
Deriving a Comprehensive Document from a Concise Document
Document Engineering in Scheme

Kurt Nørmark
Department of Computer Science, Aalborg University, Denmark

normark@cs.aau.dk

Abstract
In this paper we analyze and discuss the problem of deriving acom-
prehensive and coherent document from a concise starting point. In
more concrete terms we discuss how to grow and consolidate a slide
presentation to a complete and self-contained document. Through-
out the paper we are concerned with avoiding unnecessary dupli-
cation of document fragments and authoring efforts. Our experi-
ence is based on the Scheme-based, XML-constrained authoring
system called LENO, which we use for creation of annotated slide
presentations in programming courses. We explain how a LENO
slide presentation can be extended to a document in the styleof a
textbook. The textbook and the slide presentation may shareboth
structure and contents. From an authoring perspective we discuss
the process of dealing with both a primary source and a derived
source. From a technical perspective we discuss the ideas ofsingle
sourcing, derivation of a secondary source from a primary source,
and the use of Scheme for document engineering purposes.

1. Introduction
In this paper I will discuss the use of Scheme as a document de-
scription language. This will involve document engineering issues
related to Scheme. The work in the paper describes a niche of the
work on LAML (Nørmark 2005).

In almost a decade I have made extensive use of Scheme as
a textual markup language. The authored materials include slides,
annotated slides, and textbook materials in the area of program-
ming and programming languages. In this paper I will focus on
issues that bridge the gap between authoring of slide materials and
textbook materials. The use of Scheme as a document description
language will be illustrated throughout the paper.

The starting point of this paper is best described by the follow-
ing scenario:

We have developed a concise slide material that covers some
topic, such as a lecture in a university course or a profes-
sional area presented in a seminar. We need to make an ex-
tended version of the material, which essentially includes
the slide elements as a subset. The extended version is sup-
posed to be coherent and comprehensive, as a contrast to

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

the slide material, which typically is itemized and concise.
It means that more content items need to be filled in. To ob-
tain an optimal exposition of the material a few structural
changes need to be accommodated. Due to media concerns,
a few dynamic elements need to be replaced by static coun-
terparts. The extended document should be printable.

Slide presentations are popular and widespread in most univer-
sity courses. Many teaching materials are first created as slide pre-
sentations and later developed to more complete and self-contained
contributions (notes and textbooks). The problem of deriving a
more complete and comprehensive version of the slide material is
therefore a well-known and commonly occurring problem for many
teachers and authors. We hypothesize that the ideas and the solu-
tions to this concrete problem can be generalized to other contexts,
which demand a derivation of a coherent and comprehensive mate-
rial from a concise starting point.

The paper also relates to the authoring process of the material.
Our work supports a process where the key elements, in terms of
brief and essential statements, are formulated first. In addition, the
overall structure of the material, as needed for presentation pur-
poses, is also determined early in the process. The remaining parts
of the full document are built as layers around these key elements.
Overall, the structure of the concise document is supposed to be
preserved in the comprehensive document. However, the approach,
which will be detailed below, is flexible enough to accommodate al-
most arbitrary structural differences between the concisedocument
and the comprehensive document.

Our work is based on a Scheme representation of both the slides,
possible annotations of the slides, and the derived comprehensive
document. The target formats are HTML and SVG1. The backbone
of the Scheme source representation is defined and constrained by
an XML Document Type Definition (DTD). With this positioning
we are able to benefit from the power of a flexible, general pur-
pose programming language in the document source text. We are
also in tune with the community that makes use of XML for docu-
ment representation purposes. The differences between XMLfrag-
ments and the S-expression counterparts in Scheme are small, and
lexical transliteration can, in principle, be used for transformations
between them.

The rest of this paper is structured as follows. First, in section 2,
we discuss the advantages of avoiding duplication of document ele-
ments. In Section 3 we discuss a particular document model based
on a primary source of the concise document and a derived, sec-
ondary source of the comprehensive document. The concrete tool,
which implements the document model, is discussed in Section 4.
The tool is implemented in Scheme. The use of Scheme for docu-
ment engineering purposes is summed up in Section 5. In Section

1 SVG (W3C 2003) is an XML language for describing two-dimensional
graphics.

Scheme and Functional Programming 2007 117



6 we discuss the current work relative to similar work. The conclu-
sions are drawn in Section 7.

2. Authoring without duplication
The handling of a non-trivial teaching material, and the manage-
ment process involved during the lifetime of such a material, typ-
ically involves a variety of duplicated elements and efforts. In this
section we will discuss these problems at a general level.

Consider the following examples of duplications:

1. Document fragments which both exist inside and outside the
material (such as external images, tables, and computer source
programs).

2. Document fragments which occur at two or more different
places in the material.

3. Full and abridged versions of the material (such as a coverage
of a curriculum in many or just a few lectures).

4. A number of different, but temporally identical editionsof the
material (such as a web version, a CD version, a version that
can be downloaded, and a printable version).

5. A number of temporally different versions of the material(such
as versions related to each year a given course is offered).

My personal experience stems from authoring of slides, notes,
and textbook materials about computer programming. A material
about Functional Programming in Scheme may serve as an example
(Nørmark 2003c). The most recent example is a teaching material
about object-oriented programming in C# (Nørmark 2007b), which
currently is in active development. I have found it attractive to in-
clude program source files bytransclusion (Kolbitsch and Mau-
rer 2006), superficially following the ideas of Ted Nelson (Nelson
1995). With this solution the teaching material is updated2 when-
ever the source programs are updated. Transclusion should be seen
as an alternative to manual pasting of program copies into the doc-
ument.

Some key parts of the material may appear more than once in
the material. If these parts are duplicated at the source level, it is
difficult to keep the material consistent and up-to-date during the
lifetime of the document. On several occasions I had to give short
versions of the courses, where only a subset of the material was
directly and explicitly exposed. In the starting point it iseasy to
make a copy and hereby to edit an abridged version, but it is very
difficult to keep both the full and short version consistent with each
other subsequently.

Overall, the tendency of avoiding both small-scale and large-
scale content overlaps has been crucial for the quality of the ma-
terial. The amount of inconsistencies can be reduced if a single
source is responsible for multiple appearances of some detail. If,
for instance, the teaching material exposes a C source program it
is in most situations3 essential that the latest and most up-to-date
version of the program is being exposed. In addition, avoiding con-
tent overlaps in the document source has a positive impact onthe
efficiency of the authoring process.

The primary challenge discussed in this paper is to manage
a concise (slide) version and a more comprehensive (textbook)
version of the same material in relation to each other. The amount
of overlap between these versions is massive, and thereforeit is
crucial to avoid unnecessary duplication of document elements and
authoring efforts. However, the potential difference between the

2 Depending on the propagation strategy, the actual updatingmay be instan-
taneous, or it may depend on some action (processing) to be initiated by the
author.
3 In rare situations, where we for instance address an early version of a
program, we may want to prevent propagation of the most recent version.

concise and the comprehensive version is large enough to challenge
or disable traditional single sourcing approaches (see Section 6).
In the next section we will explain the document model we have
developed, and in Section 4 we will discuss our concrete solutions
in Scheme with the LENO system.

3. Primary and secondary sources
Our work is based on a two-level document model called the PriSec
model (the primary/secondary source model). The PriSec model
has been created as part of our work on the LENO system. In
the model, the concise document, corresponding to the slidepre-
sentation, is represented by aprimary source. The primary source
contains those elements, which are relevant and necessary at the
slide level. In addition, the primary source may hold annotations
which are tightly connected to the individual elements. Thepri-
mary source is structured according to the needs and use of the
concise documents (typically a number of individual pages,each
with a limited amount of information).

In the PriSec model, the comprehensive document is repre-
sented by asecondary source. The comprehensive document may,
for instance, be structured as a textbook, in terms of of chapters,
sections, and subsections with use of figures, tables, etc. In order
to minimize the amount of duplication, as discussed in Section 2,
those elements of the concise document that also appear in the com-
prehensive document are represented as references from thecom-
prehensive document to the concise document. Additional content
elements can be added to the secondary source. This organization
of the two documents relative to each other is illustrated inFigure
1.

In the figure, there are 12 primary elements pe1, pe2, ... pe12
structured in four sequential units (slide pages). There are 13 sec-
ondary elements structured in two sequential units (article or book
chapters). Of the 13 secondary elements 8 are references to the pri-
mary elements, and 5 are contents elements that contribute only to
the comprehensive document. Some primary elements (pe4, pe6,
pe8, pe10, and pe11) are not part of the comprehensive document.
A single primary element (pe5) appears twice in the comprehensive
document. The ordering of the primary elements in the comprehen-
sive document is pe1, pe2, pe3, pe7, pe5, pe9, pe12, and pe5.

With this organization of the primary and secondary sources,
the freedom of composing the comprehensive document by means
of references to the elements of the primary source is evident. The
existing elements from the primary source may be thought of as
building blocks of the secondary source. The order of appearance
of the elements in the comprehensive document can be controlled
freely. Some elements from the primary source can be eliminated,
and others may be duplicated if needed.

The consistency between the primary source and the secondary
source is seen as the major challenge in the application of the
PriSec model. In the starting point, it is necessary to produce the
secondary source, with a potentially large amount of references
to elements in the primary source. During the authoring process
both the primary and secondary sources evolve. If a new element
is added to the primary source it may be appropriate to update
the secondary source accordingly. If an existing element isdeleted
from the primary source, and if this element is referenced from the
secondary source, measures need to be taken. If the primary source
is reorganized care must be taken to keep the references between
the two sources intact. In Section 4 we will discuss our solutions to
these problems in the context of the LENO system.

4. The LENO solution
LENO is a tool for authoring of LEcture NOtes (Nørmark 2003a,b),
primarily in the area of computer science, and with special empha-

118 Scheme and Functional Programming 2007



Figure 1. The primary and secondary sources together with the references from the secondary source to the primary source.

sis on the need in programming courses. In a LENO context, the
concept oflecture notes covers the spectrum from a naked set of
slides, via text/voice annotated slides, to more complete teaching
materials in the style of a textbook. As a matter of LENO termi-
nology, a material in the style of a textbook is represented as a
sequence ofthemes at the authoring level, and presented as a se-
quence ofchapters at the level of the end-user.

LENO is based on two XML languages both of which are de-
fined by XML Document Type Definitions, DTDs (W3C 1998).
We have used an authoring approach where the XML documents
are actually written as expressions in the programming language
Scheme (Kelsey et al. 1998). The connection between the XML
level and the Scheme level is defined via the LAML system
(Nørmark 2007d). LAML, and the mirroring of XML in Scheme,
is well-documented in another paper (Nørmark 2005). The LENO
author writes the documents in a text editor. In case Emacs isused,
the author is supported by a number of editing commands and tem-
plates that can be accessed via the Emacs menu system. The au-
thored text must be a sequence of Scheme expressions. When the
Scheme expressions are evaluated the target format of the material
is produced.

We use the termprogrammatic authoring for document author-
ing in the context of a programming language (Nørmark 2002).
Programmatic authoring is a powerful approach. The main reason is
that many instances of document complexities can be encapsulated
in functional or procedural abstractions. In addition, many tedious
authoring tasks can be dealt with programmatically in the document
source text. Due to “clutter” and involved syntax, programmatic au-
thoring is not within reach in mainstream programming languages
(such as in languages with syntax derived from C).

To keep the discussion at a concrete and tangible level we have
written a primary source of a few demo slides. In addition, wehave

written a secondary source of a slightly more comprehensivever-
sion of the demo material. The Scheme documents, which represent
the primary and secondary sources, are shown in Appendix A. The
generated materials, as well as the document sources, can beac-
cessed from an accompanying web page (Nørmark 2007c).4 It may
be instructive to compare the sources in Appendix A with the gen-
erated HTML pages. Throughout the rest of this section we will
illustrate our points with excerpts from the documents in Appendix
A.

4.1 The LENO source forms

The primary source of a simple slide presentation is shown in
Appendix A.1. As it appears, a LENO presentation is structured
as aleno-front-matters clause with a large number of at-
tributes, followed by a number ofnote-pages surrounded by
begin-notes and end-notes. Each note-page contains ele-
ments such aspoint, items, concept-list, etc. LENO supports
38 different kinds of immediate constituents of note pages.When
the document is processed by the LENO tool, a large number of
interlinked HTML and SVG pages are generated.

4 Use the URLhttp://www.cs.aau.dk/∼normark/cc.html to access
the accompanying web resources of this paper.

Scheme and Functional Programming 2007 119



The following shows a document fragment that represents a
single note page in the primary source:5

(note-page ’id "intro"
(title (main-text "Introduction"))
(point ’id "pt1"
(main-text
"This paper is about..."))

(items ’id "it1"
(item (main-text "Outline:")
(items (item (main-text "Model"))

(item (main-text "The LENO system"))
(item (main-text "Conclusions"))))

)
)

Note pages appear in the context of a given lecture, which has
assigned a unique lecture id. A note page has an id of its own,
which must be unique within a lecture. In addition, most notepage
subelements have ids that are unique within a single note page.

When the primary source is processed by LENO, the tool is able
to automaticallyderive an initial, secondary source from the pri-
mary source. The secondary source represents the LENO themes.
In the starting point each theme corresponds to a subsequence of
slides, which are separated bysection-title elements in the pri-
mary source. In the primary source document shown in Appendix
A.1 there are three note pages withsection-titles, and there-
fore there are three themes in the initial derived document,as shown
in Appendix A.2.

The derivation of the secondary source is controlled by the front
matters attributetheme-source in the primary source. (If the value
of this attribute is"new" a new secondary source is derived and
written to a new file in a template directory. The value"delta"
is used for derivation of a delta source, see Section 4.3). The sub-
stance of the secondary document is made up byleno-element
references to note page constituent elements. Almost all kinds
of note page constituents (such as itemized lists, points, images,
source program listings, concept lists, and syntax diagrams) can be
addressed from the secondary source. In the comprehensive mate-
rial we use itemized list (from the concise document) for overview
and summary purposes. The following is a typical excerpt of the
derived secondary source.

(theme ’id "intro-sec"
(leno-element ’lecture-id "demo" ’page-id "intro-sec"
’element-type "section-title" ’element-number "1" )

(leno-element ’lecture-id "demo" ’page-id "intro"
’element-type "title" ’element-number "1" )

(leno-element ’lecture-id "demo" ’page-id "intro"
’element-type "point" ’element-id "pt1" )

(leno-element ’lecture-id "demo" ’page-id "leno-prim"
’element-type "items" ’element-id "it1" )

; ...
)

The firstleno-element shown above initiates a new chapter,
and the second initiates a new section of the chapter. The third and
fourth leno-element contribute to the contents of the new sec-
tion in terms of a short statement (a point) and an itemized list.
The leno-elements address elements from the primary source
with use of lecture-id and page-id attributes. Some LENO
elements use in addition theelement-id and, redundantly, the

5 A symbol represents an XMLattribute name. The symbol must followed
by a string (or a value that can be converted to a string), which represents
anattribute value.

element-type attributes. Others use theelement-number at-
tribute instead ofelement-id in the meaning of element number
n of type"title", for instance. (Notice in this context that only
onetitle element is allowed in each note page. Therefore there is
no need to have a unique id of the note pagetitle element).

Using the automatically derived secondary source as a start-
ing point, the author of the comprehensive material is assumed to
add more contents. This is typically done by addingtheme-text
clauses to a theme, as siblings to theleno-element clauses, and
with the purpose of adding “raw text” to the secondary source.
In addition, the author may reorganize theleno-elements ar-
bitrarily. Also, new themes may be added and existing themes
may be deleted. The ordering ofleno-elements within a theme
clause may be changed, someleno-elements may be eliminated,
and others may be duplicated. Elimination of aleno-element
from the secondary source can in principle be done by deleting
it. However, for the sake of consistency management (see be-
low) elimination should be done by adding adrop attribute to
theleno-element with the value"true".

4.2 Cross-references

As part oftheme-text clauses it is often relevant to make across-
reference to another location in the comprehensive document. If
we, for instance, want to include a reference to a presentation of a
source program in the comprehensive document, we may aggregate
an identification of the target in terms of the name of the theme
source file name, the id of thetheme clause in the secondary file,
the ids of the primary source lecture and note page which contain
thesource-program element, the type of the target element (here
a"source-program"), and the unique id of the element within the
note page. The aggregation is represented as a Scheme expression6,
which generates an HTMLa anchor element with a suitablehref
value. The following is an example of a reference clause in a LENO
secondary source:

(ref "structures_themes-linked-sec" "structures"
"list-fu" "source-program" "sp1")

It is error prone to type such clauses directly, as text. Therefore,
there are two alternative ways to create aref form. If a LENO
theme is generated in a special author mode, theref clause of
each element can be reached from the browser. (Theref clauses
are represented together, in an internal HTML page). As another
possibility, if Emacs is used as the authoring tool, the editor can
aggregate aref clause from the similar targetleno-element
clause, using themake-theme-ref editor command. Subsequent
use of another editor command,insert-theme-ref, inserts the
aggregatedref clause.

The comprehensive document can be presented either as hyper-
text (HTML) or as text suitable for printing (PDF). In the hypertext
version the cross-references as well as references to otherparts of
the LENO material are rendered as anchored links. In the print-
able version the cross-references are rendered as numberedenti-
ties, such as “Chapter 3”, “Section 3.1”, and “Figure 3.2”. Other
kinds of document cross-references are eliminated in the printable
version.

4.3 Consistency issues

As already discussed in Section 3, the major challenge of dealing
with both a primary and a secondary document source is the prob-
lem of keeping them mutually consistent during the life timeof the

6 Alternatively we could have extended the LENO XML theme language
to accommodate cross-references. However, the keyword style of XML
parameter passing is more bulky than native positional parameter passing
of Scheme functions. This is the reason behind the design of theref form.

120 Scheme and Functional Programming 2007



Figure 2. An overview of the editing and derivation of primary and secondary sources.

material. As a typical scenario, the concise slide document, rep-
resented by the primary source, is updated through a multitude of
modifications. Without specialized tool support it is very difficult
to manage the corresponding updates of the comprehensive, text-
book document. This is especially the case if the updating ofthe
comprehensive document is done days or weeks after the updating
of the concise document. Figure 2 shows a scenario of the temporal
development of both sources. In the figure we distinguish between
manual editing, manual consistency management, and automatic
derivations (see the legend of the figure).

It is not realistic to go for an automatic updating of the sec-
ondary source, because only the author can sort out the implications
of the changes to the concise document. The solution in LENO is
to automatically derive a new secondarydelta source, similar to the
original derivation, in which the new elements in the concise docu-
ment are clearly marked in the secondary source. Technically, this
is done by identifying those elements of the primary source which
are not represented somewhere asleno-elements in the exist-
ing secondary source. It should be noticed thatleno-elements
that are dropped in the secondary source will not be rediscov-
ered, and not marked as new, relative to the primary source. (In
contrast,leno-elements that are physically deleted from the
secondary source will be marked as new elements in subsequent
delta sources). The author of the secondary source can now man-
ually merge the existing secondary source and the secondarydelta
source, and hereby effectuate the updating of the comprehen-
sive document. Typically, this updating process also affects the
existing theme-text elements, and it may call for adding new
theme-text elements as well.

Reorganizations of the primary source do not harm the sec-
ondary source, as long as the identities of lectures, note pages, and
note page subelements are not affected.7 Deletions of note pages or
note page constituents from the primary source should be done by
marking these as deleted (lazy deletion, by use ofdrop attributes).
Actual deletions of note pages, or constituents of note pages, may
cause dangling references in the secondary source. A lazilydeleted

7 Unfortunately, a reorganization that moves a primary element from one
note-page to another does affect the identity of the element, as addressed
from the secondary source. In the current version of the system it is there-
fore tedious to deal with such reorganizations.

page or a lazily delete page constituent is still internallyavailable,
and it can be addressed from the secondary source.

It is sometimes necessary to modify the wording of the print
version in relation to the wording of the hypertext version.Such
variations are accomplished by use of conditionals (if or cond) of
the Scheme programming language.

Taken all together, the LENO solution to the consistency prob-
lem requires a great deal of work. We find, however, that this work
is unavoidable due to the individual sequencing of the concise doc-
ument and the comprehensive document. The LENO solution helps
the author to keep an overview of the changes, and it makes it real-
istic to update the secondary source with use of fragments from the
secondary delta source.

The granularity of reuse has together with the granulariy ofcon-
sistency management been chosen as that of the note page con-
stituents of the primary source. Recall that a typical note page con-
stituent is an itemized list, a point in terms of a single emphasized
statement, an image, a source program, or an exercise. The argu-
ments behind this choice are the following:

• The individual note page constituents make up the structural
units, which reflects a natural and conceptual decomposition of
the primary source.

• The individual note page constituents are identifiable and ad-
dressable, and therefore they are easy and attractive to reuse.

• An individual note page constituent is conceived as a unit,
which typically should appear in its totality.

In principle, the granularity could have been either largeror
smaller. In one extreme, the secondary document could be cre-
ated as a copy of the primary document, extended with additional
contents, and subsequently managed by general version control
and diff tools in relation to the primary document. This would be
an unstructured and low-level approach. In the other extreme, indi-
vidual atoms (such as textual characters) of the primary document
could be reused from the secondary document. It would, however,
be difficult and convoluted to provide for addressing of suchsmall
units.

4.4 Post processing

We post process the print version of the HTML document in an
interactive word processor (Microsoft Word). The most important
concern in this process is page breaking (which is tricky anddiffi-

Scheme and Functional Programming 2007 121



cult to deal with in batch processing mode). In addition we add de-
tails such as page numbers. Finally, a PDF version of the Worddoc-
ument is generated using a PDF generator, such as the tool called
PDF Creator. As an alternative to interactive use of an interactive
word processor, we could have used XSL-FO (W3C 2000) for a
description of the printable version. With this approach, an XSL
batch processing tool (such as the Apache FOP processor) could be
use to obtain a PDF document. It is a long term goal of the work
with LENO to support PDF creation via XSL-FO.

5. Document Engineering in Scheme
In the work presented in this paper the Scheme programming lan-
guage serves several different purposes:

1. Scheme is used as a text processing language.
2. Scheme is used as an image processing language.
3. Scheme is used as a host of several XML languages, most

notable the primary and secondary source languages of LENO.
4. Scheme is used for abstraction of document details, whichwe

want to encapsulate and hide in the document sources.
5. Scheme is used as the implementation language of the tool,

which transforms the primary and secondary sources to the
target formats.

We will now discuss each of the purposes in turn.

Ad 1. Scheme as a text processing language. First and fore-
most, it may be asked if it is reasonable to write large amounts of
text—with markup—as Scheme expressions. In such text, unbro-
ken pieces of textual contents are represented as string literals.

Based on my experience, itis reasonable and profitable to use
Scheme for text processing purposes. The primary key to success
seems to be good editor support for embedding of textual selections
in Scheme forms, splitting of a string in substrings, opening of
a new form with initial empty content, nesting of forms in other
forms, and cleaning up of messy markup. Over the years we have
developed very helpful Emacs editor commands for these purposes.
These commands are applicable in LENO and in other contexts
where Scheme is used for programmatic authoring.

Ad 2. Scheme as an image processing language. Teaching ma-
terials contain both text and images. It is disruptive for the author to
create text and images in two different editors. Therefore we create
most graphical illustrations in SVG, on a textual basis.8 Like the
LENO XML languages and XHTML, SVG is mirrored in Scheme.
As a consequence, SVG images can be authored as Scheme expres-
sions, and they can be inlined in the primary LENO source docu-
ment. It is our experience that most of our illustrations aregraph
structures (in terms of nodes and edges) occasionally in some re-
laxed meaning. We have created a graph library extension of SVG
(Nørmark 2007a), which we currently use for a teaching material
about object-oriented programming in C# (Nørmark 2007b). In the
target documents we most often transform SVG to a more accessi-
ble format, such as PNG (by use of the Apache Batik SVG toolkit).

Ad 3. Scheme as a host of XML. There exist several differ-
ent ways to deal with XML in Scheme: SXML (Kiselyov 2002),
WebIt (Bender), Scribe/Skribe (Serrano and Gallesio 2002;Serrano
2006), and LAML (Nørmark 2005). In LAML each XML element

8 It is a pain to switch between text and image editing environments. It may
also be felt as a pain to create graphical illustrations via textual commands
or markup. It would be possible to go for an integrated environment like
MS Word or Powerpoint. I have used MS Powerpoint extensivelythrough
several years. The lack of abstraction mechanisms and the missing support
of authoring without duplications, see Section 2, makes Powerpoint a poor
solution to the encountered document engineering challenges.

is represented by a namedmirror function9. An expression rooted
by a mirror function generates an internal syntax tree. The mirror
functions have exact knowledge of possible attributes and possi-
ble document constituents. As a consequence, a Scheme expression
that activates several mirror functions validates the corresponding
XML document (relative to the XML DTD) when the expression
is evaluated. Relative and absolute links (URLs) that appear in the
expression can also be checked.

It is very important to provide for a clean and smooth XML no-
tation in Scheme. A source form in LENO/LAML is an expression
that activates named mirror functions (see Appendix A for concrete
examples). Mirror functions pass and interpret the actual parame-
ters in a special andliberal way (see Section 3 of (Nørmark 2005)
for details). As an alternative to the LAML approach, the document
source could have been a list expression, which reveals the internal
AST representation. Such a representation, either dominated by list
functions or quasiquotations, is at a lower level of abstraction, and
therefore it typically appears to be polluted with disturbing details.

In LAML/LENO a list of XML attributes, a list of element
content items, or a mixed list of attributes and element content
items is automatically and recursively spliced into its context. The
following three XHTML mirror expressions are equivalent:

(a ’href "URL" "Anchor text")
(a "Anchor text" (list ’href "URL"))
(a (list "Anchor" (list "text"))

(list (list ’href "URL")))

In real-life situations, the instances oflist stand for specific
list-valued functions. The automatic and recursive splicing means
that a part a document easily can be abstracted by a list-valued
function. Without systematic splicing of lists it would be necessary
for the document author to deal with list-flattening. This would
severely disturb the cleanliness of the source.

At the most detailed level, the handling of white spacing matters
a lot. In a LENO/LAML source document there are white space
in between element content items, unless explicitly suppressed.
With this decision, it is not necessary to have annoying prefix or
suffix white spacing in literal text strings (such as" text" or
"text "). A white space suppress value, bound to an underscore,
is used if two content items next to each other should appear
without spread. With this convention, the two expressions(span
"The end.") and(span "The" "end" ".") are equivalent.
The already mentioned editing commands insert most underscore
symbols automatically if a string is splitted in the neighborhood of
punctuation characters.

Ad 4. Scheme for ad hoc document abstraction. When work-
ing with textual markup, there is frequently a need for introduc-
ing ad hoc abstractions beyond the abstractions of the markup lan-
guage. (In TeX and LaTeX this need can, to some degree, be reme-
died by TeX macros). When a document is authored in Scheme it
is straightforward to write a number of auxiliary document abstrac-
tion functions in Scheme. When textual contents or XML attributes
appear as parameters to such functions, it is our experiencethat the
functions should accept parameters in the same liberal way as the
mirror functions of the XML language. The higher-order function
xml-in-laml-abstraction generates such a function. As an ex-
ample, the definition

(define f
(xml-in-laml-abstraction
(lambda (contents attributes)

(list contents attributes))))

9 Each named Scheme function is seen as a mirror of the corresponding
XML element. Hence, the namemirror function.

122 Scheme and Functional Programming 2007



bindsf to a function with liberal parameter passing.(f "t" ’x
5 "s" ’y "6") is evaluated to the list(("t" #t "s") (x "5"
y "6")) in which the first element represents the contents and the
last element represents the attributes. The attributes arerepresented
as a property list.#t represents a forced white space value.

Mixed parameter passing, as in the definition

(define g
(xml-in-laml-positional-abstraction 2 1

(lambda (x y contents attributes z)
(list x y z contents attributes))))

bindsg to a function in which the two first parameters and the last
parameter are positional. The actual parameters in betweenthese
are interpreted in the liberal way.(g 1 2 "t" "s" ’y "6" ’x
5 3) is evaluated to(1 2 3 ("t" #f "s") (y "6" x "5")).
#f represents a white space suppress value.

Ad 5. Scheme as an implementation language. The LENO
system is implemented in Scheme. Currently, the size of the LENO
system is approximately 15.000 lines of code on top of the LAML
libraries. The day-to-day needs of features in the teachingmateri-
als, through almost a decade, have led to a messy implementation,
and to a complex web of Scheme source files behind the LENO
tool. The flat name space of R5RS Scheme and the lack of modular
encapsulation mechanisms have made it difficult to keep highstan-
dards in the underlying LENO implementation. If timed allowed, a
complete rewrite of the system would be desirable.

6. Related Work
We are not aware of similar work, which directly shares the aims
and the goals of the work described in this paper. In this section
we will therefore describe related work, which positions the PriSec
model and the LENO system with respect to similar issues in
different contexts.

Slideshow (Findler and Flatt 2004; PLT) is similar to the pri-
mary LENO slide language, but without support of the secondary
(textbook) language. Both Slideshow and LENO are based on func-
tional programming, and both rely on Scheme. Slideshow provides
a programmatic and functional approach to slide authoring,in par-
ticular with use of abstractions, and it is strong with respect to
the handling of pictures. The Slideshow system comes with its
own processor, which is embedded in the DrScheme environment.
Slideshow produces slides via its own interpreter, and it isable to
create a PDF file. In contrast, the distinctive characteristic of LENO
is its orientation towards XML source formats (in the LENO XML
languages) and HTML/SVG target formats.

The derivation of one source from another is known from the
area of source-to-source transformations. Source-to-source trans-
formation is used in programs and specifications for software en-
gineering purposes (Baxter et al. 1994; Partsch and Steinbrüggen
1983). Source-to-source transformation is also used in thearea of
XML documents (Leinonen 2003; Krishnamurthi et al. 2000), as,
for instance, supported via XSLT (W3C 1999). As a general rule,
however, it is not the case that both the source and the transformed
source are maintained. In other words, the document author does
not actively edit both the source and the transformed sourcedocu-
ment. In comparison, our work on the PriSec model calls for main-
tenance of both the primary and the secondary sources.

The area of software documentation (Forward and Lethbridge
2002; Vestdam and Nørmark 2002) represents an example of two
levels of source documents (source programs and internal program
documentation, for instance) which are mutually dependent, and
both of which are simultaneous maintained. What is worth noticing
is that the program documentation is not derived from the source
program, or vice versa. The program and its documentation are usu-

ally written in two different documents. The main challengeis to
keep the documentation up-to-date when the program is modified.
In that respect, we deal with the exact same challenges in LENO.
However, our starting point is different, because one of thedocu-
ments (the comprehensive document) is initially derived automati-
cally from the other document (the concise document).

As already noticed earlier in this paper, the PriSec model and
the LENO approach have much in common with the ideas of
single sourcing(Rockley 2001; Fraley 2003; Kostur 2000). Single
sourcing is defined as the use of a “single document source to
generate multiple types of document outputs” and “workflowsfor
creating multiple outputs from a document or database source”
(STC). In the strict sense, PriSec is not a single sourcing model,
but of adouble sourcing approach. The reason is that two different
sources are used to control the independent sequencing of elements
in the two documents. In the starting point, however, the source of
the concise document serves as “the single source”, used to derive
the initial source of the comprehensive document.

Continuing our comparison with software documentation, it
is interesting to notice that the program documentation approach
known as Literate Programming (Knuth 1984) can be seen as a
single sourcing program documentation approach, in which both
the program and the documentation are authored in an extended,
aggregated language. Similarly, API documentation in the style
of Javadoc (Friendly 1995), Doxygen (van Heesch 2004), and
SchemeDoc (Nørmark 2004) can be seen as single sourcing, be-
cause this kind of documentation is represented as specialized
comments in the program source text.

The use of double sourcing (in terms of a primary and a sec-
ondary, derived source) can be seen as a reminiscence of the pre-
ferred authoring process. This particular authoring process first pro-
duces a slide material as the basis for an oral presentation,and later
a written account in the style of a textbook. The reverse authoring
process is also possible, and in fact quite well-known from the au-
thoring of scientific papers and subsequent production of slides for
oral presentation at conferences or workshops. We are, however,
not aware of any attempt to derive slides (semi)automatically from
the full paper.

7. Conclusions
As the main contribution of this paper we have developed a docu-
ment model, called the PriSec model, which is based on a primary
source and a secondary source. The primary source, which repre-
sents a concise document, can be used to derive an initial version
of the secondary source of the comprehensive document. Oncede-
rived, the secondary source is assumed to be elaborated in various
ways, leading to a situation where both the primary source and the
secondary source need to be kept mutually up-to-date.

The PriSec model is implemented in the LENO system, and
supported by commands in the Emacs text editor. Most interesting,
we have developed an approach where a secondary delta sourcecan
be re-derived from the primary source and the existing secondary
source. This secondary delta source can manually be merged with
the existing version of the secondary source, with the purpose of
updating it relative to changes of the primary source.

The LENO system has been used since 1999 (by the author and
a colleague) to produce collections of teaching materials for dif-
ferent programming-related computer science courses. Theconcise
and comprehensive documents for these courses are available via
(Nørmark 2007c).

The authoring process of a comprehensive material is interest-
ing in its own right. As the first step, the essential key elements of
the material are formulated, including elements such as important
concepts, main points, itemized overviews, etc. In a LENO con-
text, these key elements constitute the concise document—the slide

Scheme and Functional Programming 2007 123



presentation. As the second step, the key elements are plumbed
together by adding additional contents, such as intro, outro, and
explanations. For the materials mentioned above, we have found
this two-step authoring process both interesting and rewarding. The
process encourages the author to concentrate on the essentials in
the first phase. The second phase is concentrated on consolidation
and additional explanations, in order to make the material self-
contained and approachable without an accompanying oral presen-
tation. The comprehensive document, as delivered by the tool, is
typically affected by the process through which is has been cre-
ated. The itemized lists, which dominate most slide presentations,
can either be used as introductory overviews or for summary pur-
poses.

Our concrete experience with the PriSec model is gained within
the area of computer science teaching materials. We hypothesize,
however, that the model can be used in other situations where
concise and comprehensive documents with massive overlapsare
needed. We also hypothesize that the two-step authoring process,
as discussed above, can be beneficial in these situations.

LENO is free software, bundled with LAML, and available from
the LAML home page (Nørmark 2007d). The LENO home page
(Nørmark 2003a) holds all available LENO resources, including a
gentle introduction, examples, and a tutorial.

Acknowledgement
I wish to thank the anonymous reviewers for valuable input tothe
final version of the paper.

References
Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. DMS:

Program transformations for practical scalable software evolu-
tion. In The proceedings of the 26th international conference on
software engineering. IEEE Computer Society, 1994.

Jim Bender. WebIt!http://celtic.benderweb.net/webit/.
Robert Bruce Findler and Matthew Flatt. Slideshow: Functional

presentations. InProceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming, pages
224–235. ACM Press, September 2004.

Andrew Forward and Timothy C. Lethbridge. The relevance
of software documentation, tools and technologies: a sur-
vey. In DocEng ’02: Proceedings of the 2002 ACM sym-
posium on Document engineering, pages 26–33. ACM Press,
2002. ISBN 1-58113-594-7. URLhttp://doi.acm.org/-
10.1145/585058.585065.

Liz Fraley. Beyond theory: Making single-sourcing actually work.
In Proceedings of the 21st annual international conference on
Documentation, pages 52–59. ACM Press, 2003.

Lisa Friendly. The design of distributed hyperlinked program-
ming documentation. In Sylvain Frass, Franca Garzotto, Toms
Isakowitz, Jocelyne Nanard, and Marc Nanard, editors,Pro-
ceedings of the International Workshop on Hypermedia Design
(IWHD’95), Montpellier, France, 1995.

Richard Kelsey, William Clinger, and Jonathan Rees. Revised5

report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7–105, August
1998. URL http://www.schemers.org/Documents/-
Standards/R5RS/r5rs.pdf.

Oleg Kiselyov. SXML, August 2002. URLhttp://okmij.org/-
ftp/Scheme/SXML.html.

Donald E. Knuth. Literate programming.The Computer Journal,
May 1984.

Josef Kolbitsch and Hermann Maurer. Transclusion in an HTML-
based environment. Journal of Computing and Information
Technology, 14(2):161–174, 2006.

Pamela Kostur. Information modeling for single sourcing. In
18th Annual Conference on Computer Documentation - IPCC,
SIGDOC 2000, pages 333–342. ACM and IEEE, 2000.

Shriram Krishnamurthi, Kathryn E. Gray, and Paul T. Graunke.
Transformation-by-example for XML. In E. Pontelli and V. San-
tos Costa, editors,PADL 2000, LNCS 1753, pages 249–262.
Springer Verlag, 2000.

Paula Leinonen. Automating XML document structure transfor-
mations. InDocEng’03, pages 26–28. ACM Press, November
2003.

Theodor Holm Nelson. The heart of connection: Hypermedia
unified by transclusion.Communication of the ACM, 38(8):31–
33, August 1995.

Kurt Nørmark. Programmatic WWW authoring using Scheme and
LAML. In The proceedings of the Eleventh International World
Wide Web Conference - The web engineering track, May 2002.
URL http://www2002.org/CDROM/alternate/296/.

Kurt Nørmark. Web programming in Scheme with LAML.
Journal of Functional Programming, 15(1):53–65, January
2005. URL http://www.cs.aau.dk/∼normark/laml/-
papers/web-programming-laml.pdf.

Kurt Nørmark. The LENO home page, 2003a. URLhttp:-
//www.cs.aau.dk/∼normark/leno/.

Kurt Nørmark. The why and wherefore of the LENO system,
August 2003b. URLhttp://www.cs.aau.dk/∼normark/-
laml/papers/leno/why-and-wherefore.pdf.

Kurt Nørmark. Functional programming in Scheme -
with web programming examples, 2003c. URLhttp:-
//www.cs.aau.dk/∼normark/prog3-03/html/notes/-
theme-index.html.

Kurt Nørmark. Scheme program documentation tools. In Olin
Shivers and Oscar Waddell, editors,Proceedings of the Fifth
Workshop on Scheme and Functional Programming, pages 1–11.
Department of Computer Science, Indiana University, Septem-
ber 2004. URLhttp://www.cs.aau.dk/∼normark/laml/-
papers/documentation-tools.pdf. Technical Report 600.

Kurt Nørmark. A graph library extension of SVG. In
Proceedings of SVG Open 2007, Tokyo, Japan, September
2007a. URLhttp://www.cs.aau.dk/∼normark/laml/-
papers/svg-open-2007/paper.html.

Kurt Nørmark. Object-oriented programming in C# - for
C programmers, 2007b. URLhttp://www.cs.aau.-
dk/∼normark/oop-07/html/notes/theme-index.html.

Kurt Nørmark. Web resources of the current paper, August 2007c.
URL http://www.cs.aau.dk/∼normark/cc.html.

Kurt Nørmark. The LAML home page, 2007d. URLhttp://-
www.cs.aau.dk/∼normark/laml/.

H. Partsch and R. Steinbrüggen. Program transformation systems.
ACM Computing Surveys, 15(3):199–236, 1983.

PLT. PLT slideshow. URLhttp://www.plt-scheme.org/-
software/slideshow/.

Ann Rockley. The impact of single sourcing technology.Technical
Communication, 48(2):189–193, 2001.

Manuel Serrano. Skribe, 2006. URLhttp://www-sop.inria.-
fr/mimosa/fp/Skribe/.

Manuel Serrano and Erick Gallesio. This is Scribe! InWork-
shop on Scheme and Functional Programming (2002), October
2002. URLhttp://www-sop.inria.fr/mimosa/Manuel.-

124 Scheme and Functional Programming 2007



Serrano/scribe/doc/scribe.html.
STC. URLhttp://www.stcsig.org/ss/.
Dimitri van Heesch. Doxygen, 2004. URLhttp://www.-

doxygen.org.
Thomas Vestdam and Kurt Nørmark. Aspects of internal pro-

gram documentation - an elucidative perspective. In10th In-
ternational Workshop on Program Comprehension. IEEE, June
2002. URL http://dopu.cs.aau.dk/publications/-
aspects-paper.pdf.

W3C. Scalable vector graphics (SVG) 1.1 specification, January
2003. URLhttp://www.w3.org/TR/SVG11/.

W3C. Extensible markup language (XML) 1.0, February 1998.
URL http://www.w3.org/TR/REC-xml. http://www.w3.-
org/TR/REC-xml.

W3C. Extensible stylesheet language (XSL) version 1.0. Technical
report, W3C, November 2000. URLhttp://www.w3.org/-
TR/xsl/.

W3C. XSL transformations (XSLT) version 1.0. W3C Recommen-
dation, November 1999. URLhttp://www.w3.org/TR/xslt.

Scheme and Functional Programming 2007 125



A. An example
In this appendix we show the primary and secondary sources ofa simple LENO demo material. The Scheme sources, corresponding XML
sources, and the resulting HTML documents are available as web resources of this paper (Nørmark 2007c). The web resources are located at
http://www.cs.aau.dk/∼normark/cc.html.

A.1 The primary source

The primary source of a simple slide presentation is shown first. The list ofleno-front-matters attributes has been abbreviated.

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/lecture-notes/lecture-notes")

(leno-front-matters
(front-title "Concise and Comprehensive Documents")
(front-author "Kurt Normark")
(front-affiliation "Aalborg University")
(front-abstract
"An ultra brief exposition of the relations between
concise and comprehensive documents")

’slide-view "true" ’annotated-slide-view "false"
’aggregated-view "false" ’theme-view "true"
’primary-view "slide-view" ’scheme-prefix "pre-notes.scm"
’scheme-suffix "post-notes.scm"
’css-prestylesheet "large-size" ’css-stylesheet "original"
’theme-auto-process "false" ’theme-source "new"

; Some attributes have been elided in this version
)

(begin-notes)

(note-page ’id "intro-sec" (section-title "Introduction"))

(note-page ’id "intro"
(title (main-text "Introduction"))
(point ’id "pt1"
(main-text
"This paper is about derivation of a comprehensive document from a concise document"))

(items ’id "it1"
(item (main-text "Outline:")
(items (item (main-text "Model"))

(item (main-text "The LENO system"))
(item (main-text "Conclusions"))))))

(note-page ’id "model-sec" (section-title "Model"))

(note-page ’id "primsec"
(title (main-text "The Prisec model"))
(concept-list ’id "con1" (concept ’concept-name "Prisec"

(main-text "The Prisec model is a model with a primary and secondary source
of the concise and comprehensive documents resp." )))

(items ’id "it1"
(item (main-text "Issues:")
(items (item (main-text "Derivation of the secondary source from the primary source"))

(item (main-text "Consistency between the sources "))
(item (main-text "An alternative to a single source model")))))

(point ’id "pt1" (main-text "LENO implements the Primsec model")))

(note-page ’id "leno-sec" (section-title "LENO"))

(note-page ’id "leno-prim"
(title (main-text "The primary LENO source"))
(point ’id "pt1" (main-text "LENO is an XML-based presentation tool in the LAML family"))
(cross-references ’id "cr1"
(internet-reference ’href "http://www.cs.aau.dk/~normark/laml/" (main-text "LAML")))
(items ’id "it1"
(item (main-text "LENO primary source characteristics:")
(items (item (main-text "Slide view, annotated slide view, and aggregated view"))

(item (main-text "Aims at elimination of duplicated source elements"))
(item (main-text "Structured as sectioned lectures and slide pages")))))

(point ’id "pt2" (main-text "A secondary source can be derived from the primary source ")))

126 Scheme and Functional Programming 2007



(note-page ’id "leno-seco"
(title (main-text "The secondary LENO source"))
(point ’id "pt1" (main-text "The secondary source contains lots of references to primary source elements"))
(items ’id "it1"
(item (main-text "LENO secondary source characteristics:")
(items (item (main-text "Theme-text elements add to the comprehensiveness"))

(item (main-text "Presented as traditional paper material"))
(item (main-text "Structured as chapters and sections")))))

(point ’id "pt2" (main-text "A PDF version can easily be provided for"))
)

(end-notes)

A.2 The derived secondary source

Below we show the secondary document source, as derived automatically from the primary source. As discussed in Section 4, it is intended
that the author adds textual contents to this source in termsof theme-text elements. A version with addedtheme-text elements can be
consulted in the accompanying web resources (Nørmark 2007c).

(load (string-append laml-dir "laml.scm"))

(laml-style "xml-in-laml/lecture-notes-themes/lecture-notes-themes")

(leno-themes-front-matters
’scheme-prefix "pre-notes.scm"
’scheme-suffix "post-notes.scm"

)

(begin-themes)

(theme ’id "intro-sec"
(leno-element ’lecture-id "demo" ’page-id "intro-sec" ’element-type "section-title" ’element-number "1" )

(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "title" ’element-number "1" )
(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "point" ’element-id "pt1" )
(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "items" ’element-id "it1" )

)

(theme ’id "model-sec"
(leno-element ’lecture-id "demo" ’page-id "model-sec" ’element-type "section-title" ’element-number "1" )

(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "title" ’element-number "1" )
(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "concept-list" ’element-id "con1" )
(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "items" ’element-id "it1" )
(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "point" ’element-id "pt1" )

)

(theme ’id "leno-sec"
(leno-element ’lecture-id "demo" ’page-id "leno-sec" ’element-type "section-title" ’element-number "1" )

(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "title" ’element-number "1" )
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "point" ’element-id "pt1" )
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "cross-references" ’element-id "cr1" )
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "items" ’element-id "it1" )
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "point" ’element-id "pt2" )

(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "title" ’element-number "1" )
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "point" ’element-id "pt1" )
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "items" ’element-id "it1" )
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "point" ’element-id "pt2" )

)

(end-themes)

Scheme and Functional Programming 2007 127



128 Scheme and Functional Programming 2007


