts. The most important mathematical
benefit of this shift is that the logical characterization of bisimulation can be established for LMPs
in a perfectly general way, without, for example, any assumptions about the state space being
analytic. We take an explicitly coalgebraic view of LMPs in order to formulate this notion of
bisimulation.

Given the categorical machinery at hand we use it to refine the notion of bisimulation so as to
allow one to talk about systems being bisimilar “almost everywhere”. Typically the phrase “almost
everywhere” or “almost surely” are used with reference to some ambient measure. However, we
work with an axiomatic notion of “ideal of negligible sets”. We use this to modify the monad and
the coalgebras so as to accomodate the new notion of “almost sure bisimilarity.” So far we have
essentially reviewed our previous work [DDLP05]. However at this point we make a significant
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departure. We define a new notion of equivalence of arrows. This allows one to obtain a very
pleasing connection with bisimulation and logic.

Perhaps the most suggestive idea to come out of this work is the idea that states are not as
central as hitherto imagined. Rather one should work with abstract notions of LMPs without
explicit mention of the state space. This is analogous to the idea of pointless topology so forcefully
argued by Johnstone [Joh82] where one works with the lattice of opens viewed as a frame. Thus
there is a Stone-type duality at work here which we have just begun to understand. Kozen [Koz85]
has already discussed such a Stone type duality for probabilistic programs. In his case the duality
is between a probabilistic state transition system (viewed as giving the forward semantics of a
programming language) and a probabilistic analogue of a predicate transformer semantics, which
gives a “backward” flowing semantics. The connection between these two is exactly a Stone-type
duality. There are many such duality notions in the air at the moment in a variety of areas.

These duality ideas have proven useful already. Work on metrics for LMPs [DGJP99, ?] was
inspired by Kozen’s work. A very important possible payoff for ideas of abstract or pointless LMPs
is a more satisfactory approximation theory. Danos and Plotkin have already investigated such
ideas in unpublished work.
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