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Abstract

In relational semantics, the input-output semantics of a program is a relation on its
set of states. We generalize this in considering elements of Kleene algebras as se-
mantical values. In a nondeterministic context, the demonic semantics is calculated
by considering the worst behavior of the program. In this paper, we concentrate on
while loops. Calculating the semantics of a loop is difficult, but showing the correct-
ness of any candidate abstraction is much easier. For deterministic programs, Mills
has described a checking method known as the while statement verification rule.
A corresponding programming theorem for nondeterministic iterative constructs is
proposed, proved and applied to an example. This theorem can be considered as
a generalization of the while statement verification rule to nondeterministic loops.
The paper generalizes earlier relation-algebraic work to the setting of modal Kleene
algebra, an extension of Kozen’s Kleene algebra with tests that allows the internal-
ization of weakest liberal precondition and strongest liberal postcondition operators.

Key words: while loop, demonic semantics, relational abstraction, verification,
Kleene algebra, rule, generalization.

1 Introduction

We use elements of Kleene algebras as abstractions of the input-output se-
mantics of nondeterministic programs. In the concrete Kleene algebra of ho-
mogeneous binary relations, the operators ∪ and ; have been used for many
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years to define the so-called angelic semantics, which assumes that a program
goes right when there is a possibility to go right. The demonic choice t and
demonic composition 2 do the opposite: if there is a possibility to go wrong,
a program whose semantics is given by these operators goes wrong. The de-
monic semantics of a while loop is given as a fixed point of an isotone function
involving the demonic operators.

While there is no systematic way to calculate the relational abstraction of a
while loop directly from the definition, it is possible to check the correctness
of any candidate abstraction. For deterministic programs, Mills [22,23] has
described a checking method known as the while statement verification rule.
We generalize this rule to nondeterministic loops.

We note here that half of the generalized theorem has been shown by Seke-
rinski [31], who uses an approach based on predicative programming [18]. A
related theorem has been given by Norvell [28] in the framework of predicative
programming with time bounds. Norvell’s theorem shows how to refine the
specification R of a while loop under the condition that R is strongly bounded,
which guarantees termination after a finite amount of time. Further refinement
theorems for loops can be found in [1], presented in the framework of predicate
transformers.

The main novelties in the present paper are the following. First, we fully gener-
alize Mills’s approach to the nondeterministic case. This was already achieved
by Desharnais and Tchier [33,34] using binary homogeneous relations. Second,
at the same time we abstract from relational semantics to the more general
setting of modal Kleene algebras, an extension of Kozen’s Kleene algebra with
tests [20] that allows the internalization of the abstract counterparts of the
weakest liberal precondition and strongest liberal postcondition operators. A
first treatment of this topic in the more restricted class of Standard Kleene
Algebras [8] appeared in [14]; in the present paper we show that we can do
without the assumption that the underlying lattice forms a complete Boolean
algebra and that sequential composition is universally disjunctive. In doing
so, we present some derived operations and laws that will also be useful for
further applications of modal Kleene algebra. It is remarkable that the proofs
in the generalized setting are considerably simpler and more perspicuous than
the corresponding ones in terms of relations or predicate transformers.

The rest of this paper is organized as follows. In Section 2 we first introduce
test semirings; they admit a direct abstract angelic semantics of loop-free pro-
grams. Next, we axiomatize a domain and a codomain operation [11] that
assign to an abstract program a representation of its initial and final states,
respectively. Based on that, forward and backward diamond and box operators
can be defined, leading to modal semirings. The forward operators correspond
to the strongest liberal postcondition and weakest liberal precondition oper-
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ators. In Section 3 we then give the abstract demonic semantics of loop-free
programs and show a number of basic properties such as associativity of de-
monic composition. In Section 4, we introduce finite and infinite iteration,
leading to modal Kleene [13] and omega [7,26] algebras and show a number
of auxiliary properties. Following that, we present in Section 5 a generaliza-
tion of the while statement verification rule of Mills. This is followed by an
example of application in Section 6. The paper terminates with a conclusion
in Section 7.

2 Domain Semirings and Modalities

2.1 Test Semirings

Definition 2.1 (a) A semiring is a structure (K, +, ·, 0, 1) such that (K, +, 0)
is a commutative monoid, (K, ·, 1) is a monoid, multiplication distributes
over addition from the left and right and zero is a left and right annihi-
lator, i.e., a · 0 = 0 = 0 · a for all a ∈ K.

(b) The semiring is idempotent if it satisfies a+a = a for all a ∈ K. Then K
has a natural ordering ≤ defined for all a, b ∈ K by a ≤ b iff a+ b = b. It
induces a semilattice with + as join and 0 as the least element; addition
and multiplication are isotone with respect to the natural ordering.

In many contexts these operations can be interpreted as follows:

+ ↔ choice,

· ↔ sequential composition,

0 ↔ abortion,

1 ↔ identity,

≤ ↔ increase in information or in choices.

Example 2.2 (a) The basis of Kleene’s original work on regular algebra is
the semiring LAN

∆
= (P(A∗),∪, • , ∅, ε), of formal languages over some

alphabet A, where A∗ is the set of all finite words over A, • denotes
concatenation and ε the empty word (as usual, we identify a singleton
language with its only element).

(b) Another important KA is REL
∆
= (P(M ×M), ⊆ , M ×M, ; , ∅, I), the

algebra of homogeneous binary relations over some set M under relational
composition ; . More generally than the concrete relation algebra REL,
every abstract relation algebra (see e.g. [6,30,32]) is a KA.

(c) A less abstract semiring than REL is the semiring PAT of path sets in
a directed graph under union as addition and the extension of path con-
catenation to path sets (also known as fusion product) as multiplication
(see e.g. [25] for details). Whereas REL only gives information about ex-
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istence of a path between a pair of nodes, PAT gives the possibility to talk
about different paths between that same pair.

ut

Programs and state transition systems can be described in a bipartite world
in which propositions describe sets of states and actions or events model tran-
sitions between states. Propositions live in a Boolean algebra and actions in
an idempotent semiring with the operations interpreted as above. In fact, to
model regular programs, an additional operation of iteration or reflexive tran-
sitive closure is required; the corresponding extension of semirings to Kleene
algebras is described in Section 4. The idea to combine propositions and ac-
tions into one common framework was first presented in Kozen’s Kleene alge-
bra with tests [20], where “test” is a synonym for “proposition”. Let us now
axiomatize the corresponding notions.

Definition 2.3 (a) A Boolean algebra is a complemented distributive lattice.
By overloading, we usually write + and · also for the Boolean join and
meet operation and use 0 and 1 for the least and greatest elements of the
lattice. The symbol ¬ denotes the operation of complementation.

(b) A test semiring is a two-sorted structure (K, test(K)), where K is an
idempotent semiring and test(K) ⊆ K is a Boolean algebra embedded into
K such that the operations of test(K) coincide with the restrictions of the
operations of K to test(K). In particular, p ≤ 1 for all p ∈ test(K). But
in general, test(K) is only a subalgebra of the subalgebra of all elements
below 1 in K.

We will use the letters a, b, c, . . . for semiring elements and p, q, r, . . . for
Boolean elements. We will freely use the concepts and laws associated with
Boolean algebra, including relative complement p− q = p · ¬q and implication
p → q = ¬p + q.

Example 2.4 (a) In LAN, the only possible tests are ∅ and {ε}, i.e., 0 and 1.
Such a semiring is said to have a discrete test algebra, which usually is
not very interesting.

(b) In REL usually the set of all partial identity relations is chosen as the
test algebra to make it a test semiring.

(c) In PAT one chooses the tests to be all sets that consist of paths with at
most one node each. Except for the empty path, such sets are isomorphic
to sets of points. ut

In a test semiring one can give (angelic) abstract semantics of repetition-free
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programs as follows:

abort
∆
= 0

skip
∆
= 1

a dc b
∆
= a + b

a ; b
∆
= a · b

if p then a else b
∆
= p · a + ¬p · b

assert p
∆
= if p then skip else abort = p

The definition of assert p via if then else is the usual one from assertion macro
packages in programming languages like C or Java; algebraically it simplifies
to p alone.

2.2 Domain

In many formalisms, propositions and actions cooperate via modal operators
that view actions as mappings on propositions in order to describe state-
change and via test operators that embed propositions into actions in order to
describe measurements on states and to model the usual program constructs.

To motivate this modal view, let a semiring element a describe an action or
abstract program and a test p a proposition or assertion, also called a test.
Then p ·a describes a restricted program that acts like a when the initial state
satisfies p and aborts otherwise. Symmetrically, a · p describes a restriction of
a in its possible final states. We now introduce an abstract domain operator
p [24] that assigns to a the test that describes precisely its enabling states.

Definition 2.5 A semiring with domain [11] (a p-semiring) is a structure
(K, p), where K is an idempotent semiring and the domain operation p: K →
test(K) satisfies for all a, b ∈ K and p ∈ test(K)

a ≤ pa · a, (d1)

p(p · a) ≤ p. (d2)

Let us explain these axioms. First, since pa ≤ 1 by pa ∈ test(K), isotonicity of
multiplication shows that (d1) can be strengthened to an equality expressing
that restriction to the full domain is no restriction at all. The second axiom
means that after restriction the remaining domain must satisfy the restricting
test.

To further explain (d1) and (d2) we note that their conjunction is equivalent
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to each of

pa ≤ p ⇔ a ≤ p · a, (llp)

pa ≤ p ⇔ ¬p · a ≤ 0, (gla)

which constitute elimination laws for p. (llp) says that pa is the least left
preserver of a. (gla) says that ¬pa is the greatest left annihilator of a. Both
properties obviously characterize domain in set-theoretic relations.

Because of (llp), domain is uniquely characterised by the two domain axioms.
Moreover, if test(K) is complete then a domain operation always exists. If
test(K) is not complete, this need not be the case. Another important conse-
quence of the axioms is that ppreserves arbitrary existing suprema [27].

Example 2.6 (a) In LAN, the domain of a language L is ∅ if L = ∅ and
{ε} otherwise; i.e., domain decides merely about being 0 or not. The same
applies to all test semirings with discrete test algebra.

(b) A prominent example of a domain semiring is REL. There, the domain
operation is given by pR = R ; R̆ ∩ I, where I is the identity relation,
R̆ is the converse of R and ; is relational composition.

(c) In PAT, the domain of a path set consists of all starting points of paths
in the set, plus the empty path if it is in the path set. ut

Many natural properties follow from the axioms. Domain is uniquely defined.
It is strict (pa = 0 ⇔ a = 0), additive (p(a + b) = pa + pb), isotone (a ≤
b ⇒ pa ≤ pb), stable on tests (pp = p) and satisfies the import/export law
(p(p · a) = p · pa). See [11] for further information. Moreover, we have a useful
decomposition property.

Lemma 2.7 For p ∈ test(K),

a ≤ p · b ⇔ pa ≤ p ∧ a ≤ b.

PROOF. (⇒) First, by isotonicity of domain and (d2), pa ≤ p(p · b) ≤ p.
Second, by p ≤ 1 and isotonicity of · we have a ≤ b as well.
(⇐) By (d1) and isotonicity of · , a ≤ pa · a ≤ p · b. ut

2.3 Modal Semirings

Definition 2.8 A domain semiring is called modal if additionally it satisfies

p(a · pb) ≤ p(a · b). (d3)
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This axiom serves to make composition of multimodal operators below well-
behaved. In a modal semiring, domain is local in the following sense:

p(a · b) = p(a · pb). (loc)

Without (d3), only the inequality p(a·b) ≤ p(a·pb) holds. The additional axiom
(d3) guarantees that the domain of a · b is independent of the inner structure
of b or its codomain; information about the domain of b in interaction with a
suffices.

Definition 2.9 A codomain operation q can easily be defined as a domain
operation in the opposite semiring, where, as usual in algebra, opposition just
swaps the order of multiplication. We call a semiring K with local domain and
codomain simply a modal semiring.

Combined with restriction, the domain operation yields an abstract preimage
operation. This provides the semantic basis for defining modalities.

Definition 2.10 Let K be a modal semiring. For all a ∈ K and p ∈ test(K)
we define

|a〉p = p(a · p), 〈a|p = (p · a)q.

Let us explain why this definition is adequate. For program a, the term a · p
restricts a to that part for which all final states satisfy p. Then p(a · p) selects
all starting states of this remaining part; they indeed form the inverse image
of p under a. Symmetric arguments apply to the backward diamond.

Duality with respect to opposition transforms forward diamonds into back-
ward diamonds and vice versa. It follows that they satisfy an exchange law, a
weak analogue of the relational Schröder law. For all a ∈ K and p, q ∈ test(K),

|a〉p ≤ ¬q ⇔ 〈a|q ≤ ¬p. (1)

De Morgan duality transforms diamonds into boxes and vice versa.

Definition 2.11

|a]p
∆
= ¬|a〉¬p, [a|p ∆

= ¬〈a|¬p.

Example 2.12 In the modal semiring REL, the forward box operator coin-
cides with the monotype factor as defined by Backhouse and van der Woude
in [3]. ut

In the sequel, when the direction of diamonds and boxes does not matter, we
will use the notation 〈a〉 and [a].
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From (1) it follows that diamonds (boxes) are lower (upper) adjoints of Galois
connections:

|a〉p ≤ q ⇔ p ≤ [a|q, 〈a|p ≤ q ⇔ p ≤ |a]q, (2)

for all a ∈ K and p, q ∈ test(K). Hence diamonds (boxes) commute with all
existing suprema (infima) of the test algebra. In particular,

〈a〉(p + q) = 〈a〉p + 〈a〉q, [a](p · q) = [a]p · [a]q. (3)

Further useful properties are immediate from the Galois connection. They in-
clude cancellation laws and isotonicity and antitonicity properties for modal-
ities (see [13] for details). Of particular interest are the following demodaliza-
tion laws that follow from the domain elimination law (gla) and its dual for
codomain.

|a〉p ≤ q ⇔ ¬q · a · p ≤ 0, 〈a|p ≤ q ⇔ p · a · ¬q ≤ 0. (4)

For a test p we have

〈p〉q = p · q, [p]q = p → q. (5)

Hence, 〈1〉 = [1] is the identity function on tests. Moreover, 〈0〉p = 0 and
[0]p = 1.

Many modal properties can be expressed and calculated more succinctly in a
point-free style at the level of the operator semirings induced by the modal
operators. To this end, we lift join and meet pointwise to the operator level,
setting for test transformers f, g : test(K) → test(K),

(f + g)(p)
∆
= f(p) + g(p), (f u g)(p) = f(p) · g(p).

Then we have the following properties:

〈a + b〉 = 〈a〉+ 〈b〉, [a + b] = [a] u [b]. (6)

The definition

f ≤ g
∆⇔ f + g = g

lifts the natural order pointwise to test transformers, i.e., f ≤ g ⇔ ∀(p ::
f(p) ≤ g(p)). Now, from (6) it follows that 〈 〉 is isotone and [ ] is antitone.

Further, we denote composition of modal operators by mere juxtaposition.
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Then the modal axiom (d3) implies

|a · b〉 = |a〉|b〉, 〈a · b| = 〈b|〈a|,

|a · b] = |a]|b], [a · b| = [b|[a|.

 (7)

Thus multiplication acts covariantly on forward modalities and contravariantly
on backward ones.

2.4 Test Implication

The following operator, a combination of domain and the forward box oper-
ator, will be instrumental in propagating assertions through compositions. It
mainly serves to smoothen the notation; this is best exemplified with the proof
of Theorem 3.8 below, which would be quite messy in the original notation of
modal operators.

Definition 2.13 The binary operator →, called test implication, is defined
as follows:

a → b
∆
= |a](pb).

Hence a → b characterizes the set of points from which no computation as
described by a may lead outside the domain of b. If a and b are tests then (5)
and stability of domain show that a → b evaluates to ¬a+ b, so that both the
name “implication” and the symbol are justified. Therefore we also use the
convention from Boolean algebra that + and · bind more tightly than →.

By (2) and (4), we have, for p, q ∈ test(K),

p ≤ a → q ⇔ p · a · ¬q ≤ 0. (8)

Both of theses formulas may therefore serve as the definition of validity of the
Hoare triple {p} a {q}.

Further useful properties of test implication are collected in

Lemma 2.14 Let p be a test.

(a) 1 → a = pa.
(b) a → 1 = 1.
(c) a → b · pc = a → b · c (Domain Absorption).
(d) a + b → c = (a → c) · (b → c) (Antidistributivity).
(e) a · b → c = a → (b → c) (Currying).
(f) a → p · b = (a → p) · (a → b) = (a → b) · (a → p) (Conjunctivity).
(g) (p · a → b) · p = (a → b) · p (Modus Ponens).
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(h) (a → p · b) · a = (a → p · b) · a · p (Test Propagation).

PROOF.

(a) 1 → a

= {[ Definitions 2.10, 2.11 2.13 ]}
¬p(1 · ¬pa)

= {[ neutrality, stability of domain ]}
¬¬pa

= {[ involution ]}
pa

(b) a → 1

= {[ Definitions 2.10, 2.11 2.13 ]}
¬p(a · ¬1)

= {[ Boolean algebra ]}
¬p(a · 0)

= {[ strictness of · and domain ]}
¬0

= {[ Boolean algebra ]}
1

(c) a → b · c
= {[ Definition 2.13 ]}

|a]p(b · c)
= {[ (loc) ]}

|a]p(b · pc)
= {[ Definition 2.13 ]}

a → b · pc
(d) Immediate from (6).
(e) Immediate from (7).
(f) Immediate from (c) and (3).
(g) (p · a → b) · p

= {[ (e) ]}
(p → (a → b)) · p

= {[ for tests → coincides with implication,
modus ponens of Boolean algebra ]}

(a → b) · p
(h) We first note that substituting a → p and p for p and q in (8) yields
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(a → p) · a · ¬p = 0. Hence

(a → p) · a = (a → p) · a · p + (a → p) · a · ¬p = (a → p) · a · p.

Now the claim follows by (f). ut

The property of domain absorption is frequently used in the special case where
b = 1; it then reads a → pc = a → c.

3 The Basic Demonic Operators

3.1 Refinement Ordering, Demonic Join and Demonic Meet

We now define a partial ordering, called the refinement ordering. This ordering
induces an upper semilattice, called the demonic semilattice. The associated
operations are demonic join (t), demonic meet (u) and demonic composition
(2). Again, we generalize from the case of relation algebra to arbitrary KAs. For
more details on relational demonic semantics and demonic operators, see [3–
5,9,10,33].

Definition 3.1 We say that an element a refines an element b [21], denoted
by a v b, iff pb ≤ pa ∧ pb · a ≤ b.

It is easy to show that v is indeed a partial ordering.

Since the following theorem employs meets, we first quote the following prop-
erties [26].

Lemma 3.2 In a test semiring K, the following hold for all a, b, c ∈ K and
all p, q ∈ test(K).

(a) If a u b exists then p · (a u b) = p · a u b = p · a u p · b.
(b) (p · q) · a = p · a u q · a.
(c) p · q = 0 ⇒ p · a u q · a = 0.
(d) If b ≤ a then p · b = b u p · a. In particular, if K has a greatest element

> then p · b = b u p · >.

From this we obtain

Corollary 3.3 If a u b exists then pb · a u pa · b = a u b.
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PROOF. Using Lemma 3.2(a) four times and (d1) twice, we obtain pb · a u
pa · b = pa · pb · (a u b) = pa · a u pb · b = a u b. ut

Moreover,

Lemma 3.4 For p, q ∈ test(K) with p · q = 0 and a, b, c ∈ K,

p · a ≤ q · b + c ⇔ p · a ≤ p · c.

PROOF. (⇒) p · a = p · p · a ≤ p · (q · b + c) = p · q · b + p · c = 0 + p · c.
(⇐) p · a ≤ p · c ≤ c ≤ q · b + c. ut

Now we can prove the following properties.

Theorem 3.5 The partial order v respects existing suprema and infima w.r.t
≤ in the following sense.

(a) If a non-empty subset L ⊆ K has a ≤-supremum
⊔

L and p
∆
= (a : a ∈

L : pa) exists, then L also has a v-supremum, called its demonic join,
viz. ⊔

L = p · ⊔ L with p(
⊔

L) = p.

In particular, v induces an upper semilattice.
(b) a v b ⇔ a t b = b.
(c) If the ≤-infimum aub of a and b exists and satisfies the condition p(aub) =

pa · pb, then a and b have a v-infimum, called their demonic meet, viz.

a u b = (a u b) + ¬pa · b + ¬pb · a with p(a u b) = pa + pb.

Otherwise, their v-infimum does not exist. As a particular case, if pa·pb =
0 then a u b = a + b.

In relational terms, the existence condition for u simply means that for each
argument in the intersection of their domains, a and b have to agree for at
least one result value.

PROOF.

(a) The claim about the domain of tL is immediate. We show that atb is the
v-supremum of a and b. This is the special case of the overall assertion
for binary ≤-suprema, which are guaranteed to exist in every idempotent
semiring. The generalization to arbitrary sets that have ≤-suprema is
straightforward.
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a v c ∧ b v c

⇔ {[ definition of v ]}
pc ≤ pa ∧ pc · a ≤ c ∧ pc ≤ pb ∧ pc · b ≤ c

⇔ {[ infimum, supremum and distributivity ]}
pc ≤ pa · pb ∧ pc · (a + b) ≤ c

⇔ {[ infimum ]}
pc ≤ pa · pb ∧ pc · pa · pb · (a + b) ≤ c

⇔ {[ definition of t and domain of a t b ]}
pc ≤ p(a t b) ∧ pc · (a t b) ≤ c

⇔ {[ definition of v ]}
a t b v c

(b) (⇒) By the assumption, distributivity, domain and Boolean algebra,

a t b = pa · pb · (a + b) = pb · (a + b) = pb · a + b = b.

(⇐) By definition, distributivity and idempotence of tests,

a t b = b ⇔ pa · pb · (a + b) = b ⇔ pb · a + pa · b = b.

This immediately implies pb ·a ≤ b. Moreover, by distributivity of domain
and (loc) we obtain

pb · pa + pa · pb = pb,

which is equivalent to pb ≤ pa.
(c) First, we show the domain property.

p(a u b)

= {[ definition, distributivity and (loc) ]}
p(a u b) + ¬pa · pb + ¬pb · pa

= {[ assumption ]}
pa · pb + ¬pa · pb + ¬pb · pa

= {[ Boolean algebra ]}
pa + pb

Second, we derive an equivalent to the property of being a v-lower-bound
for a and b.

c v a ∧ c v b

⇔ {[ definition of v ]}
pa ≤ pc ∧ pa · c ≤ a ∧ pb ≤ pc ∧ pb · c ≤ b

⇔ {[ supremum and for all a, b ∈ K, p ∈ test(K),
a ≤ b ⇔ p · a ≤ p · b ∧ ¬p · a ≤ ¬p · b ]}

pa + pb ≤ pc ∧
pa · pb · c ≤ pb · a ∧ pa · ¬pb · c ≤ ¬pb · a ∧
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pa · pb · c ≤ pa · b ∧ ¬pa · pb · c ≤ ¬pa · b
⇔ {[ infimum and Corollary 3.3 ]}

pa + pb ≤ pc ∧ pa · pb · c ≤ a u b ∧
pa · ¬pb · c ≤ ¬pb · a ∧ ¬pa · pb · c ≤ ¬pa · b

⇔ {[ domain import/export and previous line imply pa · pb ≤ p(a u b):
pa · pb = pa · pb · (pa + pb) ≤ pa · pb · pc = p(pa · pb · c) ≤ p(a u b) ]}

pa · pb ≤ p(a u b) ∧ pa + pb ≤ pc ∧ pa · pb · c ≤ a u b ∧
pa · ¬pb · c ≤ ¬pb · a ∧ ¬pa · pb · c ≤ ¬pa · b

⇔ {[ pa + pb = pa · pb + pa · ¬pb + ¬pa · pb and distributivity ]}
pa · pb ≤ p(a u b) ∧ pa + pb ≤ pc ∧
(pa + pb) · c ≤ (a u b) + ¬pb · a + ¬pa · b

⇔ {[ expression for a u b given in the statement ]}
pa · pb ≤ p(a u b) ∧ pa + pb ≤ pc ∧ (pa + pb) · c ≤ a u b

⇔ {[ the proof above shows pa · pb ≤ p(a u b) ⇒ pa + pb = p(a u b) ]}
pa · pb ≤ p(a u b) ∧ p(a u b) ≤ pc ∧ p(a u b) · c ≤ a u b

⇔ {[ definition of v ]}
pa · pb ≤ p(a u b) ∧ c v a u b

Assume now pa · pb = 0 and consider any common lower bound c of a
and b w.r.t. ≤. By isotonicity of domain then pc ≤ pa and pc ≤ pb, hence
pc ≤ pa · pb = 0, so that c = 0 by full strictness of domain. Therefore,
a u b = 0 and the claim follows from the just derived formula for the
demonic meet by the assumption pa · pb = 0, Boolean algebra and (llp).

ut

3.2 Demonic Composition

Definition 3.6 Let a and b be elements of a domain semiring. The demonic
composition of a and b, denoted by a 2 b, is defined as a 2 b

∆
= (a → b) · a · b.

In the algebra of relations, a pair (s, t) belongs to a 2 b if and only if it belongs
to a · b and there is no possibility of reaching from s via a an element u that
does not belong to the domain of b. For example, with a

∆
= {(0, 0), (0, 1), (1, 2)}

and b
∆
= {(0, 0), (2, 3)}, one finds that a 2 b = {(1, 3)}; the pair (0, 0), which

belongs to a · b, does not belong to a 2 b, since (0, 1) ∈ a and 1 is not in the
domain of b. Note that we assign to 2 and · the same binding power.

A first consequence of the definition is

Lemma 3.7 p(a 2 b) = (a → b) · pa.
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PROOF.

p(a 2 b)

= {[ definition ]}
p((a → b) · a · b)

= {[ (loc) ]}
p((a → b) · a · pb)

= {[ (d1) twice and test propagation ]}
p((a → b) · a)

= {[ import/export ]}
(a → b) · pa ut

A fundamental property is shown in

Theorem 3.8 Demonic composition is associative.

PROOF.

(a 2 b) 2 c

= {[ definition of 2 ]}
(((a → b) · a · b → c)) · (a → b) · a · b · c

= {[ modus ponens ]}
(a · b → c) · (a → b) · a · b · c

= {[ currying ]}
(a → (b → c)) · (a → b) · a · b · c

= {[ weak distributivity ]}
(a → (b → c) · b) · a · b · c

= {[ (d1), test propagation with b, c, pc for a, b, p,
and domain absorption ]}

(a → (b → c) · b · c) · a · b · c
= {[ test propagation ]}

(a → (b → c) · b · c) · a · (b → c) · b · c
= {[ definition of 2 ]}

a 2(b 2 c) ut

Theorem 3.9 Demonic composition 2 preserves binary demonic joins in both
arguments and hence is v-isotone.
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PROOF. Left argument:

(a 2 c) t (b 2 c)

= {[ definitions and Lemma 3.7 ]}
(a → c) · pa · (b → c) · pb · ((a → c) · a · c + (b → c) · b · c)

= {[ distributivity, idempotence of tests and rearrangement ]}
(a → c) · (b → c) · pa · pb · (a + b) · c

= {[ antidistributivity (Lemma 2.14(d)) ]}
(a + b → c) · pa · pb · (a + b) · c

= {[ modus ponens (Lemma 2.14(g) ]}
(pa · pb · (a + b) → c) · pa · pb · (a + b) · c

= {[ definition ]}
((a t b) → c) · (a t b) · c

= {[ definition ]}
(a t b) 2 c.

Right argument:

(a 2 b) t (a 2 c)

= {[ definitions and Lemma 3.7 ]}
(a → b) · pa · (a → c) · pa · ((a → b) · a · b + (a → c) · a · c)

= {[ distributivity, idempotence of tests, Boolean algebra
and rearrangement ]}

(a → b) · (a → c) · pa · a · (b + c)

= {[ domain (d1) ]}
(a → b) · (a → c) · a · (b + c)

= {[ isotonicity and Boolean algebra ]}
(a → b) · (a → c) · (a → b + c) · a · (b + c)

= {[ domain absorption (Lemma 2.14(c)) twice ]}
(a → pb) · (a → pc) · (a → b + c) · a · (b + c)

= {[ conjunctivity (Lemma 2.14(f)) ]}
(a → pb · pc · (b + c)) · a · (b + c)

= {[ test propagation (Lemma 2.14(h)) ]}
(a → pb · pc · (b + c)) · a · pb · pc · (b + c)

= {[ definitions ]}
a 2(b t c). ut

Theorem 3.10 pa · pb = 0 ⇒ (a + b) 2 c = a 2 c + b 2 c.
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PROOF.

(a + b) 2 c

= {[ definitions ]}
(a + b → c) · (a + b) · c

= {[ antidistributivity (Lemma 2.14(d)) and distributivity ]}
(a → c) · (b → c) · a · c + (a → c) · (b → c) · b · c

= {[ commutativity of tests, and definitions ]}
(b → c) · (a 2 c) + (a → c) · (b 2 c).

Now, pa · pb = 0 implies pa ≤ ¬pb ≤ b → c and hence, by Lemma 3.7,

(b → c) · p(a 2 c) = (b → c) · pa · (a → c) = pa · (a → c) = p(a 2 c),

so that (b → c) · (a 2 c) = a 2 c by (llp). Symmetrically, (a → c) · (b 2 c) = b 2 c.
ut

For the next theorem we need a notion of determinacy [15].

Definition 3.11 We call a deterministic iff MD(a) holds, where

MD(a)
∆⇔ |a〉 ≤ |a]. (9)

This reflects a well-known characterization of determinacy that is used in
modal correspondence theory (see e.g. [29]).

We quote from [15]:

Lemma 3.12 All tests are deterministic. If a is deterministic and b ≤ a, then
b is deterministic as well.

Now we can show

Theorem 3.13 a deterministic ⇒ a 2 b = a · b.

PROOF.

a 2 b = a · b
⇔ {[ definition of 2 and (llp) ]}

p(a · b) ≤ a → b
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⇔ {[ (loc) and Definitions 2.10 and 2.13 ]}
|a〉pb ≤ |a]pb

⇐ {[ definition of MD (9) ]}
MD(a) ut

The following stronger notion (see [15]) entails MD(a), and so in (a) of the
above theorem also the premise CD(a) could be used.

Definition 3.14 Element a is domain-deterministic iff CD(a) holds, where

CD(a)
∆⇔ ∀(b : b ≤ a : b = pb · a) (characterization by domain).

In [15] the implication CD(a) ⇒ MD(a) was shown for the narrower setting
of MKAs with complete Boolean algebras as carriers. Here we show a quick
proof in MKA. Using the definitions and Boolean algebra we can transform
MD(a) equivalently into ∀(p :: p(a · p) · p(a · ¬p) = 0). Now, assuming CD(a),
we calculate

p(a · p) · p(a · ¬p) = 0

⇔ {[ import/export ]}
p(p(a · p) · a · ¬p) = 0

⇔ {[ strictness of domain ]}
p(a · p) · a · ¬p = 0

⇔ {[ by a · p ≤ a and CD(a) ]}
a · p · ¬p = 0

⇔ {[ Boolean algebra and strictness of · ]}
true.

4 Iteration: Modal Kleene and Omega Algebras

So far we have only given the semantics of loop-free programs. We now intro-
duce operators for describing iteration of program parts.
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4.1 Fixed Points

We recall a few basic facts about fixed points that will be used in the axiom-
atization of the iteration operators. First, we state a slight generalization of
the well-known Knaster/Tarski fixed point theorem.

Definition 4.1 Consider a partial order (M,≤) and a function f : M → M .
If the set of all fixed points of f has a least (greatest) element, this element is
denoted by µ(f) (ν(f)).

Theorem 4.2 Let (M,≤) be a partial order and f : M → M be ≤-isotone.

(a) If u ∈ M is the least pre-fixed point of f , i.e., if f(u) ≤ u ∧ f(x) ≤ x ⇒
u ≤ x then u = µf , i.e., u is also the least fixed point of f .

(b) Analogously, if the greatest post-fixed point of f exists then it is also the
greatest fixed point νf of f .

(c) If also g : M → M is isotone and satisfies f ≤ g, i.e., ∀(x :: f(x) ≤
g(x)), then also µf ≤ µg and νf ≤ νg, provided these elements exist.

(d) If (M,≤) is even a complete lattice then µ(f) and ν(f) exist and satisfy

µ(f) = (x : f(x) = x : x) = (x : f(x) ≤ x : x),

ν(f) =
⊔

(x : f(x) = x : x) =
⊔

(x : x ≤ f(x) : x).

In the case of a Boolean lattice, least and greatest fixed points can be related
via the notion of a dual function.

Definition 4.3 Let f be a function on a Boolean lattice. The dual function
of f , denoted f#, is defined by f#(x)

∆
= ¬f(¬x).

Lemma 4.4 Let f be a function on a Boolean lattice. If µ(f) exists then also
ν(f#) exists and ν(f#) = ¬µ(f). Likewise, if ν(f) exists then also µ(f#)
exists and µ(f#) = ¬ν(f).

4.2 Finite Iteration: Modal Kleene Algebras

While modal semirings suffice for some applications, others require an explicit
notion of iteration. This is achieved by extending idempotent semirings to
Kleene algebras.

Definition 4.5 A Kleene algebra [19] is a structure (K, ∗) such that K is an
idempotent semiring and the star ∗ satisfies, for a, b, c ∈ K, the unfold and
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induction laws

1 + a · a∗ ≤ a∗, (∗-1)

1 + a∗ · a ≤ a∗, (∗-2)

b + a · c ≤ c ⇒ a∗ · b ≤ c, (∗-3)

b + c · a ≤ c ⇒ b · a∗ ≤ c. (∗-4)

Therefore, a∗ is the least pre-fixed point and the least fixed point of the map-
pings λx . a · x + b and λx . x · a + b, and hence the star is isotone with respect
to the natural ordering.

Two important properties that follow from these axioms are the laws

b · a ≤ a · c ⇒ b∗ · a ≤ a · c∗, a · b ≤ c · a ⇒ a · b∗ ≤ c∗ · a. (10)

All our examples LAN, REL and PAT can be made into KAs by setting a∗
∆
=∑

i∈IN ai.

Definition 4.6 (a) A Kleene algebra with tests (KAT) [20] is a test semiring
(K, test(K)) such that K is a KA.

(b) If the underlying test semiring of a KAT K is a domain (codomain) semir-
ing, we speak of a KA with domain (codomain), briefly p-(q-)KA.

(c) Finally, a modal Kleene algebra (MKA) is a KAT in which the underlying
test semiring is modal.

Examples of MKAs are again LAN, REL and PAT.

In a KAT, for all p ∈ test(K) we have that p∗ = 1. Moreover, the angelic
semantics of a loop can be given as

while p do a
∆
= (p · a)∗ · ¬p.

This way, by the star induction axioms, while p do a is the least fixed point of
the function

λx . if p then a · x else skip.

Using the star induction axioms, one can show the following induction princi-
ple for the diamond operator in an MKA (cf. [11]):

|a〉p + q ≤ p ⇒ |a∗〉q ≤ p. (11)

Moreover we have (see again [11])

p · a · ¬p ≤ 0 ⇔ p · a∗ · ¬p ≤ 0. (12)
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4.3 Infinite Iteration: Modal Omega Algebras

We now introduce infinite iteration of an element and the notion of progressive
finiteness.

Definition 4.7 An omega algebra [7] is a structure (K, ω) such that K is a
KA and the infinite iteration aω of an element a satisfies the following unfold
and co-induction axioms.

aω ≤ a · aω, (13)

c ≤ a · c + b ⇒ c ≤ aω + a∗ · b, (14)

for all a, b, c ∈ K. A modal omega algebra is an omega algebra in which the
underlying KA is an MKA.

Consequently, aω is the greatest post-fixed point and the greatest fixed point
of λx . a · x, and hence the omega operator is isotone w.r.t the natural order.
Moreover, every omega algebra has the greatest element > = 1ω and for every
a the element aω is a vector, i.e., an element v satisfying v · > = >.

In the algebra of relations, the complement of aω is also known as the initial
part [30] of a. It characterizes the set of points s0 such that there is no infinite
chain s0, s1, s2, . . ., with (si, si+1) ∈ a, for all i ≥ 0. Since we do not assume
general complements to exist we will characterize this set in a different way.

Definition 4.8 An element a is said to be progressively finite [30] iff aω = 0.

In the algebra of relations, progressive finiteness of a relation R is the same
as well-foundedness of R̆ .

We now list some useful properties of infinite iteration.

Theorem 4.9 Let a and b be elements of an omega algebra.

(a) If b is progressively finite and a ≤ b then also a is progressively finite.
(b) In a modal omega algebra, ¬p(aω) · a is progressively finite.
(c) Let f(x)

∆
= a · x + b. If a is progressively finite, then f has a unique fixed

point, viz. a∗ · b [2].
(d) aω = a∗ · aω.

PROOF.

(a) Immediate from isotonicity of the omega operator.
(b) Set b

∆
= ¬p(aω) · a. Since b ≤ a we get bω ≤ aω and hence p(bω) ≤ p(aω).
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On the other hand, by (d2) and stability of domain

p(bω) = p(b · bω) = p(¬p(aω) · a · bω) ≤ p(¬p(aω)) = ¬p(aω).

So p(bω) ≤ p(aω) · ¬p(aω) = 0 and hence bω = 0.
(c) This is immediate, since the star and omega axioms imply µ(f) = a∗ · b

and ν(f) = µ(f) + aω.
(d) a∗ · aω = a∗ · a · aω = a · a∗ · aω, so that a∗ · aω ≤ aω by the co-induction

axiom (14) used with b = 0. Since also aω ≤ a∗ ·aω holds, equality follows.
ut

4.4 Iteration at the Test Level

We have already noted that p∗ = 1 for all tests p of a KAT. So, finite iteration
at the test level is not interesting. However, one can use an analogue of omega
iteration at the level of tests: If the test algebra of an MKA is complete, the
Knaster/Tarski theorem implies that for every element a the greatest fixed
point ν(|a〉) exists, since |a〉 is isotone. It turns out that ν(|a〉) is more suitable
for termination analysis than aω, as will be seen in the next section.

If the test algebra is not complete, ν(|a〉) may not exist. Instead, one can
axiomatize it, similarly to the omega operation, by [12]

ν(|a〉) ≤ |a〉 ν(|a〉), (15)

p ≤ |a〉p + q ⇒ p ≤ ν(|a〉) + |a∗〉q. (16)

In the sequel we will also use its dual:

Definition 4.10 Assume an MKA K such that ν(|a〉) exists for all elements
a. Then we set Tp(a)

∆
= ¬ν(|a〉) = µ(x :: a → x).

The second equation follows from Lemma 4.4, since any fixed point of λx . a →
x needs to be a test. By the correspondence with the modal box operator
mentioned in Section 2.4, Tp(a) = µ(|a]). In the propositional µ-calculus, this
is known as the halting predicate (see, e.g., [17]). It is easy to check that ¬p(aω)
is a fixed point of (x :: a → x). Hence,

Corollary 4.11 Assume an omega MKA such that ν(|a〉) exists for all ele-
ments a.

(a) Tp(a) ≤ ¬p(aω).
(b) Tp(a) · aω = 0.
(c) Tp(a) · a is progressively finite.
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PROOF. (a) is immediate from the least fixed point property of Tp(a), and
(b) follows from (a) by Boolean algebra and (d1).

For (c), by isotonicity of ω we get (Tp(a) · a)ω ≤ (¬p(aω) · a)ω = 0 using
Theorem 4.9(b). ut

We now determine the least and greatest fixed points of test-level recursions
that are analogous to star and omega iteration. To exhibit dualities, we state
the theorem in the notation of modal operators, avoiding test implication →.

Theorem 4.12 Assume an MKA K such that ν(|a〉) exists for all a ∈ K.

Let p be a test and set h(x)
∆
= |a〉px + p, k(x)

∆
= |a]px− p.

(a) x∈ test(K) ⇒ h(x) = ¬k(¬x).
(b) µ(h) = |a∗〉p.
(c) ν(h) = |a∗〉p + ν(|a〉).

(d) |a∗]pa ≤ ν(|a〉).
(e) µ(k) = |a∗]¬p− ν(|a〉).
(f) ν(k) = |a∗]¬p.

PROOF. Part (a) is clear.
For the remaining properties we note that h(x) ≤ 1 and k(x) ≤ 1 for any
x ∈ K. Hence, any fixed point of h or k is a test. Because the tests constitute
a Boolean algebra, one can consider h and k to be functions on the set of tests
for the purpose of calculating fixed points. That said, part (b) follows by a
straightforward calculation that shows p(a∗ · p) to be a fixed point of h and
by the induction law (11). Symmetrically, part (c) follows from (16). Next, by
part (a) h and k are dual in the sense of Definition 4.3. Therefore Lemma 4.4
gives parts (e) and (f).
For part (d), we first show for all q ∈ test(K) that pa · |a]q ≤ |a〉q; the proof
uses shunting, distributivity and Boolean algebra:

pa · |a]q ≤ |a〉q ⇔ pa ≤ |a〉q + |a〉¬q ⇔

pa ≤ |a〉(q + ¬q) ⇔ pa ≤ pa.

Now, we establish the claim by the coinduction law (16) showing that |a∗]pa is
expanded by |a〉; this employs star unfold, antidisjunctivity, compositionality
of box and the above derivation:

|a∗]pa = |1 + a · a∗]pa = pa · |a]|a∗]pa ≤ |a〉|a∗]pa.

ut
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4.5 Noethericity

We now reconsider the question whether a program admits infinite execution
sequences. To this end we abstract a notion of termination for modal semir-
ings from set-theoretic relations. A similar characterisation has been used, for
instance, in [16] for related structures. A set-theoretic relation R ⊆ A×A on a
set A is well-founded if there are no infinitely descending R-chains, that is, no
infinite chains x0, x1, . . . such that (xi+1, xi) ∈ R. It is Noetherian if there are
no infinitely ascending R-chains, i.e., no infinite chains x0, x1, . . . such that
(xi, xi+1) ∈ R. Thus R is not well-founded if there is a non-empty set P ⊆ A
(denoting the infinite chain) such that for all x ∈ P there exists some y ∈ P
with (y, x) ∈ R. Equivalently, therefore, P is contained in the image of P
under R, i.e., P ⊆ (P ; R)q. Consequently, if R is well-founded, then only the
empty set may satisfy this condition.

Abstracting to a modal semiring K we say that a is well-founded if

p ≤ 〈a|p ⇒ p ≤ 0 (17)

for all p ∈ test(K). Dually, a is Noetherian if for all p ∈ test(K),

p ≤ |a〉p ⇒ p ≤ 0. (18)

Note that by de Morgan duality, a is Noetherian iff, for all p ∈ test(K),

|a]p ≤ p ⇒ 1 ≤ p. (19)

Let us look at these definitions from another angle. According to the standard
definition, a relation R on a set A is well-founded iff every non-empty subset
of A has an R-minimal element. In a p-semiring K the minimal part of p ∈
test(K) w.r.t. some a ∈ K can algebraically be characterised as p− 〈a|p, i.e.,
as the set of points that have no a-predecessor in p. So, by contraposition, the
well-foundedness condition holds iff for all p ∈ test(K)

p− 〈a|p ≤ 0 ⇒ p ≤ 0,

which by simple Boolean algebra can be transformed into (17).

It is easy to prove some of the well-known properties of well-founded and
Noetherian relations in modal Kleene algebra [11]. First, 0 is the only Noethe-
rian test. Second, the property of being Noetherian is downward closed. Third,
every Noetherian element is irreflexive and non-dense, provided it is non-
trivial. Fourth, an element is Noetherian iff its transitive closure is, but no
reflexive transitive closure is Noetherian. Finally, Noethericity of a sum im-
plies Noethericity of its components, whereas the converse direction does not
hold in general.
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With the help of ν(|a〉) we can rephrase Noethericity more concisely as

ν(|a〉) = 0. (20)

As an immediate consequence of this we obtain

Corollary 4.13 Define, for fixed q ∈ test(K) and a ∈ K, the function f :
test(K) → test(K) by f(p) = q + |a〉p. If ν(|a〉) exists and a is Noetherian
then f has the unique fixed point |a∗〉q.

We now consider the relation between Noethericity and progressive finiteness.

Lemma 4.14 Every Noetherian element of a modal omega algebra K is pro-
gressively finite, but not conversely.

This is simply illustrated in LAN. Since there are no infinite words, aω = 0
for all a with ε 6∈ a. But for all a 6= 0, the operator |a〉 is the identity, and
so ν(|a〉) = 1 6= 0. This reflects that aω talks about actual infinity, whereas
ν(|a〉) captures potential infinity, and indeed every word in LAN can be iter-
ated indefinitely. Thus omega algebra does not capture the standard notion
of termination fully.

5 The Semantics of Nondeterministic Loops

5.1 Intuition and Notation

A general nondeterministic loop is best described by a graph of the form

GFED@ABC→ 1 b //

a
�� GFED@ABC2

It may “execute” a as long as the intermediate states remain in the domain of
a and it may exit if a state in the domain of b is reached. The domains of a and
b need not be disjoint. Since a may be nondeterministic, it can take a starting
state s to many successor states. If among these there exists a state outside
the domains of a and b (abnormal termination), then in the demonic view s
must be excluded from the domain of the loop semantics. Hence, in addition
to Tp(a), we introduce a test P(a, b) (P stands for proper) that characterizes
the states from which no abnormal termination is possible.
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We now define the corresponding semantic functions formally. Let a and b be
elements. The abbreviations f , ϕ, P(a, b), sν and sµ are defined as follows:

f(x)
∆
= a · x + b, sν

∆
= P(a, b) · ν(f),

ϕ(x)
∆
= (a → x) · f(x), sµ

∆
= P(a, b) · Tp(a) · µ(f),

P(a, b)
∆
= a∗ → ν(f),


(21)

where we know from Sections 4.2 and 4.3 that µ(f) = a∗ · b and ν(f) =
µ(f) + aω. The test for proper progress P(a, b) expresses that after finitely
iterating a, it is only possible to iterate a infinitely often or to reach b after
again finitely iterating a (infinite looping and proper termination are possible,
but not improper termination).

The element sµ, which we take as the semantics of the loop, is the restriction
of the angelic loop semantics a∗ · b to P(a, b) and Tp(a). Hence the domain of
sµ represents the set of states from which proper termination is guaranteed.

5.2 Properties of the Semantics

We want to show that sµ and sν are the least and greatest fixed points of ϕ,
respectively. We first deal with the greatest fixed point.

Theorem 5.1 ν(ϕ) = sν .

PROOF. We use Theorem 4.2(b) and show that sν is the greatest post-fixed
point of ϕ.

(1) All post-fixed points of ϕ are below sν .
x ≤ ϕ(x)

⇔ {[ definition of ϕ ]}
x ≤ (a → x) · f(x)

⇔ {[ Lemma 2.7 ]}
px ≤ a → x ∧ x ≤ f(x)

⇒ {[ greatest fixed point of f ]}
px ≤ a → x ∧ x ≤ ν(f)

⇔ {[ domain absorption (Lemma 2.14(c)), (8) and (12) ]}
px ≤ a∗ → x ∧ x ≤ ν(f)

⇒ {[ isotonicity of → in its right argument ]}
px ≤ a∗ → ν(f) ∧ x ≤ ν(f)
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⇔ {[ Lemma 2.7 ]}
x ≤ (a∗ → ν(f)) · ν(f)

⇔ {[ definition of sν ]}
x ≤ sν

(2) sν is a post-fixed point of ϕ.
ϕ(sν)

= {[ definition of ϕ and sν ]}(
a →

(
P(a, b) · ν(f)

))
·
(
a · P(a, b) · ν(f) + b

)
= {[ test propagation (Lemma 2.14(h)) ]}(

a →
(
P(a, b) · ν(f)

))
·
(
a · ν(f) + b

)
= {[ definition of f and f(ν(f)) = ν(f) ]}(

a →
(
P(a, b) · ν(f)

))
· ν(f)

= {[ conjunctivity (Lemma 2.14(f)) ]}(
a → P(a, b)

)
·
(
a → ν(f)

)
· ν(f)

= {[ definition of P(a, b) and currying (Lemma 2.14(e)) ]}
(a · a∗ → ν(f)) · (a → ν(f)) · ν(f)

= {[ a · a∗ → ν(f) ≤ a → ν(f) by left antitonicity of → ]}
(a · a∗ → ν(f)) · ν(f)

≥ {[ → is antitone in its left argument ]}
(a∗ → ν(f)) · ν(f)

= {[ definition of sν and definition of P(a, b) ]}
sν ut

Theorem 5.2 (a) P(a, b) · Tp(a) ≤ p(µ(f)).
(b) P(a, b) ≤ p(ν(f)).
(c) psµ = P(a, b) · Tp(a) and psν = P(a, b).
(d) sµ = Tp(a) · sν.

PROOF.

(a) We show Tp(a) ≤ p(µ(f)) + ¬P(a, b), which is equivalent to the claim
by shunting.

p(µ(f)) + ¬P(a, b)

= {[ definitions of f and P(a, b) (21), and that of → (2.13) ]}
p(a∗ · b) + p(a∗ · ¬p(ν(f))

= {[ a∗ · a∗ = a∗, (loc) and ν(f) = aω + a∗ · b ]}
p(a∗ · p(a∗ · b)) + p(a∗ · ¬p(aω + a∗ · b))
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= {[ additivity of domain, distributivity and de Morgan ]}
p(a∗ · (p(a∗ · b) + ¬p(aω) · ¬p(a∗ · b)))

= {[ Boolean algebra ]}
p(a∗ · (p(a∗ · b) + ¬p(aω)))

≥ {[ isotonicity ]}
p(a∗ · ¬p(aω))

≥ {[ 1 ≤ a∗ and isotonicity ]}
p(¬p(aω))

≥ {[ stability of domain and Corollary 4.11(a) ]}
Tp(a)

(b) We show 1 ≤ p(ν(f)) + ¬P(a, b), which is equivalent, by shunting.
p(ν(f)) + ¬P(a, b)

= {[ (21), Definition 2.13 and ν(f) = aω + a∗ · b ]}
p(aω + a∗ · b) + p(a∗ · ¬p(aω + a∗ · b))

= {[ a∗ · a∗ = a∗, Theorem 4.9(d), (loc) and distributivity ]}
p(a∗ · p(aω + a∗ · b)) + p(a∗ · ¬p(aω + a∗ · b))

= {[ additivity of domain and distributivity ]}
p(a∗ · (p(aω + a∗ · b) + ¬p(aω + a∗ · b)))

= {[ Boolean algebra ]}
p(a∗ · 1)

= {[ p(a∗) ≥ p1 = 1 ]}
1

(c) We give the proof for sµ. That for sν is similar, except that it uses part (b)
instead of (a).

psµ

= {[ (21) ]}
p(P(a, b) · Tp(a) · a∗ · b)

= {[ import/export ]}
P(a, b) · Tp(a) · p(a∗ · b)

= {[ definition of f , (a) and Boolean algebra ]}
P(a, b) · Tp(a)

(d) Tp(a) · sν

= {[ definition of sν (21) ]}
Tp(a) · P(a, b) · ν(f)

= {[ ν(f) = aω + a∗ · b ]}
Tp(a) · P(a, b) · (aω + a∗ · b)
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= {[ Corollary 4.11(b) ]}
Tp(a) · P(a, b) · a∗ · b

= {[ definition of sµ and f (21) ]}
sµ ut

In the following theorem, we show that sµ is a fixed point of ϕ.

Theorem 5.3 ϕ(sµ) = sµ.

PROOF.

ϕ(sµ)

= {[ Theorem 5.2(d) ]}
ϕ(Tp(a) · sν)

= {[ definition of ϕ (21) ]}
(a → Tp(a) · sν) · (a · Tp(a) · sν + b)

= {[ test propagation (Lemma 2.14(h)) ]}
(a → Tp(a) · sν) · (a · sν + b)

= {[ conjunctivity (Lemma 2.14(f)) ]}
(a → Tp(a)) · (a → sν) · (a · sν + b)

= {[ Definition 4.10, definition of ϕ (21) and Theorem 5.1 ]}
Tp(a) · sν

= {[ Theorem 5.2(d) ]}
sµ ut

And now, we determine the domain of µ(ϕ).

Theorem 5.4 p(µ(ϕ)) = Tp(a) · P(a, b).

PROOF.

p(µ(ϕ))

= {[ definition of ϕ (21) ]}
p((a → p(µ(ϕ))) · (a · µ(ϕ) + b))

= {[ domain import/export and (loc) ]}
(a → p(µ(ϕ))) · p(a · p(µ(ϕ)) + b)
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= {[ domain import/export ]}
p((a → p(µ(ϕ))) · (a · p(µ(ϕ)) + b))

= {[ test propagation (Lemma 2.14(h)) ]}
p((a → p(µ(ϕ))) · (a + b))

= {[ domain import/export ]}
(a → p(µ(ϕ))) · p(a + b)

Hence p(µ(ϕ)) is a fixed point of ϕp(x)
∆
= (a → x) · p(a + b) = (|a]px) · p(a + b).

By Theorem 4.12(e) and Definition 4.10, µ(ϕp) = Tp(a) · (a∗ → a + b). Hence,
by the derivation above, Theorem 5.3, Theorem 5.2(c) and isotonicity (using
a∗ → ν(f) ≤ a∗ → a + b), we get

Tp(a)·(a∗ → a+b) ≤ p(µ(ϕ)) ≤ psµ = P(a, b)·Tp(a) ≤ Tp(a)·(a∗ → a+b),

so that all expressions are equal and thus p(µ(ϕ)) = P(a, b) · Tp(a). ut

The following theorem uniquely characterizes the least fixed point of ϕ by a
simple condition and shows that sµ is the least fixed point of ϕ. It also shows
that a similar condition cannot be given for the greatest fixed point, the reason
being that other elements can be fixed points and have a domain equal to that
of the greatest fixed point.

Theorem 5.5 Recall Equations (21). For all elements a and c,

(a) c = µ(ϕ) ⇔ ϕ(c) = c ∧ pc ≤ Tp(a),
(b) c = ν(ϕ) ⇒ ϕ(c) = c ∧ P(a, b) ≤ pc, and the reverse implication does

not hold,
(c) µ(ϕ) = sµ.

PROOF.

(a) (⇒) Assume c = µ(ϕ). The property ϕ(c) = c then obviously follows.
From Theorem 5.3 and Theorem 4.2(a), we get c ≤ sµ and hence, by
Theorem 5.2(c), pc ≤ psµ = P(a, b) · Tp(a) ≤ Tp(a).

(⇐) Assume ϕ(c) = c and pc ≤ Tp(a). Theorems 5.4, 5.1 and 5.2(c) imply
Tp(a) · P(a, b) ≤ pc ≤ P(a, b). Hence pc = Tp(a) · P(a, b). This is used in
the following derivation.

c

= {[ definition of ϕ (21) ]}
(a → c) · (a · c + b)

= {[ domain absorption (Lemma 2.14(c)) ]}
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(a → Tp(a) · P(a, b)) · (a · c + b)

= {[ conjunctivity (Lemma 2.14(f)) ]}
(a → Tp(a)) · (a → P(a, b)) · (a · c + b)

= {[ Definition 4.10 ]}
Tp(a) · (a → P(a, b)) · (a · c + b)

= {[ distributivity ]}
Tp(a) · (a → P(a, b)) · a · c + Tp(a) · (a → P(a, b)) · b

By Corollary 4.11(c) and Theorem 4.9(a), Tp(a) · (a → P(a, b)) · a is
progressively finite. Invoking Corollary 4.9(c) shows that the function

(x :: Tp(a) · (a → P(a, b)) · a · x + Tp(a) · (a → P(a, b)) · b)

has a unique fixed point. Thus all elements c such that ϕ(c) = c and
pc ≤ Tp(a) are equal. But µ(ϕ) is such an element, as we have shown
above (part ⇒). We conclude that c = µ(ϕ).

(b) Assume c = ν(ϕ). The property ϕ(c) = c then follows. From Theorem 5.1,
we get c = ν(ϕ) = sν and hence, by Theorem 5.2(c), pc = p(sν) = P(a, b).

The reverse implication does not hold, as the following counter-example
shows. Take ϕ(x)

∆
= (1 → x) · (x + 1) (i.e., a = 1 and b = 1 in (21). It

is easy to verify that 1 is a fixed point of ϕ and that > is the greatest
fixed point. Also, P(a, b) = 1 ≤ >. Both c

∆
= 1 and c

∆
= > satisfy

ϕ(c) = c ∧ P(a, b) ≤ pc, but only > is the greatest fixed point.
(c) By Theorem 5.3, sµ = ϕ(sµ). By Theorem 5.2(c), psµ ≤ Tp(a). Now the

claim is a consequence of part (a) of this theorem. ut

Lemma 5.6 If pa · pb = 0, then ϕ(x) = a 2 x u b.

PROOF.

a 2 x u b

= {[ definition of 2 (Definition 3.6) ]}
(a → x) · a · x u b

= {[ Theorem 3.5(c) ]}
(a → x) · a · x + b

= {[ (a → x) + ¬(a → x) = 1 and distributivity ]}
(a → x) · a · x + (a → x) · b + ¬(a → x) · b

= {[ ¬(a → x) · b = p(a · ¬px) · b ≤ pa · b = 0 and distributivity ]}
(a → x) · (a · x + b)

= {[ definition of ϕ ]}
ϕ(x) ut
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Lemma 5.6 justifies why we are talking about a demonic star operator.

5.3 Relating Angelic and Demonic Semantics

In the sequel, we will show that the element sµ is the greatest fixed point with
respect to v of the function ϕ (Equations (21)). But first, we show

Lemma 5.7 The function ϕ is isotonic wrt v.

PROOF. Assume x v y. First, using domain import/export, (loc) and iso-
tonicity, we get

pϕ(y) ≤ pϕ(x) ⇔ (a → y) · p(a · py + b) ≤ (a → x) · p(a · px + b) ⇐ py ≤ px.

Second,

pϕ(y) · ϕ(x)

= {[ domain import/export ]}
(a → y) · p(a · y + b) · (a → x) · (a · x + b)

≤ {[ isotonicity ]}
(a → y) · (a · x + b)

= {[ test propagation (Lemma 2.14(h)) ]}
(a → y) · (a · py · x + b)

≤ {[ hypothesis py · x ≤ y ]}
(a → y) · (a · y + b)

= {[ definition of ϕ ]}
ϕ(y) ut

Now we show the main result of this section.

Theorem 5.8 The element sµ (Equations (21)) is the v-greatest fixed point
of ϕ, that is, sµ = νv(ϕ).

PROOF. Let w be an arbitrary fixed point of ϕ. Using Theorem 5.5(c), the
definition of sµ (21), and Theorems 5.2(b,d) and 5.1, we obtain

sµ = psµ · sµ ≤ psµ · w ≤ psµ · ν(ϕ) ≤ Tp(a) · sν = sµ,

and hence w v sµ. ut
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In other words, the least fixed point of ϕ wrt ≤ is equal to the greatest fixed
point of the same function ϕ wrt v. Indeed, the refinement relation w v sµ

between an arbitrary fixed point w of ϕ and sµ is special in that the restriction
of w to psµ fully coincides with sµ, i.e., there is no reduction of nondeterminacy.
This holds because the domain of sµ is below Tp(a) and hence the restriction
to it excludes all the infinite behaviour but nothing else, so that the full finite
behaviour as given by sµ remains.

6 Application

In Mills’s approach, the semantics w of a deterministic loop do g→ C od is
given as the least fixed point (wrt ≤) of the function

wgc(x)
∆
= g · c · x + ¬g,

where the test g is the semantics of the loop guard g and the element c is the
semantics of the loop body C.

Lemma 6.1 If the loop body c is deterministic, then

wgc(x) = (g · c → x) · (g · c · x + ¬g) = g 2 c 2 x u ¬g.

PROOF. First we note that by Lemma 3.12 also g · c is deterministic. Next,
by the definitions, Boolean algebra and (d2),

¬g ≤ g · c → x. (22)

Now, the first claimed equation is established by (llp) if we can show that
p(wgc(x)) ≤ g · c → x. This holds, since

p(wgc(x)) ≤ g · c → x

⇔ {[ definitions, distributivity and stability ]}
p(g · c · x) + ¬g ≤ g · c → x

⇔ {[ (loc) and join ]}
p(g · c · px) ≤ g · c → x ∧ ¬g ≤ g · c → x

⇔ {[ definitions and (22) ]}
|g · c〉px ≤ |g · c]px

⇔ {[ determinacy of g · c ]}
true

For the second claimed equation we calculate
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(g · c → x) · (g · c · x + ¬g)

= {[ distributivity ]}
(g · c → x) · g · c · x + (g · c → x) · ¬g

= {[ definition of 2 and (22) ]}
(g · c) 2 x + ¬g

= {[ Theorem 3.5(c), since p((g · c) 2 x) ≤ g
by Lemma 3.7 and import/export ]}

(g · c) 2 x u ¬g

= {[ Lemma 3.12, Theorem 3.13 and Theorem 3.8 ]}
g 2 c 2 x u ¬g ut

Hence, in this case, the demonic and angelic semantics coincide, as expected.
Moreover, under mild additional assumptions on the underlying KA, the se-
mantics of the loop is a deterministic element as well [15].

Calculating the semantics of a loop is difficult, but showing the correctness of
any candidate element is much easier. For deterministic programs, Mills [22,23]
has described a checking method known as the while statement verification
rule. In a nondeterministic context, the abstraction is calculated by considering
the worst behavior of the program (demonic semantics) [33]. Given a loop
condition and a loop body, Theorem 5.5 (with a

∆
= g · c and b

∆
= ¬g; notice

that pa · pb = 0) can be used to verify if an element w is indeed the semantics
of the loop.

The following example is rather contrived, but it is simple and fully illustrates
the various cases that may happen. Consider the following loop, where the
variable n ranges over the set of integers [10,34]:

Example 6.2 Consider the program

do n > 0 → if n = 1 → n := 1 n = 1 → n := −3
n = 3 → n := 2 n = 3 → n := −1
n ≥ 4 → n := n−4

fi
od

Notice that all n > 0 such that n mod 4 = 1 may lead to termination with a
final value n′ = −3, but may also lead to an infinite loop via the value n = 1;
therefore these initial values of n do not belong to the domain of the element
w that is the demonic semantics of the loop. Note also that all n > 0 such
that n mod 4 = 3 may lead to termination with a final value n′ = −1, but
may also lead to a value n = 2, for which the loop body is not defined (by the
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semantics of if fi); these n do not belong to the domain of w. Because they
also lead to n = 2, all n > 0 such that n mod 4 = 2 do not belong to the
domain of w.

The semantics of the loop guard in the concrete MKA REL is given by

g = {n > 0 ∧ n′ = n} (whence ¬g = {n ≤ 0 ∧ n′ = n}).

(For readability reasons, for any predicate P , instead of {(n, n′) | P (n, n′)} we
simply write {P (n, n′)}.) The semantics of the loop body is

c = {n = 1 ∧ n′ = n} 2({n′ = 1} t {n′ = −3})

u {n = 3 ∧ n′ = n} 2({n′ = 2} t {n′ = −1})

u {n ≥ 4 ∧ n′ = n} 2 {n′ = n− 4}

= {(n = 1 ∧ (n′ = 1 ∨ n′ = −3)

∨ (n = 3 ∧ (n′ = 2 ∨ n′ = −1)

∨ (n ≥ 4 ∧ n′ = n− 4)}.

By Lemma 3.12 and Theorem 3.13, g 2 c = g · c = c. Using Theorem 5.5(a),
we show that the semantics of the loop is

w
∆
= {(n ≤ 0 ∧ n′ = n) ∨ (n > 0 ∧ n mod 4 = 0 ∧ n′ = 0)}.

The condition ϕ(w) = w of Theorem 5.5(a) follows from straightforward cal-
culations. The second condition pw ≤ Tp(g · c) can be established informally
by noting that the domain of w is {n ≤ 0 ∨ n mod 4 = 0}, and that there is
no infinite sequence by g · c for any n in the domain of w.

A more satisfactory way to show pw ≤ Tp(g ·c) is to calculate Tp(g ·c). However,
because Tp(g · c) characterizes the domain of guaranteed termination of the
associated loop, there is no systematic way to compute it (this would solve
the halting problem). To demonstrate termination of the loop from every
state in the domain of w, classical proofs based on variant functions or well-
founded sets could be given. But formal arguments based on the definition of
Tp (Definition 4.10) can also be used [10]. The argument in [10] is in fact based
on the concept of initial part, but since paω = ν(|a〉) in REL, the argument
can be adapted to use Tp.

In this example, Theorem 5.5 was used to verify that the guessed semantics
w of the loop was correct, given the semantics g of the loop guard and c of
the loop body. The theorem can also be used in the other direction. If we are
given a specification w, we can guess g and c, and then apply Theorem 5.5
to verify the correctness of the guess. If it is correct, then a loop of the form
do g→ C od, where C is an implementation of c, is correct with respect to w.
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7 Conclusion

The paper is another larger case study in applying the novel framework of
modal Kleene algebra [13].

It has shown that the relatively strong assumption of a complete Boolean
algebra as the overall carrier of the algebra can be replaced by the much
weaker assumption of a complete Boolean algebra of tests. This provides ad-
ditional gain. In the predecessor paper [14], the proof of Theorem 5.8 was
non-constructive in that it simply used existence of a least upper bound. This
bound need not exist in the MKA setting, and so a more thorough analysis of
the structure of the fixed points of the semantic ϕ became necessary, leading
to the explicit expression for the greatest fixed point of ϕ that was not given
in the earlier paper.

Besides this, the modal view exhibits the dualites involved more clearly than
the pure Kleene view; this is most evident in the statement of Theorem 4.12.

Also, once again it has turned out that, despite its simple axiomatization, the
calculational properties of modal Kleene algebra are very rich and pleasing.
Nevertheless, special-purpose abbreviations, like the test implication operator
→, can bring substantial further gain in clarity and concision.

We are convinced that modal Kleene algebra is an easy-to-use formal tool that
will have many further applications.
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[14] J. Desharnais, B. Möller, and F. Tchier. Kleene under a demonic star. In T. Rus,
editor, Algebraic Methodology and Software Technology, volume 1816 of LNCS,
pages 355–370. Springer, 2000.
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