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Abstract
This paper presents an executable rewriting logic semantics of K-
Scheme, a dialect of Scheme based (partially) on the informal defi-
nition given in the R5RS report (Kelsey et al. 1998). The presented
semantics follows the K language definitional style (Roşu 2005 and
2006) and is a pure rewriting logic specification (Meseguer 1992)
containing 772 equations and 1 rewrite rule, so it can also be re-
garded as an algebraic denotational specification with an initial
model semantics. Rewriting logic specifications can be executed on
common (context-insensitive) rewrite engines, provided that equa-
tions are oriented into rewrite rules, typically from left-to-right.
While in theory rewriting logic specifications can let certain behav-
iors underspecified, thus allowing more models, in practice they
need to completely specify all the desired behaviors if one wants
to use their associated rewrite systems as “interpreters”, or “imple-
mentations”. To become executable, K-Scheme overspecifies cer-
tain features left undefined on purpose in R5RS. In spite of over-
specifying for executability reasons, the rewriting logic semantics
in this paper is the most complete formal definition of a language
in the Scheme family that we are aware of, in the sense that it pro-
vides definitions for more Scheme language features than any other
similar attempts. The presented executable definition of K-Scheme
can serve as a platform for experimentation with variants and ex-
tensions of Scheme, for example concurrency. The Maude system is
used in this paper, but other rewrite engines could have been used as
well. Even though, on paper, K rewrite-based definitions tend to be
as compact and high-level as reduction-based definitions with eval-
uation contexts, their complete translation in Maude as executable
specifications is rather verbose and low-level. An automated trans-
lator from K to Maude is under development, which will reduce
the size of definitions following the K style several times and will
certainly increase their readability. The complete Maude specifi-
cation is public, together with a web-based interface to “execute”
K-Scheme programs without having to download Maude.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal definitions, design, theory.

Keywords Semantics, rewriting, Scheme.
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1. Introduction
Scheme is a general purpose programming language with a uni-
fied handling of data and code. It also has a powerful macro sys-
tem, using pattern matching, to express syntax transformations.
The Revised5 Report on the Algorithmic Language Scheme (R5RS
(Kelsey et al. 1998)) gives a thorough, but informal description of
the language, as well as a partial denotational semantics. The de-
notational semantics in (Kelsey et al. 1998) is missing definitions
of important language features, such as definitions of eval and
dynamic-wind, it does not define the “top level” used through-
out the informal specification, and, most importantly, it is not exe-
cutable. Executability of a language definition gives one confidence
in the appropriateness of the definition. Indeed, one can execute
hundreds of programs exercising various language features or com-
binations of features, and thus find and fix errors in the definition.
Many subtle errors were detected and fixed in our subsequent defi-
nition due to its executability.

Recent attempts have been made at giving formal, opera-
tional/executable semantics to fragments of Scheme (Matthews and
Findler 2005; d’Amorim and Rosu 2005). Unfortunately, the par-
tial definition in (d’Amorim and Rosu 2005) does not use a proper
representation for vectors and lists, so it cannot be extended to the
complete Scheme, and neither (Matthews and Findler 2005) nor
(d’Amorim and Rosu 2005) gives definitions for quasiquote or
macros. Furthermore, neither uses a unified representation of data
and code, which is one of the crucial defining aspects of Scheme.
These approaches, their limitations and comparisons with our cur-
rent definition are further discussed in Section 4.

In this paper we introduce a novel formal executable defini-
tion of K-Scheme, a dialect of Scheme based (partially) on R5RS.
Note that we use the term K-Scheme to interchangeably refer to
the definition of K-Scheme, presented here in Maude, and the
dialect of Scheme defined by our definition. K-Scheme uses a
proper representation for lists and vectors, a unified representa-
tion of code and data, and defines quasiquote and a large portion
of define-syntax macros. This definition uses the K definitional
technique (Roşu 2005 and 2006) within rewriting logic (Meseguer
1992). K is a language definitional framework consisting of the K-
technique, based on a first-order representation of computations as
lists or stacks of “computational tasks”, and of the K-notation, a
domain-specific notation within rewriting logic that eases under-
standing and defining programming languages. Rewriting logic is
a unified logic for concurrency that extends equational logic with
transitions; we mostly use the equational fragment of rewriting
logic in this paper. One rule is used in order to support unspec-
ified order of evaluation for procedure application forms. One of
the driving goals of K-Scheme has been to show the viability of K
for defining complex, real world languages, like Scheme. Scheme
was chosen particularly for its meta-programming facilities, which
provide a strong test for K. We chose to implement this definition
directly in Maude (Clavel et al. 2002) using the K-style because,
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currently, there is no automatic translator from the K notation to
Maude. In K notation the definition would be far more high level.
This is no different than the way one would use Haskell, for exam-
ple, to capture a big-step, small-step, or a context reduction defini-
tion. A hasty or semantics reluctant reader may take our executable
definition as an “implementation of Scheme in Maude” because
it is quite efficiently executable, but in reality the Maude defini-
tion of K-Scheme is nothing but an initial model. The resulting
perceived “implementation” comes as a bonus. Admittedly some
features of R5RS which are under-specified (e.g., the behavior of
eqv?) are specified in this definition, so it is more proper to say
that K-Scheme defines a language derived from Scheme in which
points of ambiguity, which interfere with executability, have been
made unambiguous. Again, we also refer to this derived language
as K-Scheme. In the future, however, we intend to address these
shortcomings; we do not consider K-Scheme a finished project.

Currently, K-Scheme consists of 772 Maude equations and 1
rule, 192 of them for define-syntax macros and 575 for the
core of the language (and a few built-in procedures). We define 60
features of Scheme, using 310 auxiliary operators and 2152 lines
of Maude code; 374 lines of code, however, define aspects of the K
framework also common to other language definitions, and simple
helping operations. Also, we note that many features of Scheme for
which we give Maude code definitions could be written as Scheme
macros (e.g., let and cond), but we did not follow that approach.

The complete Maude definition of K-Scheme can be found on
K-Scheme’s webpage at (Meredith et al.), together with a web
interface allowing one to “execute” programs directly within K-
Scheme’s definition, using Maude’s capability to execute rewriting
logic specifications. The main limitations of K-Scheme at this point
are an incomplete standard library and the support of only integers
among the numeric types. These, as well as other implementation-
specific features of Scheme, can be added modularly (i.e., without
having to modify the definitions of the existing features) and will
be added eventually. Nevertheless, this is the most complete formal
definition of a Scheme-like language of which we are aware. In
particular we believe we are first to give formal definitions to the
operations of quasiquote, unquote, unquote-splicing, and a
partial definition of define-syntax.

On Rewriting Logic Semantics and K. This paper is part of the
rewriting logic semantics (RLS) project (see (Meseguer and Roşu
2007, 2004) and the references there). The broad goal of the project
is to develop a tool-supported computational logic framework for
modular programming language design, semantics, formal analy-
sis and implementation, based on rewriting logic (Meseguer 1992).
It has been shown in (Şerbănuţă et al. 2007) that conventional
definitional styles, such as big-step (Kahn 1987) and small-step
SOS (Plotkin 1981), MSOS (Mosses 2004), reduction semantics
with evaluation contexts (Wright and Felleisen 1994), the chemi-
cal abstract machine (Berry and Boudol 1992), and continuation-
based semantics, can all be faithfully captured, in the sense of in-
tended computational granularity, as rewrite logic theories. There-
fore, rewriting logic can be indeed used as an ecumenical frame-
work for language definition using any of the above-mentioned
styles, inheriting all their advantages and disadvantages.

K (Roşu 2005 and 2006) is an attempt to optimize the use of
rewriting logic for language definitions without obeying any of
the styles above; it is, though, closest in spirit to continuation-
based semantics, in that it maintains the current computation as a
special structure that can be manipulated like any other data-type,
in particular altered. The K technique uses a subset of rewriting
logic and can be easily supported by other frameworks, for example
by functional programming systems; however, in that case one
would use K for the sole purpose of implementing interpreters.

2. Rewriting Logic Semantics
This section provides a brief introduction to term rewriting, rewrit-
ing logic, and the use of rewriting logic in defining the semantics
of programming languages. Term rewriting is a standard com-
putational model supported by many systems; rewriting logic
(Meseguer 1992; Martı́-Oliet and Meseguer 2002) organizes term
rewriting modulo equations as a complete logic and serves as a
foundation for programming language semantics (Meseguer and
Roşu 2004, 2006, 2007). Continuation-based rewriting logic se-
mantics, the form of rewriting logic semantics adopted in this pa-
per, provides explicit representations of control context which can
be used in the definitions of language features that manipulate this
context, such as continuations, exceptions, or jumps.

2.1 Term Rewriting
Term rewriting is a method of computation that works by progres-
sively changing (rewriting) a term. This rewriting process is defined
by a number of rules – potentially containing variables – which are
each of the form: l → r. One step of rewriting is performed by
first finding a rule that matches either the entire term or a sub-term.
This is done by finding a substitution, θ, from variables to terms
such that the left-hand side of the rule, l, matches part or all of the
current term when the variables in l are replaced according to the
substitution. The matched sub-term is then replaced by the result of
applying the substitution to the right-hand side of the rule, r. Thus,
the part of the current term matching θ(l) is replaced by θ(r). The
rewriting process continues as long as it is possible to find a sub-
term, rule, and substitution such that θ(l) matches the sub-term.
When no matching sub-terms are found, the rewriting process ter-
minates, with the final term being the result of the computation.
Rewriting, like other methods of computation, may not terminate.

There exist a plethora of term rewriting engines, including ASF
(van den Brand et al. 2002), Elan (Borovansky et al. 1998), Maude
(Clavel et al. 2002), OBJ (Goguen et al. 2000), Stratego (Visser
2003), Tom (Kirchner et al. 2005), and others. Rewriting is also a
fundamental part of existing languages and theorem provers. Term
rewriting is inherently parallel, since non-overlapping parts of a
term can be rewritten at the same time, and thus fits well with
current trends in architecture and systems.

2.2 Rewriting Logic
Rewriting logic is a computational logic built upon equational logic
which provides support for concurrency. In equational logic, a num-
ber of sorts (types) and equations are defined. The equations spec-
ify which terms are considered to be equal. All equal terms can
then be seen as members of the same equivalence class of terms, a
concept similar to that from the λ calculus where λ terms can be
grouped into equivalence classes based on relations such as α and
β equivalence. Rewriting logic provides rules in addition to equa-
tions, used to transition between equivalence classes of terms. This
allows for concurrency, where different orders of evaluation could
lead to non-equivalent results, such as in the case of data races. The
distinction between rules and equations is crucial for formal analy-
sis, since terms which are equal according to equational deduction
can all be collapsed into the same analysis state. Rewriting logic
is connected to term rewriting in that all the equations and rules of
rewriting logic, of the form l = r and l ⇒ r, respectively, can be
transformed into term rewriting rules by orienting them properly
(necessary because equations can be used for deduction in either
direction), transforming both into l → r. This provides a means of
taking a definition in rewriting logic and a term and ”executing” it.

2.3 Maude: A Rewriting Logic System
In this paper we discuss a rewrite logic definition of K-Scheme us-
ing Maude (Clavel et al. 2002), a high-performance rewriting logic
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system. In Maude, equations are defined as eq l = r, while rules
are defined as rl l => r (the => symbolizing a one-way transi-
tion, versus an equality). Conditions may be added to both equa-
tions and rules, with conditional equations represented as ceq l =
r if c and conditional rules represented as crl l => r if c.
Terms, such as l, r, and c above, are formed from operations, de-
fined using the keyword op, and from variables, declared using the
keyword var; by convention, operator names start with lowercase
letters or symbols, while variable names start with uppercase let-
ters. Equations and rules can be used directly to execute a program
based on a rewriting logic definition.

Maude provides several capabilities beyond standard equations
and rules which make it useful for defining languages and perform-
ing formal analysis of programs. Maude allows commutative and
associative operations with identity elements, allowing straight-
forward definitions of language features which make heavy use of
sets and lists, such as sets of program state information and lists
of computational tasks. Maude also provides built-in support (not
explored in this paper) for model checking and breadth-first state
space exploration, using the rules defined in the semantics to in-
dicate competing tasks (memory accesses, lock acquisition, etc)
which can split the state space.

2.4 K: A Computation-based Rewriting Logic Semantics
K (Roşu 2005 and 2006) is a rewriting logic semantics framework
consisting of a technique and a specialized notation, to define
programming languages as rewriting logic theories. In this paper,
we use the K technique to define K-Scheme in Maude; the reader
interested in the K notation, as well as in further details regarding
the K technique, is referred to (Roşu 2005 and 2006). By K, we
understand the K definitional technique within rewriting logic.

In K, the current program is represented as a potentially nested
“soup”, (or multi-set), of terms representing the current computa-
tion, memory, global definitions, etc. Information stored in the state
can be nested, allowing logically related information to be grouped
and manipulated as a whole. The most important piece of informa-
tion is the Computation, wrapped by the operator k, which is a
first-order representation of the current computation, made up of a
list of computational tasks separated by ->. The computation can
be seen as a stack, with the current computational task at the left
and the remainder (continuation) of the computation to the right.
This stack, along with other state components, can be saved and re-
stored later, allowing complex control structures to be defined. For
example, if in a certain definitional context where the remaining
computation is represented by K one wants to schedule for pro-
cessing/evaluating expression E, all one needs to do is replace the
current computation in the state configuration by E -> K. After E
evaluates to value V the computation will be V -> K.

Lists, used frequently in K, and Maude definitions in general,
are defined in Maude as associative operations with identity ele-
ments. An example is ValueList:

sort ValueList .
subsort Value < ValueList .
op nill : -> ValueList .
op _,_ : ValueList ValueList -> ValueList

[assoc id: nill] .

Here, ValueList can be seen as a new “type”, or sort; Value is
declared to be a subsort, meaning that a Value can be treated as a
(trivial, one element) ValueList. nill is declared as an operation
with no arguments, also called a constant, of result sort ValueList,
and is made the identity of the list formation operation, , , which
allows us to assume that the list always has a tail (since we can
always add nill to the end of the list). List formation is associative,
allowing us to arbitrarily group elements in the list, but is not
commutative, since order is important.

Multisets are defined similarly in Maude, but are also commu-
tative. An example is Env, which represents environments:

sort Env .
op empty : -> Env .
op [_,_] : Name Location -> Env .
op __ : Env Env -> Env [assoc comm id: empty] .
op _[_] : Env Name -> Location .
op _[_<-_] : Env Name Location -> Env .
eq ([X,L] Env)[X] = L .
eq ([X,L] Env)[X <- L’] = ([X,L’] Env) .
eq Env[X <- L] = (Env [X,L]) .

Here, again, a new sort, Env, is defined. An environment is either
empty or is a pair of Name and Location. We can also form an
environment by putting it next to another environment, forming an
environment set using the operation; this operation is associative
and commutative, with empty as the identity. The final two opera-
tions allow environment lookup ( [ ]) and modification ( [ <- ]).
The definition of these two operations is shown in the three equa-
tions. The first defines lookup: when looking up name X, if there is
a pair with name X and location L in the environment (Env is the
rest – since environments are sets and are defined as commutative,
we can always assume that the pair we are interested in is the first
pair in the set), return location L. The next two equations define
environment modification. In the first, the name X is already in the
environment with location L, and we want to change this to loca-
tion L’, so we update the existing pair, leaving the rest unchanged.
In the second, X was not found in the existing environment, so we
just add a new pair with name X and location L. The first two equa-
tions make use of Maude’s complex matching modulo equations, in
this case modulo associativity and commutativity (of operator ).
Here, and in the rest of the paper, we rely on Maude’s order of equa-
tion application, since the final equation would also encompass the
case in the second equation. One can easily translate our current
definition into a Maude definition that is not dependent on equa-
tion ordering, making use of Maude features such as “otherwise”
and conditional equations, but we do not do this here since these
translations tend to make the equations more complex. Methods of
automatically translating definitions using these features into pure
rewriting logic specifications that maintain the proper algebraic se-
mantics are available for both otherwise (Clavel et al. 2007) and
conditional equations (Şerbănuţă and Roşu 2006).

Using lists and sets (combined with the appropriate state infras-
tructure, defined in Section 3), we can then define more complex
equations such as:

eq k((V,VL) -> assignTo(X,XL) -> K) mem(Mem)
env([X,L] Env)

= k(VL -> assignTo(XL) -> K) mem(Mem[L <- V])
env([X,L] Env) .

This equation assigns a list of values (computed based on a list of
expressions) to a list of names. V represents a value at the head
of the list of values, with VL representing the tail. Similarly, X
represents a name at the head of the list of names, with XL as
the tail. assignTo is a continuation item, and is used to represent
the action of assigning computed values to a list of names. K
matches the rest of the computation – i.e., the next computational
steps once the assignment is complete. Mem represents the current
memory, a mapping of locations to values, while Env represents an
environment, (as shown above) a mapping of names to locations. L
represents one of these locations.

The equation works as follows: given a name X, look up the
location at which X is stored. This leverages matching modulo
associativity and commutativity (set or multi-set matching) twice,
first to bring in both the continuation and the environment parts of
the “soup”, and second to identify the proper name/location pair
in the environment. With this location, the term representing the
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computation can be modified, representing a step of computation.
This step will leave the remaining parts of the assignment on
the continuation (the remaining values and names), will leave the
environment unchanged, but will modify the memory, replacing it
with an altered memory where location L takes on value V. This
will use memory update equations like those for Env shown above.

3. K-Scheme in Rewriting Logic
In our definition K-Scheme we attempted to cover the entirety of
core Scheme as defined, informally, in R5RS (Kelsey et al. 1998).
As mentioned previously we made the decision to specify many
of under-specified attributes of Scheme, and thus K-Scheme must
be considered a dialect of Scheme. By “core” we mean those syn-
tactic keywords and procedures not marked as library. We also
support select library syntax and procedures, and intend to offer
a full standard library in the future. Specifically, our K-Scheme
currently includes equations for the following Scheme features:
+, -, *, / (integer only), append, and, apply, begin, boolean?,
call-with-current-continuation, call-with-values, car,
cdr, cadr, cddr, char?, cond, cons, define, delay, do, define-
syntax, dynamic-wind, eq?, equal?, eqv?, eval, expt, force,
if, lambda, let, let*, letrec, list, display, make-string,
make-vector, not, null?, number?, or, pair?, procedure?,
string-length, string-ref, string-set!, symbol?, syntax-
rules, quote, quasiquote, set!, set-car!, set-cdr!, un-
quote, unquote-splicing, vector?, vector-length, vector-
ref, and vector-set!.

In terms of syntactic keywords, we support quasiquote and
the define-syntax form of macros, which we consider part of
the core language. The macro support is not complete, but many
standard examples can be handled by our definition. We are primar-
ily lacking only those core procedures which operate on different
types of numbers, since K-Scheme currently only supports integers.
The predicate number? returns #t for any integer. Conversions be-
tween different data types are currently missing, but are easy to de-
fine. Characters, while defined, are currently missing comparison
operators. Input and output are currently limited to the procedure
display. The complete definition of K-Scheme using the K tech-
nique can be found on K-Scheme’s webpage at (Meredith et al.).

3.1 Syntax
To make Scheme more palatable to Maude, the internal definition
of the syntax used by K-Scheme is slightly different from standard
Scheme syntax. We provide an external parser at (Meredith et al.)
capable of converting normal Scheme code to K-Scheme code, but
currently output from programs uses K-Scheme syntax1.

Parenthesis are significant to Maude (to resolve precedence
conflicts), so we removed them in favor of square brackets. Note
that many Scheme interpreters already allow the use of square
brackets to denote parentheses. Maude expects strings to be de-
limited by double quotes, so strings in our syntax are wrapped
in curly braces, for example {"foo"}. Character constants use
the same “#\” syntax as Scheme, save that Maude characters are
single character strings, so a character in K-Scheme looks like
#\("f"). The short-cut syntax for quote, quasiquote, unquote,
and unquote-splicing needed to be changed, because “’”, “‘”,
and “,” are all significant to Maude. We therefore use “$”, “!”,
“!!”, and “!@” respectively. All variable names need to be quoted.
All examples in this paper are given in normal Scheme syntax, but
in some places K-Scheme syntax is used to show output. Also,
some of the macro equations use the K-Scheme syntax because they
are syntax transformations.

1 We must stress that programs can be written in normal Scheme syntax due
to our external parser at (Meredith et al.)

3.2 Scheme State Representation
When defining a language using K, one of the important decisions
is the structure of the state. By “state”, we here mean all the
information about a program execution snapshot, including the
program itself; in this sense, it is like a “configuration” in SOS
(Plotkin 1981). The rewrite rules require this state structure to
determine the context of equation application. The major concerns
are that all needed information be available, and that the state is
organized in a logical, extensible manner. Our goal is for additions
to the state representation to be possible without breaking existing
equations in the semantics, when possible, and vice versa.

The state representation for K-Scheme consists of the compo-
nents: k, the computation; mem, the store; nextLoc, the next free
location in the store; env, the local environment; globalenv, the
global environment; synmap the syntax map for macros (see Sec-
tion 3.10); output, the output of the program; and program, the
stored syntactic representation for the rest of the program not cur-
rently in the continuation.

As the heart of computation, k is the predominate feature in
most of the equations. An effort is maintained to match only the
front of the computation in equations, both for ease of understand-
ing, and efficiency reasons.

The store, mem, contains all program values bound to variables,
or contained in structures bound to variables. It is a mapping from
location (given as the constructor loc with a natural number ar-
gument, though any sort with a partial ordering and an increment
operator could be used in place of natural numbers) to program
values. The natural number value of nextLoc is incremented after
every allocation, ensuring that previous store values are not lost.

The environments, env and globalenv, map program variables
(symbols) to locations. A distinction between local environment
and global environment is necessary in the presence of closures.
When a closure is formed, only the local environment is saved in
the closure, thus changes to the referent of variables mapped in
the global environment will be visible. This necessity is explained
further in Section 3.6. The separation of store from the variable
binding of the environment allows for an easier representation of
the complex structures in Scheme (e.g. lists, vectors).

Every time the built-in function display is called in a program,
its argument is converted to a Maude string representation and
appended to the value contained in the output state component.

The last component, program, contains the syntactic represen-
tation of all expressions in the program not currently executing.
K-Scheme allows for multiple expressions, which are computed
in order, as one would expect from a Scheme program given to
an interpreter or compiler in a non-interactive mode. The presence
of call-with-current-continuation (call/cc) necessitates
program. call/cc requires the entire computation be captured at
the point of call, and passed to its argument. If the entire program
exists in the computation, then the entire program would be passed
to the argument of call/cc; this is not the desired behavior for K-
Scheme, and can result in unexpected non-termination cases (see
Section 3.7).

The following is the equation creating the initial state:

eq run(EL) = [k(stop) mem(empty)
program(EL) globalenv(empty) env(empty)
synmap(empty) nextLoc(1) output(none)] .

When the run operator is applied to an ExpList EL, it is placed in
the program attribute. stop is a signal to the definition to place the
next Expression in the program attribute onto the continuation,
or, if none exists, to end execution, it is also the identity opera-
tor for computations. Recall that the “computational tasks” listed
in the computation with the construct “-> ” are processed in or-
der from left to right. We pass empty environments and stores to
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eq k(apply(fbuiltin(car), cell({L1 . L2})) -> K) mem(Mem)
= k((Mem[L1]) -> K) mem(Mem) .

eq k(apply(fbuiltin(cdr), cell({L1 . L2})) -> K) mem(Mem)
= k((Mem[L2]) -> K) mem(Mem) .

eq k(apply(fbuiltin(set-car!),cell({L1 . L2}),V) -> K)
= k(V -> assignToLoc(L1) -> symbol(unspecified) -> K) .

eq k(apply(fbuiltin(set-cdr!),cell({L1 . L2}),V) -> K)
= k(V -> assignToLoc(L2) -> symbol(unspecified) -> K) .

eq k(apply(fbuiltin(cons), V1, V2) -> K)
= k((V1, V2) -> makeConsCell -> K) .

eq k((V1,V2) -> makeConsCell -> K) nextLoc(N)
= k((V1,V2) -> assignToLoc(locs(N, 2))

-> cell({loc(N) . loc(N + 1)}) -> K) nextLoc(N + 2) .
eq list2Values(cell({L1 . L2}), (Mem [L2,V2]))
= if (V2 == symbol(nil)) then Mem[L1]

else ((Mem[L1]), list2Values(V2, (Mem [L2,V2]))) fi .
eq list2Values(symbol(nil), Mem) = nill .
eq list2Names(cell({L1 . L2}),(Mem [L1,symbol(X)][L2,V]))
= (X, list2Names(V, Mem [L1, symbol(X)][L2, V])) .

eq list2Names(symbol(X), Mem)
= if (X == nil) then () else (&rest, X) fi .

Figure 1. List Operations

env, globalenv, and mem, but these will be populated during ini-
tialization. synmap is also initialized to be empty. This equation
showcases well the attributes of K-Scheme’s state. Note that equa-
tions need only reference attributes of the state significant to their
operation.

3.3 Lists
The aspect of Scheme that we consider as the most important
to maintain in K-Scheme is the unified representation for both
program and data. All functioning programs are lists. To support
the semantics of lists, we use a storage model much like that given
in the R5RS report (Kelsey et al. 1998).

Internally, all lists are represented as cons cells. Cons cells are
pairs of locations, which can be thought of as pointers. To form
an actual list, the second location, the cdr of the cons cell, points
to another cons cell. We chose this representation both because
it is the representation suggested by R5RS and because it easily
supports desired Scheme functionality. An example is the sharing
of cdr’s. Two lists may share cdr’s, wherein the update to the cdr
of one list is reflected in the cdr of the list sharing that cdr:

(define x (list 1 2 3 4))
(define y (list 1 2))
(set-cdr! y (cdr x))
y ===> (1 2 3 4)
(set-car! (cdr x) 9)
x ===> (1 9 3 4)
y ===> (1 9 3 4)

Because we represent cons cells as pairs of locations, the cdr’s of
the cons cells representing x and y in the above example point to
the same physical cons cell, and any updates will be reflected in
both. The Maude syntax for cons cell is:

sort ConsCell .
op {_._} : Location Location -> ConsCell .

This structure also allows the built-in Scheme operations on lists
to be handled fairly trivially. Finding the car of a list, x, simply
amounts to looking up the value pointed to by the first location in
the cons cell representing x.

Recall that due to the program state attribute we only exe-
cute one expression in the continuation at a time. These expres-
sions, however, can be arbitrarily complex. Each complete expres-
sion is first converted into this list representation (before execu-

tion). Execution is on list structures consisting of cons cells, except-
ing the creation of simple constants and variables. For example, in
(define x 4) (display x) x 4, the x and the 4 are not con-
tained in cons cells; they also have no effect on the output (though
they are “executed” by K-Scheme).

Figure 1 shows the Maude definitions for the list operations
cons, car, cdr, set-car!, set-cdr, and cons. The presence of
apply(mbuiltin(X),V1, V2...) or apply(fbuiltin(X),V1
,V2...) denotes the application of a built-in syntactic keyword or
built-in function to the values V1, V2 ..., respectively.2 The con-
structor cell accepts a cons cell as an argument and creates a
value, i.e., {L1 . L2}, is a cons cell, while cell({L1 . L2})
is a value. Mem[L] “returns” the value L points to in the store Mem.
Note that operator k wraps the continuation where all computation
happens, and that the K variable matches the rest of the continua-
tion. The constructor symbol is to symbols what cell is to cons
cells (it converts a symbol into a value); the same is true for any
other type constructor.

The equations defining the semantics of the two set functions
place symbol(unspecified) on the continuation because this is
the return value of the set functions. We decided to have a literal
unspecified value in places where R5RS declares the result to be
unspecified. It is thus possible to have a list of unspecified values
which, when printed, looks like (#<unspecified> ...). What
the set equations say, then, is: take the value V, assign it to the
location in the cons cell, and return the unspecified value as a result
to the rest of the computation (the continuation).

When cons is applied, we use the makeConsCell operator
(several other equations in the definition need to create cons cells,
so the complexity is factored out). The equations for makeConsCell
are given in Figure 1 as well. Note that because we actually assign
to locations, the nextLoc attribute described in Section 3.2 is mod-
ified. The operator assignToLoc has been defined to allow for the
assignment of multiple values at a time.

The last equations shown in Figure 1 are for list2Values
and list2Names. These are for converting between the Scheme
style lists, and flat ValueList’s and NameList’s. ValueList’s
are necessary for passing to procedures (among other things),
while NameList’s are used for the parameter names for user de-
fined procedures (see Section 3.6). To understand why we need
to convert a Scheme list into a ValueList, consider the situa-
tion we find in a normal application of a procedure in Scheme.
The application is simply a list, where the car is the procedure,
and the cdr is the values passed as arguments to the procedure
(e.g., (foo 3 4 5)). To actually apply the function it is neces-
sary to pull those values out of the Scheme list. This is the job
of list2Values. The if then else fi operator is defined in
the Maude prelude (by two trivial equations); nill is the identity
element for ValueList’s.

The most interesting feature of list2Names is the way in which
improper lists are handled. Before the last name in an improper
list, we insert the name &rest (inspired by LISP). This signals
to the procedure application equations that a variable number of
arguments is to be expected (see Section 3.6).

3.4 Vectors and Strings
When defining vectors and strings, we again rely on the Scheme
storage model. As R5RS mentions “A string... denotes as many lo-
cations as there are characters in the string.... A new value may be
stored into one of these locations using the string-set! proce-

2 The major difference between syntactic keywords and built-in functions
in K-Scheme is that all of the values passed to a function are pre-evaluated,
while those to a syntactic keyword are not. This is necessary for constructs
such as if.

Scheme and Functional Programming 2007 95



eq k(apply(fbuiltin(vector-set!),
vector([N ; L1] LA, I), int(N), V) -> K)

= k(V -> assignToLoc(L1) -> symbol(unspecified) -> K) .
eq k(apply(fbuiltin(vector-ref),

vector([N ; L] LA, I), int(N)) -> K) mem(Mem)
= k(Mem[L] -> K) mem(Mem) .

eq k(apply(fbuiltin(vector-length), vector(LA, I)) -> K)
= k(int(I) -> K) .
eq k(apply(fbuiltin(make-vector), int(0), V) -> K)
= k(symbol(nilVec) -> K) .

eq k(apply(fbuiltin(make-vector), int(0)) -> K)
= k(symbol(nilVec) -> K) .

eq k(apply(fbuiltin(make-vector), int(I), V) -> K)
= k(makeVector(V, 0, I) -> K) .

eq k(apply(fbuiltin(make-vector), int(I)) -> K)
= k(makeVector(symbol(unspecified), 0, I) -> K) .

eq k(makeVector(V, 0, I) -> K) nextLoc(M)
= k(V -> assignToLoc(loc(M)) -> vector([0 ; loc(M)], I)

-> makeVector(V, 1, I) -> K) nextLoc(M + 1) .
eq k(vector(LA,I) -> makeVector(V,I,I) -> K) nextLoc(M)
= k(vector(LA,I) -> K) nextLoc(M) .

eq k(vector(LA,I) -> makeVector(V,N,I) -> K) nextLoc(M)
= k(V -> assignToLoc(loc(M))

-> vector(LA [N ; loc(M)], I)
-> makeVector(V, N + 1, I) -> K)

nextLoc(M + 1) .

Figure 2. Vector Operations

dure, but the string continues to denote the same locations as be-
fore.” Logically, strings in Scheme are nothing more than vectors
of characters with a special literal syntax. Thus, in K-Scheme, the
equations for strings and vectors look very much alike.

Both strings and vectors in K-Scheme are defined using what
we refer to as the location array, defined as follows:

sort LocationArray .
op nill : -> LocationArray .
op [_;_] : Nat Location -> LocationArray .
op __ : LocationArray LocationArray -> LocationArray

[assoc comm id: nill] .

The operator nill is the identity operator for location arrays. The
structure of each entry in the location array is given by operator
[ ; ]. What this means is that each entry is a pair of natural num-
ber with location, which we use to map natural numbers (vector or
string indices) to locations in the store. The last operator specifies
the associative and commutative concatenation of entries, so that a
single array can be made up of multiple entries. It is commutative
because we want to keep the rules for looking up an item in the
location array simpler. It is associative because, logically, concate-
nation of location array cells is irrespective of concatenation order.

Figure 2 shows operations on vectors. Strings, while defined, are
omitted from this paper due to their close resemblance to vectors.
Both vectors and strings consist of a location array and a natural
number denoting the length of the string or vector in question.

The equation for vector-set! looks much like those for
set-car! and set-cdr! from Figure 1. The difference is that
we must find the location mapped, in the location array of the vec-
tor, to the index number specified in vector-set!. The index is
specified as the second parameter to vector-set!, matched by
int(N) in the equation. Likewise, vector-ref is highly reminis-
cent of car and cdr, again, the only difference being the com-
mutative lookup in the location array. Because we store the length
of the vector in the vector, and it is computed when the vector is
formed, vector-length does nothing more than “returning” the
length value stored in the vector. make-vector allows for the cre-
ation of vectors of a given length with an optional initial value.

R5RS states that if no initial value is specified then the value of
each vector element is unspecified. To handle the unspecified case
we again use the literal value symbol(unspecified). The first
two make-vector equations handle vectors of length 0. The sec-
ond two make-vector equations match these two cases: where
make-vector is called with an initial value, and where it is not.
Each of these cases defers the work to the operator makeVector.
The first parameter to makeVector is the initializer value, so for the
unspecified case this value will be symbol(unspecified). The
next two parameters denote the current index being created and the
length of the vector, respectively. The last three equations define
the operation of the operator makeVector. The first is the start
case, when makeVector is first encountered: it creates a new vector
value (the vector constructor) and maps a location to index 0,
simultaneously, it assigns the initializer value to the newly mapped
location. The second equation is the termination case: if the index
equals the length, the whole vector has been allocated, so we drop
the makeVector operator and “return” the newly completed vector
value. The last equation handles the inductive step.

3.5 Quote, Quasi-Quote, Unquote, and Unquote-splicing
In a language with a unified representation of code and data it is
important to have some way to distinguish data. In Scheme this is
handled via quote and its cousin quasiquote. In K-Scheme, eval-
uation of any list is performed by appending the operator evalk
after that list in the continuation (See Section 3.9). The equation
for quote is straightforward:

eq k(apply(mbuiltin(quote), V) -> K) = k(V -> K) .

As can be seen, application of the syntactic keyword quote results
in moving its argument onto the top of the continuation. Because it
is not succeeded by the operator evalk (unless the rest of the com-
putation matched by the variable K deliberately contains evalk),
the list is not evaluated. R5RS allows for an implementation to
use the same memory for all references to a quote’d expression,
so we chose not to copy memory in K-Scheme. This specifica-
tion that memory is not copied (K-Scheme) rather than need not
be copied (R5RS Scheme) is another deviation in K-Scheme from
normal Scheme.

3.5.1 Application of Quasiquote, Unquote, and
Unquote-splicing

The equations for quasiquote, unquote and unquote-splicing
can be seen in Figure 3. Note that in K-Scheme all quasiquote’d
expressions are copied, even when they contain no unquote forms.
To do otherwise would be extraordinarily complicated, requiring a
pass to check for unquote forms. This is another deviation from
R5RS Scheme, which does not specify what should happen in the
case of quasiquote forms with no unquote terms. Recall that in
Scheme quasiquote has the shortcut syntax of “‘”, unquote of
“,”, and unquote-splicing of “,@”. The operator qq is placed
on the computation whenever an application of the syntactic key-
word quasiquote is specified in a program, as can be seen in the
first equation in Figure 3. It is also important to bind unquote and
unquote-splicing to their names before evaluation of the qq
operator, as we do not bind them at initialization time. The reason
for this is observed behavior in the interpreters we analyzed: they
would call unquote and unquote-splicing unbound variables
if used outside of a quasiquote expression. Our whole defini-
tion is built around binding built-in functions and macros to their
names. This way, the names can be redefined by users, as allowed in
Scheme. The environment is restored after the reduction of qq in or-
der to remove the bindings for unquote and unquote-splicing.
The operator kenv restores the environment to its argument when
it is matched as the top of the continuation.
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op qq : Value Nat -> ComputationItem .
op uqs : -> ComputationItem .
eq k(apply(mbuiltin(quasiquote), V) -> K) env(Env)
= k((mbuiltin(unquote), mbuiltin(unquote-splicing))

-> bindTo(unquote, unquote-splicing)
-> qq(V, 0) -> kenv(Env) -> K) env(Env) .

eq k(apply(mbuiltin(unquote), V) -> K)
env(Env [unquote, L1] [unquote-splicing, L2])

= k(V -> evalk
-> kenv(Env [unquote, L1] [unquote-splicing, L2])
-> K) env(Env) .

eq k(apply(mbuiltin(unquote-splicing), V) -> K)
env(Env [unquote, L1] [unquote-splicing, L2])

= k(V -> evalk
-> kenv(Env [unquote, L1] [unquote-splicing, L2])
-> uqs -> K) env(Env) .

Figure 3. Quasiqoute, Unquote, and Unquote-splicing

The presence of unquote applied to a value during evalu-
ation (the second equation in Figure 3), means that said value
must be evaluated before being placed into the list (or vec-
tor). Thus the value matched by the variable V is placed on the
computation followed by evalk. Also, we unbind unquote and
unquote-splicing in order to produce the observed behavior of
references to unbound variables. What this means is that a program
such as ‘(,3) will result in (3) while ‘(,,3) will result in an
unbound variable (unquote) error. Again we use the kenv opera-
tor to restore the environment after the evaluation of V, in this case
re-binding unquote and unquote-splicing.

unquote-splicing is very similar to unquote. The difference
is that after the evalk we place the operator uqs. This operator
will be matched by later equations in order to know that the value
preceding it should be spliced into the list (or vector).

3.5.2 Definition of Operator qq
The equations in Figure 4 define the operator qq. As mentioned in
R5RS, “Quasiquote forms may be nested. Substitutions are made
only for unquote components appearing at the same nesting level as
the outermost back-quote.” In order to achieve this, qq keeps track
of the current nesting depth as a natural number (the Nat in the qq
operator declaration). unquote is only evaluated when the nesting
level of operator qq is 0. The equations for unquote-splicing are
essentially identical to those for unquote, so we do not list them.
The equations are broadly separated between application of qq to
cons cells, and all other values. In the complete K-Scheme, there
are also special equations for vectors. The equations for vectors are
very similar to the equations for make-vector in Section 3.4, the
only difference being that the equations essentially copy an already
existing vector, and that qq is applied to each of the values in the
vector being copied. The only particular caveat is that splicing a
list into a vector requires inserting each list element into the vector.
We have an equation for all non-list and non-vector values, so that
the addition of a new value type to the definition will not require a
modification to the equations for qq.

The first equation in Figure 4 corresponds to a quasiquote ex-
pression within a quasiquote expression (a nested quasiquote).
Because this occurs while copying a list, rather than evaluating
a list, we must check to see if the car of the list is the symbol
quasiquote, rather than the equations seen previously where we
matched the apply operator with a specific built-in function or syn-
tactic keyword. This same strategy of looking at the car of the cons
cell is used in all of the qq equations where the argument to qq is
a cons cell. If the car of a cons cell is symbol quasiquote we
create a new cons cell consisting of the symbol quasiquote and
qq applied to the cdr of the cell (as the cdr very well could be an

eq k(qq(cell({L1 . L2}), N) -> K)
mem(Mem [L1, symbol(quasiquote)])

= k(symbol(quasiquote) -> qq(Mem [L2], N + 1) -> makePair
-> K) mem(Mem [L1, symbol(quasiquote)]) .

eq k(qq(cell({L1 . L2}), 0) -> K)
mem(Mem [L1, symbol(unquote)])

= k(cell({L1 . L2}) -> evalk -> K)
mem(Mem [L1, symbol(unquote)]) .

eq k(qq(cell({L1 . L2}), N) -> K)
mem(Mem [L1, symbol(unquote)])

= k(symbol(unquote) -> qq(Mem[L2], N + (-1)) -> makePair
-> K) mem(Mem [L1,

symbol(unquote)]) .
eq k(qq(cell({L1 . L2}), N) -> K) mem(Mem)
= k(qq(Mem[L1], N) -> qq(Mem[L2], N) -> makePair -> K)

mem(Mem) .
eq k(qq(V,N) -> K) = k(V -> K) .

Figure 4. Operator qq

unquote form, or another quasiquote). The makePair operator
is a wrapper for makeConsCell, which we saw earlier. The dif-
ference is it evaluates and collects its arguments before reducing to
makeConsCell. We also increment the nesting depth, ensuring that
only the proper number of unquote expressions will be evaluated.

The equations for qq applied to a cons cell in which the car of
the cell is unquote are next. If the current nesting depth is 0, the
cell is simply evaluated. This will result in eventually matching the
equations we saw earlier in Figure 3. If, however, the nesting depth
is not 0, the nesting depth is decremented, and we repeat the process
of quasiquote repeated within a quasiquote expression. That is,
we make a cons cell of the symbol in question (either unquote or
unquote-splicing) and qq applied to the cdr of the cons cell.

The last case for cons cells happens when the car of the
cons cell is none of the three symbols we care about (unquote,
unquote-splicing, quasiquote). In this case qq is applied to
both the car and cdr or the list, and the resulting values are made
into a new cons cell via the makePair operator.

Finally, if the base case where the value in question is not a
cons cell (or vector). In this case the value is simply copied into
the list (or vector), by placing the value, as-is, onto the top of the
continuation. This is correct because any application of a function
can only occur within a cons cell.

3.5.3 Unquote-splicing Specifics
Figure 5 shows equations for unquote-splicing. In Scheme,
unquote-splicing works much like unquote. It evaluates its
argument. However, with unquote-splicing, the argument must
evaluate to a list. This list is then spliced into its enclosing struc-
ture. In simple terms, parentheses are removed. For example
‘( 1 2 ,@(list 3 4) 5) results in the list (1 2 3 4 5). As
noted before, a given value has resulted from the evaluation of an
unquote-splicing if it is succeeded by the operator uqs.

The first equation in Figure 5 simply reorders the continua-
tion so that evaluation can happen. At this point we have a cons
cell at the top of the continuation resulting from the application of
unquote-splicing. We know that it must be a cons cell, because
the result of an unquote-splicing form must be a list. The re-
ordering takes the qq operator after the uqs and places it at the
top of the continuation. The cell in front of uqs is placed as the
argument of a second uqs operator. Both of these operators were
defined in Figure 3. The second equation matches the latter uqs op-
erator, which takes a value as an argument (and this value must be
a cons cell). The presence of uqs(V1) followed by makePair(V2)
(another makePair operator defined in our infrastructure), denotes
that a cons cell should be made from uqs(V1) and V2. uqs signals
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op uqs : Value -> ComputationItem .
eq k(cell({L1 . L2}) -> uqs -> qq(V, N) -> K)
= k(qq(V, N) -> uqs(cell({L1 . L2})) -> K) .

eq k(uqs(V1) -> makePair(V2) -> K)
= k(append(V1, V2) -> V1 -> K) .

eq k(append(cell({L1 . L2}), V) -> K)
mem(Mem [L2, symbol(nil)])

= k(V -> assignToLoc(L2) -> K)
mem(Mem [L2, symbol(nil)]) .

eq k(append(cell({L1 . L2}), V) -> K)
mem(Mem [L2, cell(C)])

= k(append(cell(C), V) -> K) mem(Mem [L2, cell(C)]) .

Figure 5. Equations Specific to Unquote-splicing

op fclosure : NameList ValueList Env -> Value .
eq k(apply(mbuiltin(lambda), V, VL) -> K) mem(Mem)

env(Env)
= k(fclosure(list2Names(V, Mem), VL, Env) -> K) mem(Mem)

env(Env) .
eq k(apply(fclosure(XL, &rest, X, VB, Env’), VL) -> K)

env(Env)
= k(values2List(restN(VL, length(XL))) -> bindTo X

-> firstN(VL, length(XL)) -> bindTo XL
-> apply(mbuiltin(begin),VB) -> kenv(Env) -> K)

env(Env’) .
eq k(apply(fclosure(XL, VB, Env’), VL) -> K) env(Env)
= k(VL -> bindTo XL -> apply(mbuiltin(begin),VB)

-> kenv(Env) -> K)
env(Env’) .

eq k(apply(mbuiltin(begin), V, VL) -> K)
= k(V -> continue -> apply(mbuiltin(begin), VL) -> K) .

eq k(V -> continue -> apply(mbuiltin(begin), nill) -> K)
= k(V -> evalk -> K) .

eq k(V -> continue -> K) = k(V -> evalk -> discard -> K) .

Figure 6. Lambda and Begin

that V2 should be appended to V1, rather than the normal action
of forming a cons cell. In this case, appending means replacing
the symbol(nil) at the end of V1 with V2. V1 must end with a
symbol(nil) as the argument to unquote-splicing must result
in a proper list. The right hand side of the equation, then, says to
modify V1 in place by appending, then “return” V1 to the continu-
ation. The last two equations simply handle the case of recursively
traversing V1 until symbol(nil) is found, and then replacing the
symbol by V2 via assigning to the location in the cons cell that
originally pointed to symbol(nil). The first of these equations is
the base case (where the cdr is symbol(nil)), the second is the
inductive step (where the cdr is anything else). Note that the equa-
tions we have here us destructive update (the argument is literally
spliced in, not copied in), we also have a version which uses non-
destructive update. R5RS does not specify whether splicing should
be destructive or not, so we have defined both for K-Scheme. A
more general solution that could output all possible answers given
destructive update or not is a future goal.

3.6 Lambda
The heart of the support for the lambda syntactic keyword is the
fclosure value type. The operator declaration for fclosure can
be seen in Figure 6, as well as the equations for fclosure appli-
cation and creation. The fclosure operator accepts a NameList,
a ValueList, and an Env (environment) as arguments. The Name-
list is a list specifying the name of parameters; recall that we
showed how a Scheme-style list is converted to a NameList in
Section 3.3. The ValueList is the body of the procedure. Each

Value in the ValueList is an expression, so it will either be a
cons cell or a simple type such as a variable or an integer. We allow
a ValueList because the bodies of procedures are allowed to con-
sist of multiple expressions that are to be executed in order, much
as expressions given to a begin syntactic keyword expression.

The first equation in Figure 6 is for the creation of fclosure
Value’s via the application of the syntactic keyword lambda. The
equation says when lambda is applied to a Value V followed by
a ValueList VL, convert V into a NameList, put VL into the
fclosure as the body, and store Env as the environment of the clo-
sure. The reason this works is the syntax of lambda. In a program
lambda always has the form (lambda (names ...) body). Be-
cause of this we can be sure that the first Value passed to lambda
must be a Scheme list consisting of the parameter names. Note that
we store only the local environment to the closure, as we stated in
Section 3.2. For an example of why we do this consider:

(define f #f)
(let ((y 3))

(set! f (lambda () (+ x y)))
)
(f) ===> unbound variable x
(define x 2)
(f) ===> 5

The idea illustrated here is that x is not referenced until the func-
tion is called. When a variable reference is evaluated the local en-
vironment is checked first, the global is only checked if there is no
reference to the variable in the local environment. Because x exists
in the global environment by the time of the second call, there is no
unbound variable error. We can see that the local environment must
be captured so that y maintains the correct value of 3 after the end
of the let scoping.

The next two equations show the application of fclosure’s.
The first thing to notice is that the environment is set to be that of
the one stored in the closure, giving us the desired behavior from
the above example. In both cases the values passed to the fclosure
are bound to the names in the fclosure’s name list.

In the second equation we see our special symbol &rest. Recall
that this symbol is inserted by names2List when the specified list
is improper, because an improper parameter list is Scheme’s way of
specifying a variable number of parameters to a procedure. When
&rest appears in the NameList we first convert all the values
passed after the &rest symbol into a Scheme list and then bind
it to the name appearing after the symbol &rest. The operator
restN is a simple operation on ValueList’s that takes the last
Value’s of a ValueList from a passed number and returns them as
a ValueList. In this case we pass the length of the NameList XL.
We then use the firstN operator to pull the first Value’s out of the
list, and bind these to the beginning of the NameList. In the third
equation the situation is much less complicated, the passed Value’s
are simply bound to the NameList. In both equations we apply
the syntactic keyword begin to the ValueList that is the body
of the fclosure. Using this strategy, all sequences of expressions
not at the top level (i.e., within an expression), are handled by the
begin operator. Because of this, in K-Scheme, any procedure or
keyword which requires sequential evaluation (e.g., do, let, let*,
letrec, etc) apply the keyword begin in their equation. The last
requirement is to restore the environment after executing the body;
this is, again, handled by kenv.

begin itself is relatively simple. All it does is execute each
expression in order and discard the result, except for the last ex-
pression where the result is placed on the continuation in order to
“return” it. begin is defined by the final three equations shown
in Figure 6. The first of them is the termination case wherein the
ValueList being evaluated is exhausted. The last of them, which
will only be applied if the termination case cannot be, converts the
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eq k(apply(fbuiltin(call/cc), V) -> K) env(Env)
= k(apply(V, continuation(K, Env)) -> K) env(Env) .

eq k(apply(continuation(K1, Env1), V) -> K2) env(Env2)
= k(V -> K1) env(Env1) .

Figure 7. Call-with-current-continuation

operator continue into an evalk followed by discard. Opera-
tor continue takes no arguments and is just a convenient marker.
discard simply throws away whatever Value precedes it. Re-
call that evalk is an operator telling the definition to evaluate the
Value before it, rather than keeping it as is (see Section 3.9).

3.7 Call-with-current-continuation
call-with-current-continuation (call/cc) is actually fairly
straightforward in the K definitional style, because computations
are first class objects, which can be stored. The equations for
call/cc can be seen in Figure 7. We defined another Value type
called continuation. It is basically the same as an fclosure
save without a parameter list. The current (entire) computation is
saved in the continuation with the current environment in the
first equation. Because only one expression at a time from the
top level is in the k operator, this works. The following example
showcases why only the current expression should be grabbed by
call/cc:

(define k #f)
(+ 4 (call/cc (lambda (c) (set! k c) 4))) ===> 8
(k 3) ===> 7

In this example, if the continuation of the whole program is
grabbed, rather than just the continuation of (call/cc (lambda
(c) (set! k c))), this program will not terminate. The reason
for this is that (k 3) will be included in the continuation it is call-
ing! This non-termination can be recreated in K-Scheme, or any
Scheme implementation, by passing the call/cc expression and
(k 3) to begin. Note that this is another case were we chose one
possible interpretation of R5RS. We persist that grabbing the entire
rest of the program would not be desirable, however.

Application of a continuation, as seen in the second equation,
simply replaces the current continuation (K2) with the one con-
tained in the continuation operator. The current environment
is also replaced by that of the continuation. Note that, unlike
fclosure application, the existing environment is not saved by
continuation application. V, the value the continuation is applied
to, is passed to the remainder of the computation.

K-Scheme also contains definitions for call-with-values
and dynamic-wind. While (Matthews and Findler 2005) claims
that special consideration for dynamic-windmust be made, we use
the version presented in (Dybvig 2003). Instead of actually modify-
ing the objects created by call/cc, this implementation is written
completely in Scheme. It does redefine call/cc, but we believe,
because it can be written with normal call/cc, that actually mod-
ifying the structure of continuation objects is unnecessary.

3.8 Equivalency Predicates
The eqv? function in Scheme is a fairly interesting case. This
is one of the features of Scheme for which we currently chose
one of the correct interpretations of R5RS. Future versions of K-
Scheme should have the option of informing the user when the
result of evq? is unspecified in R5RS. According to R5RS “The
eqv? procedure defines a useful equivalence relation on objects.
Briefly, it returns #t if obj1 and obj2 should normally be regarded
as the same object.” For the most part this is fairly straightforward:
two numbers are eqv? if they are equal. The same is true for all
simple data types. It is more interesting with complex objects.

eq k(apply(fbuiltin(eqv?), V1, V2) -> K)
= k(symbol(if V1 == V2 then #t else #f fi) -> K) .

eq k(apply(fbuiltin(eq?), V1, V2) -> K)
= k(symbol(if V1 == V2 then #t else #f fi) -> K) .

eq k(apply(fbuiltin(equal?), V1, V2) -> K) mem(Mem)
= k(if equal(V1, V2, Mem) then symbol(#t)

else symbol(#f) fi -> K) mem(Mem) .
eq equal(cell({L1 . L2}), cell({L3 . L4}), Mem)
= equal(Mem[L1], Mem[L3], Mem)

and equal(Mem[L2], Mem[L4], Mem) .
eq equal(vector([ N1 ; L1 ] LA1, N2),

vector([ N1 ; L2 ] LA2, N2), Mem)
= equal(Mem[L1], Mem[L2], Mem)

and equal(vector(LA1, N2), vector(LA2, N2), Mem) .
eq equal(vector(nill, N1), vector(nill, N1), Mem)
= true .

eq equal(V1, V2, Mem) = V1 == V2 .

Figure 8. Equivalency Predicates

Cons cells, vectors, and strings are equal if they represent the same
locations in the store. Thus:

(eqv? "foo" "foo") ===> #f
(define x "foo")
(eqv? x x) ===> #t

Interestingly enough, because of the way we defined our Value
types, this comes out to simple equality of terms of sort Value. The
== operator in Maude (and in all other rewrite engines) performs a
(recursive) comparison of its two term (normal form) arguments,
modulo corresponding attributes such as assoc. and comm.. If all
the sub-objects are equivalent the objects are equivalent. This is
similar to equal? in Scheme (explained below). The equation for
eqv? is in Figure 8. All it does is return symbol(#t) if the two
Value’s are equal. This works, because for two cons cells to be
equal as Maude terms, they must define the same locations.3 This
holds for strings and vectors as well. It also holds for fclosure’s
with some interesting results. R5RS states that two procedures,
when compared via eqv? must return #f if they represent two
procedures with different semantics. It says the results of compar-
ing two equivalent procedures is undefined, however. In K-Scheme
procedures with different semantics will not be equivalent in terms
of Maude equivalency because they will contain different cons cells
as the body. There are a few cases where our eqv? will return #t for
procedures. Either they can be the same physical procedure (i.e.,
two procedures bound to a variable x followed by (eqv? x x)),
or they can be two procedures with the exact same parameters (and
parameter names) with the same simple type as the body, e.g.:

(eqv? (lambda (x) x) (lambda (x) x)) ===> #t
(eqv? (lambda (x y z) 3) (lambda (x y z)) 3) ===> #t
(eqv? (lambda (x) x) (lambda (y) y)) ===> #f
(eqv? (lambda (x) ’(x)) (lambda (x) ’(x))) ===> #f

The reason the last example returns #f is because ’(x) is not a sim-
ple type, and in each lambda expression a different list consisting
of only the symbol x is allocated.

Aside from behavior on empty strings and empty vectors, eq?
is only allowed to return #t when eqv? returns #t. The idea,
as is mentioned in R5RS, is that eq can often be more easily
implemented (and thus faster) than eqv?, such as with a pointer
comparison. Our decision was to use the same implementation for
eq? and eqv?, which conforms to the information specification.

equal? is a library procedure that actually recursively com-
pares the elements to complex structures, calling eqv? on simpler

3 Recall that a cons cell has the form {L1 . L2}.
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eq k(apply(fbuiltin(eval), V, environment(Env1)) -> K)
env(Env2)

= k(V -> evalk -> kenv(Env2) -> K) env(Env1) .
eq k(symbol(X) -> evalk -> K) mem(Mem)

env([X,L] Env) globalenv(GEnv)
= k(Mem[L] -> K) mem(Mem)

env([X,L] Env) globalenv(GEnv) .
eq k(symbol(X) -> evalk -> K) mem(Mem)

env(Env) globalenv([X,L] GEnv)
= k(Mem[L] -> K) mem(Mem)

env(Env) globalenv([X,L] GEnv) .
eq k(cell(C) -> evalk -> K) mem(Mem)
= k(preApply(list2Values(cell(C),Mem)) -> K) mem(Mem) .

eq k(fclosure(XL, VL, Env) -> evalk -> K)
= k(fclosure(XL, VL, Env) -> K) .

eq k(fbuiltin(X) -> evalk -> K) = k(fbuiltin(X) -> K) .
eq k(mbuiltin(X) -> evalk -> K) = k(mbuiltin(X) -> K) .
eq k(int(I) -> evalk -> K) = k(int(I) -> K) .

Figure 9. Eval

op randomEval : ValueList Nat -> ComputationItem .
op unEval : Value -> Value .
op unEvalWrap(_;_) : ValueList ValueList -> ValueList .
op hole : -> Value .
eq k(preApply(mbuiltin(X), VL) -> K)
= k(apply(mbuiltin(X),VL) -> K) .

eq k(preApply(VL) -> K)
= k(randomEval(unEvalWrap(nill ; VL), length(VL))

-> K) .
eq unEvalWrap(VL ; V, VL’)
= unEvalWrap(VL, unEval(V) ; VL’) .

eq unEvalWrap(VL ; nill) = VL .
eq k(randomEval(VL,0) -> K)
= k(apply(VL) -> K) .

rl k(randomEval(VL, unEval(V), VL’, N) -> K)
=> k(V -> evalk

-> randomEval(VL, hole, VL’, N - 1) -> K) .
eq k(V -> randomEval(VL, hole, VL’, N) -> K)
= k(randomEval(VL, V, VL’, N) -> K) .

Figure 10. Operator preApply

sub-elements (such as numbers). As can be seen in the third equa-
tion in Figure 8, when equal? is applied to two Value’s we pass
these Value’s to the operator equal. If equal returns the Maude
boolean true, we return the symbol #t, if it returns false, we return
#f. The equal operator recursively compares complex structures.
In the case of cons cells, two cons cells are equivalent if the car’s
and cdr’s are equivalent (equation four). Vectors are equivalent if
all elements they point to are pairwise equivalent (equation five).
It is identical for strings, as strings are little more than specialized
vectors. The last equation catches all simple Value’s. Two simple
Value’s are equivalent if they are equal according to Maude. Since
this is what we did for eqv? this is the same as applying eqv? for
the simple Value’s; exactly what R5RS states.

3.9 Eval
We have explained the role of the evalk continuation item operator
in previous sections. This is the motor behind the formal definition
for the eval procedure. The equation for eval can be seen in
Figure 9 (the first equation), as well as the equations for evaluating
the different Value types of K-Scheme.

We can see in the first equation that the application of the pro-
cedure eval to a Value V places V on the top of the continuation
followed by evalk. eval also expects an environment Value to

be passed. Much like an fclosure, the environment is swapped
for the passed environment and restored via kenv after execution.

The second and third equations show the evaluation of symbols.
The symbol is looked up in the environment, and the proper lo-
cation referenced in the store. Note, as was mentioned earlier, the
local environment is checked first; the global is only consulted if
the local has no binding for the given variable.

The fourth equation handles evaluation of a cons cell. As
Scheme requires, the evaluation of a cons cell is always considered
to be a procedure or syntactic keyword application (note that user
defined macros are expanded before evaluation). The last equation
in Figure 9 shows the evaluation of int’s. All simple Value types
have similar equations, where they are simply placed onto the con-
tinuation as-is. Logically this makes sense, as, in Scheme, ’4 is the
same thing as 4. In the latter, 4 is evaluated, but 4 evaluates to 4!

The operator preApply (Figure 10) decides how to handle the
ValueList passed to it. If the first value is a literal mbuiltin
(a syntactic keyword) then it is immediately applied, as we do
not wish to evaluate the arguments to a syntactic keyword. This
equation works because syntactic keywords cannot be bound to
variables, so there is no need to worry about a symbol possibly
pointing to an mbuiltin. If the first Value is not an mbuiltin
this must be the application of a procedure or continuation. If
this is the case, all the sub-terms in the application form must be
evaluated in an unspecified order. We use a rule (the line marked
rl rather than eq) to reflect that there is no specified order of
evaluation. This is superior to the R5RS denotational semantics,
which permutes evaluation, because the order is truly random. This
is similar to how the definition of (Matthews and Findler 2005)
works, but using rewriting logic rather than reduction semantics
with contexts. unEvalWrap wraps all the Value’s in a ValueList
with the unEval constructor. This tells the rule that such a value
has not been evaluated yet. The Value hole is a place holder so
that an evaluated value can be placed back in the proper order.
randomEval also has a natural number parameter, which tells
randomEval when all the values have been evaluated (when it
reaches 0 randomEval is replaced by apply as the procedure or
continuation application can proceed). The last equation reinserts
the evaluated Value where the hole is, to, again, insure that the
Value’s will be in the proper order. This usage of a rule gives us the
proper behavior. A Maude search (Maude searches for all possible
solutions) on the following example:

(define x 0)
(define y 0)
(display

( (begin (set! y 4) +)
(begin (set! y 2) x)
(begin (set! x 3) y)

))

results in 2, 3, 4, and 7 as possible answers.

3.10 Macros
K-Scheme supports the use of top-level define-syntax to define
new macros. This support is under development, so the types of
macros that can be defined are still limited: most macros with list-
based patterns can be defined, but patterns with improper lists or
vectors are still not supported. Macros are also assumed to not
define new names using internal defines or reference free-names
not defined at top-level. Even with these limitations, K-Scheme can
support a number of standard macros, such as those used to define
constructs like or and let. This provides two definitions of these
constructs, one via semantic rules and one based on translation
into more basic constructs. Currently, macros are not hygienic or
referentially transparent. Macro expansion happens up front, taking
a K-Scheme expression with macros and yielding an expression
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without. This expansion process is orthogonal to the K-Scheme
semantics presented so far.

3.10.1 Processing Macro Definitions
When a macro definition is encountered, K-Scheme processes each
provided pattern, transforming it into a form which can more easily
be used during matching. These patterns, along with the associated
templates, are then stored in a syntax definition map keyed by
name. This allows definitions to be quickly found during macro
expansion.

op trans : List List NameList -> List .
ceq trans ( [ X I IL ] , [ IL’ ] , NL )

= trans ( [ I IL ] , [ IL’ patVar(X,0) ] , NL )
if nameIn(X,NL) == false /\ isEllipses(I) == false .

The initial pattern is transformed using the trans operator, the
definition of which is shown above. trans takes the original list,
a working list (the post-transformation list), and a list of names.
The names are the literals defined in syntax-rules, and are used
to distinguish literals from pattern variables. The sample equation
shows a potential match. Here, a name, X, is at the head of the list
being processed. If it is not in the list of literal names, checked with
nameIn, and if the following list item is not an ellipses, checked
with isEllipses, then X is a non-repeating pattern variable, and
is marked as such in the working list. The item that represents
non-repeating pattern variables, patVar, includes the name of the
variable and a counter, which represents the ellipses “depth” of the
variable; this allows us to detect when the ellipses count between
the pattern and the template do not match.

3.10.2 Macro Expansion
To support macro expansion, all expressions processed by K-
Scheme are first checked to determine if they make use of any de-
fined macros. If a macro usage is found, the macro is expanded, re-
placing it with the generated syntax. The expression is then checked
again, with this process repeated until no further expansions occur.
This model naturally supports both recursive patterns and the use
of multiple distinct macros in an expression. The operators that
control this process are shown below:

op applySyntax : ExpList synmap -> ExpList .
op applyToExp : Exp synmap -> Exp .
op applyOneStep : Exp synmap -> Exp .

The first operator, applySyntax, is invoked each time a new
list of expressions is processed by K-Scheme. It makes use of
applyToExp to apply the syntax in the syntax map (synmap) to
each expression. applyToExp applies one step of syntax trans-
formation using applyOneStep, repeating this process until the
expression no longer changes.

ceq applyToExp(E,SM) = applyToExp(E’,SM)
if E’ := applyOneStep(E,SM) /\ E =/= E’ .

eq applyToExp(E,SM) = E .

The first equation shows the case where the expression does
change, meaning that E contained a use of a macro that was then
expanded in E’. In this case, we continue looking for macros to ex-
pand in E’. The second equation represents where no changes were
found (i.e., where the first equation did not apply). In this case, the
expression E, now fully expanded, is returned.

3.10.3 Matching and Substitution
Expansion works using a two step process. In the first step, match-
ing, the expander searches for a pattern that matches the supplied
syntax. The list of patterns associated with the macro keyword is
tried in order. If a match is found, a mapping from pattern vari-
ables to expression syntax is returned. Alternatively, match failure
causes the next pattern to be tried in turn. The match operation,
with a sample equation, is shown below:

op match : List List MatchPairs -> MatchPairsXBool .
eq match( [ E IL ] , [ patVar(X,N) IL’ ] , MPs )
= match( [ IL ], [ IL’ ], MPs { patVar(X,N), E } ) .

Here, match takes two lists. The first contains the current syntax
being processed, while the second contains the pattern. The final
parameter is a set of pairs, where each pair is a map of pattern
variables to the syntax they are matched to. The final result is this
set along with a flag indicating whether matching was successful.
The equation shows a sample match. The next term in the pattern to
match is a pattern variable, X; if the next term in the syntax list is an
expression, E, the match of X to E is recorded in the set of matches.

The second expansion step is substitution. Substitution uses the
mapping found during matching, along with the template associ-
ated with the matched pattern, to expand the macro to the proper
syntax. Variables in the pattern are replaced with the expression
syntax from the mapping, taking proper account of ellipses. The
subst operation, with a sample equation, is shown below:

op subst : Exp Exp Nat MatchPairs -> Exp .
ceq subst( [ X I IL ],[ IL’ ], M,

({ patVar(X,0), I’ } MPs))
= subst( [ I IL ],[ IL’ I’ ], M,

({ patVar(X,0), I’ } MPs))
if isEllipses(I) == false .

The subst operator takes a template expression, the first argument,
and generates the expanded expression, built up in the second
argument and eventually returned. The third parameter is a natural
number, used to track expansion properly for repeating names and
repeating lists. The final parameter is the set of matches developed
using the match operation. The equation shows an example of
substituting the value matched to a pattern variable in the match
operation for a pattern variable in the template. Here, if name X is
encountered, and is not followed by ellipses, and if X is also the
name of a pattern variable matched to list item I’, X is removed
from the template list and it’s substitution, I’, is added to the end
of the working list. When subst has emptied the template list, it is
finished, and will return the working list.

3.10.4 Example: Or
A standard example of define-syntax is the definition of or:

(define-syntax or
(syntax-rules ()

((_) #f)
((_ e) e)
((_ e1 e2 e3 ...)
(let ((t e1)) (if t t (or e2 e3 ...))))))

This pattern includes multiple cases and the use of recursion (in
the last case). Expansion works as expected: (display (or))
translates to [display #f], while (display (or (> 1 2) (>
3 4))) translates to [display [let [[’t [’> 1 2]]] [if
’t ’t [’> 3 4]]]] .

3.10.5 Example: Let
Another standard example is the definition of let, given as:

(define-syntax let
(syntax-rules ()

((_ ((X E) ...) B ...)
((lambda (X ...) B ...) E ...))))

This pattern includes just one non-recursive case, but the use
of repeating pattern variables is more complex than in the case
of or. Again, expansion works as expected: (let ((a 5) (b
6)) (display (+ a b)) (display (* a b))) expands to
[[lambda [’a ’b] [display [’+ ’a ’b]] [display [’*
’a ’b]]] 5 6] .
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3.10.6 Example: Nested Ellipses
A third example illustrates the use of nested ellipses:

(define-syntax test
(syntax-rules ()

((_ (X ...) ...) (list X ... ...))))

This pattern “strips off” the surrounding list structure, combining
all items into a single list. For instance, (display (test (1 2
3 4) (5 6) (7) (8 9 10))) expands to [display [list 1
2 3 4 5 6 7 8 9 10]].

4. Comparisons and Related Work
The K technique has been used to define several languages previ-
ously. Kool (Hills and Roşu 2007b,a) is an object oriented language
designed to show how object oriented language features can be de-
fined in the K framework. A formal definition of Java (Farzan et al.
2004) given in an earlier rewriting logic semantics style from which
K descended also exists. There is also a pre-alpha definition of Pro-
log using K at (Şerbănuţă et al.). Again, one of our main goals of
this project has been to show K’s definitional viability by defining
a language with heavy meta-programming capabilities.

Previous attempts at defining Scheme, or portions of Scheme,
also exist. As already mentioned (Kelsey et al. 1998) gives a partial
denotational semantics of Scheme which misses several features
(dynamic-wind, eval, a “top level”, etc.), and is not executable.

(d’Amorim and Rosu 2005) attempts a rewriting based ap-
proached to an operational semantics for Scheme. Our work in-
herits nothing from this. (d’Amorim and Rosu 2005) does not use
a list-like internal representation, most operations being performed
directly on the program syntax. In order to support quote and
eval, which is mistakenly called unquote (referred to as eval
in the following), quote creates a “frozen” expression, which can
be later evaluated by eval. This is an incorrect approach because
it means that only expressions generated by quote can be evalu-
ated by eval. Our approach is general and supports the evaluation
of arbitrary lists, as it should. We also feel that our evaluation
of an internal list representation is more in the spirit of the lan-
guage. Another problem with (d’Amorim and Rosu 2005) is that
lists themselves are represented as ValueList’s rather than cons
cells. This would not allow for sharing of cdr’s between lists. This
works for the subset defined because list modification was not sup-
ported (no set-car! or set-cdr!). Vectors are also mishandled
as ValueList’s, when they should be lists of locations. eqv? could
not be handled properly within this framework either. quasiquote
was also not supported (and adding support for it would be difficult,
due to the lack of proper list representation).

(Matthews and Findler 2005) provided an operational seman-
tics of R5RS Scheme. The main contributions of their paper
were a greater completeness than the formal definition given in
R5RS (they added eval, quote, and dynamic-wind), model-
ing multiple return values in a way that is transparent to the
rest of the definition, a model of undefined order of evalua-
tion, and that the executability of their definition. We provide
a definition of a dialect of Scheme with more features, offer-
ing definitions of define-syntax, quasiquote. unquote, and
unquote-splicing. Our eval, unlike the definition in (Matthews
and Findler 2005), also supports the environment parameter men-
tioned in R5RS. Multiple return values (only appropriate within
the context of call-with-values) are transparently handled in
our definition, vals being a particular Value type. As mentioned
earlier, we do not feel modification of continuations is necessary
to support dynamic-wind, because an implementation completely
written in Scheme exists in (Dybvig 2003). We also feel our def-
inition is more true to the spirit of Scheme with regards to how
code and data have a unified representation, rather than only using

a list structure in the presence of quote, cons, list, etc. (as in
(Matthews and Findler 2005)). This last is a subjective assessment,
however.

5. Future Work and Conclusions
Eventually, we intend to provide complete support for macros, with
let-syntax and letrec-syntax, as well as support for macros
involving improper lists and vectors. This will also entail hygiene
and referential transparency. Furthermore, we intend to provide full
support for the entire Scheme standard library (excepting input, due
to the nature of the Maude).

We have presented a formal definition K-Scheme, a dialect
of Scheme very similar to R5RS Scheme, using the K defini-
tional style within rewriting logic. The complete source and an
online trial of our definition can be found at (Meredith et al.).
Unlike earlier formal, executable definitions, we provide def-
initions for quasiquote, unquote, unquote-splicing, and
define-syntax (with portions of its associated pattern language).
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