An Executable Rewriting Logic Semantics of K-Scheme *

Patrick Meredith

Mark Hills

Grigore Rosu

University of Illinois Urbana-Champaign

{pmeredit,mhills,grosu }@cs.uiuc.edu

Abstract

This paper presents an executable rewriting logic semantics of K-
Scheme, a dialect of Scheme based (partially) on the informal defi-
nition given in the R°RS report (Kelsey et al. 1998). The presented
semantics follows the K language definitional style (Rosu 2005 and
2006) and is a pure rewriting logic specification (Meseguer 1992)
containing 772 equations and 1 rewrite rule, so it can also be re-
garded as an algebraic denotational specification with an initial
model semantics. Rewriting logic specifications can be executed on
common (context-insensitive) rewrite engines, provided that equa-
tions are oriented into rewrite rules, typically from left-to-right.
While in theory rewriting logic specifications can let certain behav-
iors underspecified, thus allowing more models, in practice they
need to completely specify all the desired behaviors if one wants
to use their associated rewrite systems as “interpreters”, or “imple-
mentations”. To become executable, K-Scheme overspecifies cer-
tain features left undefined on purpose in R°RS. In spite of over-
specifying for executability reasons, the rewriting logic semantics
in this paper is the most complete formal definition of a language
in the Scheme family that we are aware of, in the sense that it pro-
vides definitions for more Scheme language features than any other
similar attempts. The presented executable definition of K-Scheme
can serve as a platform for experimentation with variants and ex-
tensions of Scheme, for example concurrency. The Maude system is
used in this paper, but other rewrite engines could have been used as
well. Even though, on paper, K rewrite-based definitions tend to be
as compact and high-level as reduction-based definitions with eval-
uation contexts, their complete translation in Maude as executable
specifications is rather verbose and low-level. An automated trans-
lator from K to Maude is under development, which will reduce
the size of definitions following the K style several times and will
certainly increase their readability. The complete Maude specifi-
cation is public, together with a web-based interface to “execute”
K-Scheme programs without having to download Maude.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal definitions, design, theory.

Keywords Semantics, rewriting, Scheme.

* Supported by NSF CCF-0448501 and NSF CNS-0509321.

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

Scheme and Functional Programming 2007

1. Introduction

Scheme is a general purpose programming language with a uni-
fied handling of data and code. It also has a powerful macro sys-
tem, using pattern matching, to express syntax transformations.
The Revised® Report on the Algorithmic Language Scheme (R°RS
(Kelsey et al. 1998)) gives a thorough, but informal description of
the language, as well as a partial denotational semantics. The de-
notational semantics in (Kelsey et al. 1998) is missing definitions
of important language features, such as definitions of eval and
dynamic-wind, it does not define the “top level” used through-
out the informal specification, and, most importantly, it is not exe-
cutable. Executability of a language definition gives one confidence
in the appropriateness of the definition. Indeed, one can execute
hundreds of programs exercising various language features or com-
binations of features, and thus find and fix errors in the definition.
Many subtle errors were detected and fixed in our subsequent defi-
nition due to its executability.

Recent attempts have been made at giving formal, opera-
tional/executable semantics to fragments of Scheme (Matthews and
Findler 2005; d’Amorim and Rosu 2005). Unfortunately, the par-
tial definition in (d’ Amorim and Rosu 2005) does not use a proper
representation for vectors and lists, so it cannot be extended to the
complete Scheme, and neither (Matthews and Findler 2005) nor
(d’ Amorim and Rosu 2005) gives definitions for quasiquote or
macros. Furthermore, neither uses a unified representation of data
and code, which is one of the crucial defining aspects of Scheme.
These approaches, their limitations and comparisons with our cur-
rent definition are further discussed in Section 4.

In this paper we introduce a novel formal executable defini-
tion of K-Scheme, a dialect of Scheme based (partially) on R°RS.
Note that we use the term K-Scheme to interchangeably refer to
the definition of K-Scheme, presented here in Maude, and the
dialect of Scheme defined by our definition. K-Scheme uses a
proper representation for lists and vectors, a unified representa-
tion of code and data, and defines quasiquote and a large portion
of define-syntax macros. This definition uses the K definitional
technique (Rosu 2005 and 2006) within rewriting logic (Meseguer
1992). K is a language definitional framework consisting of the K-
technique, based on a first-order representation of computations as
lists or stacks of “computational tasks”, and of the K-notation, a
domain-specific notation within rewriting logic that eases under-
standing and defining programming languages. Rewriting logic is
a unified logic for concurrency that extends equational logic with
transitions; we mostly use the equational fragment of rewriting
logic in this paper. One rule is used in order to support unspec-
ified order of evaluation for procedure application forms. One of
the driving goals of K-Scheme has been to show the viability of K
for defining complex, real world languages, like Scheme. Scheme
was chosen particularly for its meta-programming facilities, which
provide a strong test for K. We chose to implement this definition
directly in Maude (Clavel et al. 2002) using the K-style because,

91

currently, there is no automatic translator from the K notation to
Maude. In K notation the definition would be far more high level.
This is no different than the way one would use Haskell, for exam-
ple, to capture a big-step, small-step, or a context reduction defini-
tion. A hasty or semantics reluctant reader may take our executable
definition as an “implementation of Scheme in Maude” because
it is quite efficiently executable, but in reality the Maude defini-
tion of K-Scheme is nothing but an initial model. The resulting
perceived “implementation” comes as a bonus. Admittedly some
features of R°RS which are under-specified (e.g., the behavior of
eqv?) are specified in this definition, so it is more proper to say
that K-Scheme defines a language derived from Scheme in which
points of ambiguity, which interfere with executability, have been
made unambiguous. Again, we also refer to this derived language
as K-Scheme. In the future, however, we intend to address these
shortcomings; we do not consider K-Scheme a finished project.

Currently, K-Scheme consists of 772 Maude equations and 1
rule, 192 of them for define-syntax macros and 575 for the
core of the language (and a few built-in procedures). We define 60
features of Scheme, using 310 auxiliary operators and 2152 lines
of Maude code; 374 lines of code, however, define aspects of the K
framework also common to other language definitions, and simple
helping operations. Also, we note that many features of Scheme for
which we give Maude code definitions could be written as Scheme
macros (e.g., let and cond), but we did not follow that approach.

The complete Maude definition of K-Scheme can be found on
K-Scheme’s webpage at (Meredith et al.), together with a web
interface allowing one to “execute” programs directly within K-
Scheme’s definition, using Maude’s capability to execute rewriting
logic specifications. The main limitations of K-Scheme at this point
are an incomplete standard library and the support of only integers
among the numeric types. These, as well as other implementation-
specific features of Scheme, can be added modularly (i.e., without
having to modify the definitions of the existing features) and will
be added eventually. Nevertheless, this is the most complete formal
definition of a Scheme-like language of which we are aware. In
particular we believe we are first to give formal definitions to the
operations of quasiquote, unquote, unquote-splicing, and a
partial definition of define-syntax.

On Rewriting Logic Semantics and K. This paper is part of the
rewriting logic semantics (RLS) project (see (Meseguer and Rosu
2007, 2004) and the references there). The broad goal of the project
is to develop a tool-supported computational logic framework for
modular programming language design, semantics, formal analy-
sis and implementation, based on rewriting logic (Meseguer 1992).
It has been shown in (Serbédnutd et al. 2007) that conventional
definitional styles, such as big-step (Kahn 1987) and small-step
SOS (Plotkin 1981), MSOS (Mosses 2004), reduction semantics
with evaluation contexts (Wright and Felleisen 1994), the chemi-
cal abstract machine (Berry and Boudol 1992), and continuation-
based semantics, can all be faithfully captured, in the sense of in-
tended computational granularity, as rewrite logic theories. There-
fore, rewriting logic can be indeed used as an ecumenical frame-
work for language definition using any of the above-mentioned
styles, inheriting all their advantages and disadvantages.

K (Rosu 2005 and 2006) is an attempt to optimize the use of
rewriting logic for language definitions without obeying any of
the styles above; it is, though, closest in spirit to continuation-
based semantics, in that it maintains the current computation as a
special structure that can be manipulated like any other data-type,
in particular altered. The K technique uses a subset of rewriting
logic and can be easily supported by other frameworks, for example
by functional programming systems; however, in that case one
would use K for the sole purpose of implementing interpreters.

92

2. Rewriting Logic Semantics

This section provides a brief introduction to term rewriting, rewrit-
ing logic, and the use of rewriting logic in defining the semantics
of programming languages. Term rewriting is a standard com-
putational model supported by many systems; rewriting logic
(Meseguer 1992; Marti-Oliet and Meseguer 2002) organizes term
rewriting modulo equations as a complete logic and serves as a
foundation for programming language semantics (Meseguer and
Rosu 2004, 2006, 2007). Continuation-based rewriting logic se-
mantics, the form of rewriting logic semantics adopted in this pa-
per, provides explicit representations of control context which can
be used in the definitions of language features that manipulate this
context, such as continuations, exceptions, or jumps.

2.1 Term Rewriting

Term rewriting is a method of computation that works by progres-
sively changing (rewriting) a term. This rewriting process is defined
by a number of rules — potentially containing variables — which are
each of the form: [— r. One step of rewriting is performed by
first finding a rule that matches either the entire term or a sub-term.
This is done by finding a substitution, 6, from variables to terms
such that the left-hand side of the rule, I, matches part or all of the
current term when the variables in [are replaced according to the
substitution. The matched sub-term is then replaced by the result of
applying the substitution to the right-hand side of the rule, r. Thus,
the part of the current term matching (1) is replaced by 6(r). The
rewriting process continues as long as it is possible to find a sub-
term, rule, and substitution such that (1) matches the sub-term.
When no matching sub-terms are found, the rewriting process ter-
minates, with the final term being the result of the computation.
Rewriting, like other methods of computation, may not terminate.

There exist a plethora of term rewriting engines, including ASF
(van den Brand et al. 2002), Elan (Borovansky et al. 1998), Maude
(Clavel et al. 2002), OBJ (Goguen et al. 2000), Stratego (Visser
2003), Tom (Kirchner et al. 2005), and others. Rewriting is also a
fundamental part of existing languages and theorem provers. Term
rewriting is inherently parallel, since non-overlapping parts of a
term can be rewritten at the same time, and thus fits well with
current trends in architecture and systems.

2.2 Rewriting Logic

Rewriting logic is a computational logic built upon equational logic
which provides support for concurrency. In equational logic, a num-
ber of sorts (types) and equations are defined. The equations spec-
ify which terms are considered to be equal. All equal terms can
then be seen as members of the same equivalence class of terms, a
concept similar to that from the A calculus where A terms can be
grouped into equivalence classes based on relations such as a and
[equivalence. Rewriting logic provides rules in addition to equa-
tions, used to transition between equivalence classes of terms. This
allows for concurrency, where different orders of evaluation could
lead to non-equivalent results, such as in the case of data races. The
distinction between rules and equations is crucial for formal analy-
sis, since terms which are equal according to equational deduction
can all be collapsed into the same analysis state. Rewriting logic
is connected to term rewriting in that all the equations and rules of
rewriting logic, of the form [= r and [= r, respectively, can be
transformed into term rewriting rules by orienting them properly
(necessary because equations can be used for deduction in either
direction), transforming both into I — . This provides a means of
taking a definition in rewriting logic and a term and “executing” it.

2.3 Maude: A Rewriting Logic System

In this paper we discuss a rewrite logic definition of K-Scheme us-
ing Maude (Clavel et al. 2002), a high-performance rewriting logic

Scheme and Functional Programming 2007

system. In Maude, equations are defined as eq 1 = r, while rules
are defined as r1 1 => r (the => symbolizing a one-way transi-
tion, versus an equality). Conditions may be added to both equa-
tions and rules, with conditional equations represented as ceq 1 =
r if c and conditional rules represented as crl 1 => r if c.
Terms, such as 1, r, and c above, are formed from operations, de-
fined using the keyword op, and from variables, declared using the
keyword var; by convention, operator names start with lowercase
letters or symbols, while variable names start with uppercase let-
ters. Equations and rules can be used directly to execute a program
based on a rewriting logic definition.

Maude provides several capabilities beyond standard equations
and rules which make it useful for defining languages and perform-
ing formal analysis of programs. Maude allows commutative and
associative operations with identity elements, allowing straight-
forward definitions of language features which make heavy use of
sets and lists, such as sets of program state information and lists
of computational tasks. Maude also provides built-in support (not
explored in this paper) for model checking and breadth-first state
space exploration, using the rules defined in the semantics to in-
dicate competing tasks (memory accesses, lock acquisition, etc)
which can split the state space.

2.4 K: A Computation-based Rewriting Logic Semantics

K (Rosu 2005 and 2006) is a rewriting logic semantics framework
consisting of a technique and a specialized notation, to define
programming languages as rewriting logic theories. In this paper,
we use the K technique to define K-Scheme in Maude; the reader
interested in the K notation, as well as in further details regarding
the K technique, is referred to (Rosu 2005 and 2006). By K, we
understand the K definitional technique within rewriting logic.

In K, the current program is represented as a potentially nested
“soup”, (or multi-set), of terms representing the current computa-
tion, memory, global definitions, etc. Information stored in the state
can be nested, allowing logically related information to be grouped
and manipulated as a whole. The most important piece of informa-
tion is the Computation, wrapped by the operator k, which is a
first-order representation of the current computation, made up of a
list of computational tasks separated by —>. The computation can
be seen as a stack, with the current computational task at the left
and the remainder (continuation) of the computation to the right.
This stack, along with other state components, can be saved and re-
stored later, allowing complex control structures to be defined. For
example, if in a certain definitional context where the remaining
computation is represented by K one wants to schedule for pro-
cessing/evaluating expression E, all one needs to do is replace the
current computation in the state configuration by E -> K. After E
evaluates to value V the computation will be V. -> K.

Lists, used frequently in K, and Maude definitions in general,
are defined in Maude as associative operations with identity ele-
ments. An example is ValueList:

sort Valuelist .

subsort Value < Valuelist .

op nill : -> ValueList .

op _,_ : ValueList ValueList -> Valuelist
[assoc id: nill]

Here, ValueList can be seen as a new “type”, or sort; Value is
declared to be a subsort, meaning that a Value can be treated as a
(trivial, one element) ValueList. nill is declared as an operation
with no arguments, also called a constant, of result sort ValueList,
and is made the identity of the list formation operation, _, -, which
allows us to assume that the list always has a tail (since we can
always add nill to the end of the list). List formation is associative,
allowing us to arbitrarily group elements in the list, but is not
commutative, since order is important.

Scheme and Functional Programming 2007

Multisets are defined similarly in Maude, but are also commu-
tative. An example is Env, which represents environments:

sort Env .
op empty : -> Env .
op [_,_]1 : Name Location -> Env .

op __ : Env Env -> Env [assoc comm id: empty]
op _[_] : Env Name -> Location .

op _[_<-_]1 : Env Name Location -> Env .

eq ([X,L] Env)[X] = L .

eq ([X,L] Env)[X <- L°] = ([X,L’] Env)

eq Env[X <- L] = (Env [X,L]1)

Here, again, a new sort, Env, is defined. An environment is either
empty or is a pair of Name and Location. We can also form an
environment by putting it next to another environment, forming an
environment set using the __ operation; this operation is associative
and commutative, with empty as the identity. The final two opera-
tions allow environment lookup (_[_]) and modification (_[_<-_]).
The definition of these two operations is shown in the three equa-
tions. The first defines lookup: when looking up name X, if there is
a pair with name X and location L in the environment (Env is the
rest — since environments are sets and are defined as commutative,
we can always assume that the pair we are interested in is the first
pair in the set), return location L. The next two equations define
environment modification. In the first, the name X is already in the
environment with location L, and we want to change this to loca-
tion L’, so we update the existing pair, leaving the rest unchanged.
In the second, X was not found in the existing environment, so we
just add a new pair with name X and location L. The first two equa-
tions make use of Maude’s complex matching modulo equations, in
this case modulo associativity and commutativity (of operator __).
Here, and in the rest of the paper, we rely on Maude’s order of equa-
tion application, since the final equation would also encompass the
case in the second equation. One can easily translate our current
definition into a Maude definition that is not dependent on equa-
tion ordering, making use of Maude features such as “otherwise”
and conditional equations, but we do not do this here since these
translations tend to make the equations more complex. Methods of
automatically translating definitions using these features into pure
rewriting logic specifications that maintain the proper algebraic se-
mantics are available for both otherwise (Clavel et al. 2007) and
conditional equations (Serbanutd and Rosu 2006).

Using lists and sets (combined with the appropriate state infras-
tructure, defined in Section 3), we can then define more complex
equations such as:

eq k((V,VL) -> assignTo(X,XL) -> K) mem(Mem)
env([X,L] Env)

= k(VL -> assignTo(XL) -> K) mem(Mem[L <- V])
env([X,L] Env)

This equation assigns a list of values (computed based on a list of
expressions) to a list of names. V represents a value at the head
of the list of values, with VL representing the tail. Similarly, X
represents a name at the head of the list of names, with XL as
the tail. assignTo is a continuation item, and is used to represent
the action of assigning computed values to a list of names. K
matches the rest of the computation — i.e., the next computational
steps once the assignment is complete. Mem represents the current
memory, a mapping of locations to values, while Env represents an
environment, (as shown above) a mapping of names to locations. L
represents one of these locations.

The equation works as follows: given a name X, look up the
location at which X is stored. This leverages matching modulo
associativity and commutativity (set or multi-set matching) twice,
first to bring in both the continuation and the environment parts of
the “soup”, and second to identify the proper name/location pair
in the environment. With this location, the term representing the

93

computation can be modified, representing a step of computation.
This step will leave the remaining parts of the assignment on
the continuation (the remaining values and names), will leave the
environment unchanged, but will modify the memory, replacing it
with an altered memory where location L takes on value V. This
will use memory update equations like those for Env shown above.

3. K-Scheme in Rewriting Logic

In our definition K-Scheme we attempted to cover the entirety of
core Scheme as defined, informally, in R°RS (Kelsey et al. 1998).
As mentioned previously we made the decision to specify many
of under-specified attributes of Scheme, and thus K-Scheme must
be considered a dialect of Scheme. By “core” we mean those syn-
tactic keywords and procedures not marked as library. We also
support select library syntax and procedures, and intend to offer
a full standard library in the future. Specifically, our K-Scheme
currently includes equations for the following Scheme features:
+, -, *, / (integer only), append, and, apply, begin, boolean?,
call-with-current-continuation, call-with-values, car,
cdr, cadr, cddr, char?, cond, cons, define, delay, do,define-
syntax, dynamic-wind, eq?, equal?, eqv?, eval, expt, force,
if, lambda, let, let*, letrec, 1ist, display, make-string,
make-vector, not, null?, number?, or, pair?, procedure?,
string-length, string-ref, string-set!, symbol?, syntax-
rules, quote, quasiquote, set!, set-car!, set-cdr!, un-
quote,unquote-splicing, vector?, vector-length, vector-
ref, and vector-set!.

In terms of syntactic keywords, we support quasiquote and
the define-syntax form of macros, which we consider part of
the core language. The macro support is not complete, but many
standard examples can be handled by our definition. We are primar-
ily lacking only those core procedures which operate on different
types of numbers, since K-Scheme currently only supports integers.
The predicate number? returns #t for any integer. Conversions be-
tween different data types are currently missing, but are easy to de-
fine. Characters, while defined, are currently missing comparison
operators. Input and output are currently limited to the procedure
display. The complete definition of K-Scheme using the K tech-
nique can be found on K-Scheme’s webpage at (Meredith et al.).

3.1 Syntax

To make Scheme more palatable to Maude, the internal definition
of the syntax used by K-Scheme is slightly different from standard
Scheme syntax. We provide an external parser at (Meredith et al.)
capable of converting normal Scheme code to K-Scheme code, but
currently output from programs uses K-Scheme syntax .

Parenthesis are significant to Maude (to resolve precedence
conflicts), so we removed them in favor of square brackets. Note
that many Scheme interpreters already allow the use of square
brackets to denote parentheses. Maude expects strings to be de-
limited by double quotes, so strings in our syntax are wrapped
in curly braces, for example {"foo"}. Character constants use
the same “#\” syntax as Scheme, save that Maude characters are
single character strings, so a character in K-Scheme looks like
#\ ("£"). The short-cut syntax for quote, quasiquote, unquote,
and unquote-splicing needed to be changed, because “’”, “¢”,
and “,” are all significant to Maude. We therefore use “$” “"’
“r and “1@” respectively. All variable names need to be quoted.
All examples in this paper are given in normal Scheme syntax, but
in some places K-Scheme syntax is used to show output. Also,
some of the macro equations use the K-Scheme syntax because they
are syntax transformations.

!' We must stress that programs can be written in normal Scheme syntax due
to our external parser at (Meredith et al.)

94

3.2 Scheme State Representation

When defining a language using K, one of the important decisions
is the structure of the state. By “state”, we here mean all the
information about a program execution snapshot, including the
program itself; in this sense, it is like a “configuration” in SOS
(Plotkin 1981). The rewrite rules require this state structure to
determine the context of equation application. The major concerns
are that all needed information be available, and that the state is
organized in a logical, extensible manner. Our goal is for additions
to the state representation to be possible without breaking existing
equations in the semantics, when possible, and vice versa.

The state representation for K-Scheme consists of the compo-
nents: k, the computation; mem, the store; nextLoc, the next free
location in the store; env, the local environment; globalenv, the
global environment; synmap the syntax map for macros (see Sec-
tion 3.10); output, the output of the program; and program, the
stored syntactic representation for the rest of the program not cur-
rently in the continuation.

As the heart of computation, k is the predominate feature in
most of the equations. An effort is maintained to match only the
front of the computation in equations, both for ease of understand-
ing, and efficiency reasons.

The store, mem, contains all program values bound to variables,
or contained in structures bound to variables. It is a mapping from
location (given as the constructor loc with a natural number ar-
gument, though any sort with a partial ordering and an increment
operator could be used in place of natural numbers) to program
values. The natural number value of nextLoc is incremented after
every allocation, ensuring that previous store values are not lost.

The environments, env and globalenv, map program variables
(symbols) to locations. A distinction between local environment
and global environment is necessary in the presence of closures.
When a closure is formed, only the local environment is saved in
the closure, thus changes to the referent of variables mapped in
the global environment will be visible. This necessity is explained
further in Section 3.6. The separation of store from the variable
binding of the environment allows for an easier representation of
the complex structures in Scheme (e.g. lists, vectors).

Every time the built-in function display is called in a program,
its argument is converted to a Maude string representation and
appended to the value contained in the output state component.

The last component, program, contains the syntactic represen-
tation of all expressions in the program not currently executing.
K-Scheme allows for multiple expressions, which are computed
in order, as one would expect from a Scheme program given to
an interpreter or compiler in a non-interactive mode. The presence
of call-with-current-continuation (call/cc) necessitates
program. call/cc requires the entire computation be captured at
the point of call, and passed to its argument. If the entire program
exists in the computation, then the entire program would be passed
to the argument of call/cc; this is not the desired behavior for K-
Scheme, and can result in unexpected non-termination cases (see
Section 3.7).

The following is the equation creating the initial state:

eq run(EL) = [k(stop) mem(empty)
program(EL) globalenv(empty) env(empty)

synmap (empty) nextLoc(1) output(none)]

When the run operator is applied to an ExpList EL, itis placed in
the program attribute. stop is a signal to the definition to place the
next Expression in the program attribute onto the continuation,
or, if none exists, to end execution, it is also the identity opera-
tor for computations. Recall that the “computational tasks” listed
in the computation with the construct “~> ” are processed in or-
der from left to right. We pass empty environments and stores to

Scheme and Functional Programming 2007

eq k(apply(fbuiltin(car), cell({L1
= k((Mem[L1]) -> K) mem(Mem) .
eq k(apply(fbuiltin(cdr), cell({L1
= k((Mem[L2]) -> K) mem(Mem)
eq k(apply(fbuiltin(set-car!),cell({L1 . L2}),V) -> K)
= k(V -> assignToLoc(L1) -> symbol(unspecified) -> K)
eq k(apply(fbuiltin(set-cdr!),cell({L1 . L2}),V) -> K)
= k(V -> assignToLoc(L2) -> symbol(unspecified) -> K)
eq k(apply(fbuiltin(cons), Vi, V2) -> K)
= k((V1, V2) -> makeConsCell -> K)
eq k((V1,V2) -> makeConsCell -> K) nextLoc(N)
= k((V1,V2) -> assignToLoc(locs(N, 2))
-> cell({loc(N) . loc(N + 1)}) -> K) nextLoc(N + 2)

eq list2Values(cell({L1 . L2}), (Mem [L2,V2]))
= if (V2 == symbol(nil)) then Mem[L1]

else ((Mem[L1]), list2Values(V2, (Mem [L2,V2]))) fi .
eq list2Values(symbol(nil), Mem) = nill .
eq list2Names(cell({L1 . L2}), (Mem [L1,symbol(X)][L2,V]))
= (X, list2Names(V, Mem [L1, symbol(X)][L2, V1))
eq list2Names(symbol(X), Mem)
= if (X == nil) then () else (&rest, X) fi .

. L2})) -> K) mem(Mem)

. L2})) -> K) mem(Mem)

Figure 1. List Operations

env, globalenv, and mem, but these will be populated during ini-
tialization. synmap is also initialized to be empty. This equation
showcases well the attributes of K-Scheme’s state. Note that equa-
tions need only reference attributes of the state significant to their
operation.

3.3 Lists

The aspect of Scheme that we consider as the most important
to maintain in K-Scheme is the unified representation for both
program and data. All functioning programs are lists. To support
the semantics of lists, we use a storage model much like that given
in the R°RS report (Kelsey et al. 1998).

Internally, all lists are represented as cons cells. Cons cells are
pairs of locations, which can be thought of as pointers. To form
an actual list, the second location, the cdr of the cons cell, points
to another cons cell. We chose this representation both because
it is the representation suggested by R°RS and because it easily
supports desired Scheme functionality. An example is the sharing
of cdr’s. Two lists may share cdr’s, wherein the update to the cdr
of one list is reflected in the cdr of the list sharing that cdr:

(define x (list 1 2 3 4))
(define y (list 1 2))
(set-cdr! y (cdr x))

===> (12 3 4)
(set-car! (cdr x) 9)
x ===> (19 3 4)
y===> (1934

Because we represent cons cells as pairs of locations, the cdr’s of
the cons cells representing x and y in the above example point to
the same physical cons cell, and any updates will be reflected in
both. The Maude syntax for cons cell is:

sort ConsCell .
op {_._} : Location Location -> ConsCell .

This structure also allows the built-in Scheme operations on lists
to be handled fairly trivially. Finding the car of a list, x, simply
amounts to looking up the value pointed to by the first location in
the cons cell representing x.

Recall that due to the program state attribute we only exe-
cute one expression in the continuation at a time. These expres-
sions, however, can be arbitrarily complex. Each complete expres-
sion is first converted into this list representation (before execu-

Scheme and Functional Programming 2007

tion). Execution is on list structures consisting of cons cells, except-
ing the creation of simple constants and variables. For example, in
(define x 4) (display x) x 4, the x and the 4 are not con-
tained in cons cells; they also have no effect on the output (though
they are “executed” by K-Scheme).

Figure 1 shows the Maude definitions for the list operations
cons, car, cdr, set-car!, set-cdr, and cons. The presence of
apply (mbuiltin(X),V1, V2...) or apply(fbuiltin(X),V1
,V2...) denotes the application of a built-in syntactic keyword or
built-in function to the values V1, V2 ..., respectively.? The con-
structor cell accepts a cons cell as an argument and creates a
value, i.e., {L1 . L2}, is a cons cell, while cel1({L1 . L2})
is a value. Mem [L] “returns” the value L points to in the store Mem.
Note that operator k wraps the continuation where all computation
happens, and that the K variable matches the rest of the continua-
tion. The constructor symbol is to symbols what cell is to cons
cells (it converts a symbol i