Deriving a Comprehensive Document from a Concise Document

Document Engineering in Scheme

Kurt Ngrmark

Department of Computer Science, Aalborg University, Derkma
normark@cs.aau.dk

Abstract

In this paper we analyze and discuss the problem of derivoagra
prehensive and coherent document from a concise starting po
more concrete terms we discuss how to grow and consolidéitiea s
presentation to a complete and self-contained documenbugh-
out the paper we are concerned with avoiding unnecessatis dup
cation of document fragments and authoring efforts. Ouleexp
ence is based on the Scheme-based, XML-constrained aughori
system called LENO, which we use for creation of annotatiete sl

the slide material, which typically is itemized and concise

It means that more content items need to be filled in. To ob-
tain an optimal exposition of the material a few structural
changes need to be accommodated. Due to media concerns,
a few dynamic elements need to be replaced by static coun-
terparts. The extended document should be printable.

Slide presentations are popular and widespread in mosgmniv
sity courses. Many teaching materials are first createddes jste-
sentations and later developed to more complete and sef&ioed

presentations in programming courses. We explain how a LENO contributions (notes and textbooks). The problem of degva

slide presentation can be extended to a document in theaftgle
textbook. The textbook and the slide presentation may dhatte
structure and contents. From an authoring perspective sisk
the process of dealing with both a primary source and a dérive
source. From a technical perspective we discuss the idesisgie
sourcing, derivation of a secondary source from a primawa®
and the use of Scheme for document engineering purposes.

1. Introduction

In this paper | will discuss the use of Scheme as a document de-

scription language. This will involve document enginegrissues
related to Scheme. The work in the paper describes a nicheeof t
work on LAML (Ngrmark 2005).

In almost a decade | have made extensive use of Scheme a

a textual markup language. The authored materials incllidess
annotated slides, and textbook materials in the area ofrgnog
ming and programming languages. In this paper | will focus on
issues that bridge the gap between authoring of slide naégennd
textbook materials. The use of Scheme as a document déseript
language will be illustrated throughout the paper.

The starting point of this paper is best described by thedell
ing scenario:

We have developed a concise slide material that covers some
topic, such as a lecture in a university course or a profes-
sional area presented in a seminar. We need to make an ex-
tended version of the material, which essentially includes
the slide elements as a subset. The extended version is sup-
posed to be coherent and comprehensive, as a contrast to

Proceedings of the 2007 Workshop on Scheme and Functioogtdmming
Universitée Laval Technical Report DIUL-RT-0701

Scheme and Functional Programming 2007

more complete and comprehensive version of the slide rahieri
therefore a well-known and commonly occurring problem fainy
teachers and authors. We hypothesize that the ideas andlthe s
tions to this concrete problem can be generalized to othetegts,
which demand a derivation of a coherent and comprehensite-ma
rial from a concise starting point.

The paper also relates to the authoring process of the makteri
Our work supports a process where the key elements, in tefms o
brief and essential statements, are formulated first. litiaddthe
overall structure of the material, as needed for presemtgiur-
poses, is also determined early in the process. The renggiairts
of the full document are built as layers around these key ehtm
Overall, the structure of the concise document is supposdzbt

reserved in the comprehensive document. However, theagipr

hich will be detailed below, is flexible enough to accomnteds-
most arbitrary structural differences between the corsii®eiment
and the comprehensive document.

Our work is based on a Scheme representation of both theslide
possible annotations of the slides, and the derived corepsive
document. The target formats are HTML and SVGhe backbone
of the Scheme source representation is defined and corestrain
an XML Document Type Definition (DTD). With this positioning
we are able to benefit from the power of a flexible, general pur-
pose programming language in the document source text. /e ar
also in tune with the community that makes use of XML for docu-
ment representation purposes. The differences between fxadL.
ments and the S-expression counterparts in Scheme are anll
lexical transliteration can, in principle, be used for sfommations
between them.

The rest of this paper is structured as follows. First, irisac,
we discuss the advantages of avoiding duplication of doonede-
ments. In Section 3 we discuss a particular document modeicha
on a primary source of the concise document and a derived, sec
ondary source of the comprehensive document. The conaeie t
which implements the document model, is discussed in Sedtio
The tool is implemented in Scheme. The use of Scheme for docu-
ment engineering purposes is summed up in Section 5. Indpecti

1SVG (W3C 2003) is an XML language for describing two-dimensil
graphics.

117

6 we discuss the current work relative to similar work. Thedo-
sions are drawn in Section 7.

2. Authoring without duplication

The handling of a non-trivial teaching material, and the atgn

ment process involved during the lifetime of such a matetygl-

ically involves a variety of duplicated elements and eforh this

section we will discuss these problems at a general level.
Consider the following examples of duplications:

1. Document fragments which both exist inside and outside th
material (such as external images, tables, and computeresou
programs).

2. Document fragments which occur at two or more different
places in the material.

3. Full and abridged versions of the material (such as a egeer
of a curriculum in many or just a few lectures).

4. A number of different, but temporally identical editioofthe

material (such as a web version, a CD version, a version that

can be downloaded, and a printable version).

5. A number of temporally different versions of the matefgaich
as versions related to each year a given course is offered).

My personal experience stems from authoring of slides,syote
and textbook materials about computer programming. A rister
about Functional Programming in Scheme may serve as an éxamp
(Ngrmark 2003c). The most recent example is a teaching iakter
about object-oriented programming in C# (Ngrmark 2007 hjctv
currently is in active development. | have found it attreetio in-
clude program source files Hyansclusion (Kolbitsch and Mau-
rer 2006), superficially following the ideas of Ted Nelsore($bn
1995). With this solution the teaching material is updatetien-
ever the source programs are updated. Transclusion sheween
as an alternative to manual pasting of program copies irtaltic-
ument.

concise and the comprehensive version is large enough liecha

or disable traditional single sourcing approaches (se¢id®e6).

In the next section we will explain the document model we have
developed, and in Section 4 we will discuss our concretetisolsi

in Scheme with the LENO system.

3. Primary and secondary sources

Our work is based on a two-level document model called thederi
model (the primary/secondary source model). The PriSecemod
has been created as part of our work on the LENO system. In
the model, the concise document, corresponding to the phiele
sentation, is represented bypdmary source. The primary source
contains those elements, which are relevant and necesstrg a
slide level. In addition, the primary source may hold antiote
which are tightly connected to the individual elements. Phie
mary source is structured according to the needs and usesof th
concise documents (typically a number of individual pagesh
with a limited amount of information).

In the PriSec model, the comprehensive document is repre-
sented by @econdary source. The comprehensive document may,
for instance, be structured as a textbook, in terms of of ienap
sections, and subsections with use of figures, tables, returder
to minimize the amount of duplication, as discussed in $ac
those elements of the concise document that also appearcoh-
prehensive document are represented as references frarorthe
prehensive document to the concise document. Additionaecd
elements can be added to the secondary source. This orjamiza
of the two documents relative to each other is illustrateBigure
1.

In the figure, there are 12 primary elements,pee, ... pa:
structured in four sequential units (slide pages). Theeel&rsec-
ondary elements structured in two sequential units (artbclbook
chapters). Of the 13 secondary elements 8 are referendes poit
mary elements, and 5 are contents elements that contribiytec
the comprehensive document. Some primary elements (e,

Some key parts of the material may appear more than once inpes, peo, and pe;) are not part of the comprehensive document.

the material. If these parts are duplicated at the sourad, linis
difficult to keep the material consistent and up-to-datérduthe
lifetime of the document. On several occasions | had to dgivets
versions of the courses, where only a subset of the matedal w
directly and explicitly exposed. In the starting point itaasy to
make a copy and hereby to edit an abridged version, but itris ve
difficult to keep both the full and short version consisteithveach
other subsequently.

Overall, the tendency of avoiding both small-scale anddarg
scale content overlaps has been crucial for the quality ®fnh-
terial. The amount of inconsistencies can be reduced if glesin
source is responsible for multiple appearances of somél.déta
for instance, the teaching material exposes a C sourcegror
is in most situatiorisessential that the latest and most up-to-date
version of the program is being exposed. In addition, angidion-
tent overlaps in the document source has a positive impattien
efficiency of the authoring process.

A single primary element (g appears twice in the comprehensive
document. The ordering of the primary elements in the cohrgre
sive document is pe pe:, pes, per, Ps, P&, pei2, and pe.

With this organization of the primary and secondary soyrces
the freedom of composing the comprehensive document bysnean
of references to the elements of the primary source is etidér
existing elements from the primary source may be thoughtsof a
building blocks of the secondary source. The order of agrear
of the elements in the comprehensive document can be clewtrol
freely. Some elements from the primary source can be elimiha
and others may be duplicated if needed.

The consistency between the primary source and the segondar
source is seen as the major challenge in the application eof th
PriSec model. In the starting point, it is necessary to ptedhe
secondary source, with a potentially large amount of refeze
to elements in the primary source. During the authoring gsec
both the primary and secondary sources evolve. If a new gleme

The primary challenge discussed in this paper is to manage is added to the primary source it may be appropriate to update

a concise (slide) version and a more comprehensive (telktboo
version of the same material in relation to each other. Theustn
of overlap between these versions is massive, and theréf@e
crucial to avoid unnecessary duplication of document etemand
authoring efforts. However, the potential difference tbedw the

2Depending on the propagation strategy, the actual updatigbe instan-
taneous, or it may depend on some action (processing) tattzed by the
author.

31n rare situations, where we for instance address an earioveof a
program, we may want to prevent propagation of the most taesion.

118

the secondary source accordingly. If an existing elemedelisted
from the primary source, and if this element is referencethfthe
secondary source, measures need to be taken. If the primanges
is reorganized care must be taken to keep the referencesdmetw
the two sources intact. In Section 4 we will discuss our smhstto
these problems in the context of the LENO system.

4. TheLENO solution

LENO is atool for authoring of LEcture NOtes (Ngrmark 20034,
primarily in the area of computer science, and with specigblea-

Scheme and Functional Programming 2007

Primary Source Secondary Source

pe, < ® se
pe, ® S¢,
565
pes <
@® S¢
pe <
7 seg
PCy
S
® S¢
- A

Figure 1. The primary and secondary sources together with the refessinom the secondary source to the primary source.

sis on the need in programming courses. In a LENO context, the written a secondary source of a slightly more comprehensive
concept oflecture notes covers the spectrum from a naked set of sion of the demo material. The Scheme documents, whichseptre
slides, via text/voice annotated slides, to more complegehing the primary and secondary sources, are shown in AppendihA. T
materials in the style of a textbook. As a matter of LENO termi generated materials, as well as the document sources, cac-be
nology, a material in the style of a textbook is representedia cessed from an accompanying web page (Nermark 2007 a)ay
sequence ofhemes at the authoring level, and presented as a se- be instructive to compare the sources in Appendix A with the-g
qguence othapters at the level of the end-user. erated HTML pages. Throughout the rest of this section wé wil
LENO is based on two XML languages both of which are de- illustrate our points with excerpts from the documents impaypdix
fined by XML Document Type Definitions, DTDs (W3C 1998). A.
We have used an authoring approach where the XML documents
are actually written as expressions in the programminguagg 4.1 TheLENO sourceforms
Scheme (Kelsey et al. 1998). The connection between the XML The primary source of a simple slide presentation is shown in
(Ngrmark 2007d). LAML, and the mirroring of XML in Scheme, a5 aleno-front-matters clause with a large number of at-
is well-documented in another paper (Ngrmark 2005). The QEN tribytes, followed by a number afote-pages surrounded by
author writes the documents in a text editor. In case Emacssid, begin-notes and end-notes. Eachnote-page contains ele-
the author is supported by a number of editing commands and te ments such asoint, items, concept-1list, etc. LENO supports

plates that can be accessed via the Emacs menu system. The augg gifferent kinds of immediate constituents of note paggken
thored text must be a sequence of Scheme expressions. Wéen ththe document is processed by the LENO tool, a large number of
Scheme expressions are evaluated the target format of tegiala interlinked HTML and SVG pages are generated.

is produced.
We use the terrmprogrammatic authoring for document author-
ing in the context of a programming language (Ngrmark 2002).
Programmatic authoring is a powerful approach. The masoress
that many instances of document complexities can be enicapdu
in functional or procedural abstractions. In addition, snéedious
authoring tasks can be dealt with programmatically in theudzent
source text. Due to “clutter” and involved syntax, prograaticau-
thoring is not within reach in mainstream programming laaggs
(such as in languages with syntax derived from C).
To keep the discussion at a concrete and tangible level we hav 4yse the URLhttp: //www. cs. aau.dk/~normark/cc.html to access
written a primary source of a few demo slides. In addition haree the accompanying web resources of this paper.

Scheme and Functional Programming 2007 119

The following shows a document fragment that represents a element-type attributes. Others use th&lement-number at-

single note page in the primary sourte:

(note-page ’id "intro"
(title (main-text "Introduction"))
(point ’id "pti"
(main-text
"This paper is about...
(items ’id "it1"
(item (main-text "Outline:")
(items (item (main-text "Model"))
(item (main-text "The LENO system"))
(item (main-text "Conclusions"))))

n))

tribute instead oklement-id in the meaning of element number
n of type "title", for instance. (Notice in this context that only
onetitle elementis allowed in each note page. Therefore there is
no need to have a unique id of the note pagele element).

Using the automatically derived secondary source as a start
ing point, the author of the comprehensive material is assilio
add more contents. This is typically done by addiftgme-text
clauses to a theme, as siblings to th@o-element clauses, and
with the purpose of adding “raw text” to the secondary source
In addition, the author may reorganize theno-elements ar-
bitrarily. Also, new themes may be added and existing themes
may be deleted. The ordering béno-elements within a theme
clause may be changed, som&o-elements may be eliminated,

Note pages appear in the context of a given lecture, which has and others may be duplicated. Elimination ofléno-element

assigned a unique lecture id. A note page has an id of its own,

which must be unique within a lecture. In addition, most mge
subelements have ids that are unique within a single note.pag

When the primary source is processed by LENO, the tool is able
to automaticallyderive an initial, secondary source from the pri-
mary source. The secondary source represents the LENO sheme
In the starting point each theme corresponds to a subsegjEnc
slides, which are separated yction-title elements in the pri-
mary source. In the primary source document shown in Appendi
A.1 there are three note pages witbction-titles, and there-
fore there are three themes in the initial derived docunasrghown
in Appendix A.2.

The derivation of the secondary source is controlled by et f
matters attributeheme-source in the primary source. (If the value
of this attribute is"new" a new secondary source is derived and
written to a new file in a template directory. The valugelta"
is used for derivation of a delta source, see Section 4.3).sTi-
stance of the secondary document is made updnp-element
references to note page constituent elements. Almost atski
of note page constituents (such as itemized lists, pointages,
source program listings, concept lists, and syntax diagyasmn be
addressed from the secondary source. In the comprehenaiee m
rial we use itemized list (from the concise document) forreiav
and summary purposes. The following is a typical excerpthef t
derived secondary source.

(theme ’id "intro-sec"
(leno-element ’lecture-id "demo" ’page-id "intro-sec"
’element-type "section-title" ’element-number "1")

(leno-element ’lecture-id "demo" ’page-id "intro"
’element-type "title" ’element-number "1")

(leno-element ’lecture-id "demo" ’page-id "intro"
’element-type "point" ’element-id "pti")

(leno-element ’lecture-id "demo" ’page-id "leno-prim"
’element-type "items" ’element-id "iti")

The firstleno-element shown above initiates a new chapter,
and the second initiates a new section of the chapter. Thebahid
fourth 1eno-element contribute to the contents of the new sec-
tion in terms of a short statement (a point) and an itemizsd li
The leno-elements address elements from the primary source
with use of lecture-id and page-id attributes. Some LENO
elements use in addition thelement-id and, redundantly, the

5 A symbol represents an XMattribute name. The symbol must followed
by a string (or a value that can be converted to a string), wheépresents
anattribute value.

120

from the secondary source can in principle be done by deletin
it. However, for the sake of consistency management (see be-
low) elimination should be done by addingdaop attribute to
theleno-element with the value"true".

4.2 Crossreferences

As part oftheme-text clauses it is often relevant to makerass-
reference to another location in the comprehensive document. If
we, for instance, want to include a reference to a presentafi a
source program in the comprehensive document, we may ajgreg
an identification of the target in terms of the name of the them
source file name, the id of theheme clause in the secondary file,
the ids of the primary source lecture and note page whichagont
thesource-program element, the type of the target element (here
a"source-program"), and the unique id of the element within the
note page. The aggregation is represented as a Schemesinqfres
which generates an HTMk anchor element with a suitablaef
value. The following is an example of a reference clause IEHQ
secondary source:

(ref "structures_themes-linked-sec" "structures"
"list-fu" "source-program" "spl")

Itis error prone to type such clauses directly, as text. &loee,
there are two alternative ways to createef form. If a LENO
theme is generated in a special author mode, g clause of
each element can be reached from the browser. ¢Etieclauses
are represented together, in an internal HTML page). Ashemot
possibility, if Emacs is used as the authoring tool, theaediain
aggregate aref clause from the similar targeteno-element
clause, using theake-theme-ref editor command. Subsequent
use of another editor commanihsert-theme-ref, inserts the
aggregatedef clause.

The comprehensive document can be presented either as hyper
text (HTML) or as text suitable for printing (PDF). In the hepext
version the cross-references as well as references to pinsr of
the LENO material are rendered as anchored links. In the-prin
able version the cross-references are rendered as numébatied
ties, such as “Chapter 3", “Section 3.1", and “Figure 3.2th&r
kinds of document cross-references are eliminated in timale
version.

4.3 Consistency issues

As already discussed in Section 3, the major challenge dirdea
with both a primary and a secondary document source is the pro
lem of keeping them mutually consistent during the life tiofi¢he

6 Alternatively we could have extended the LENO XML theme laage
to accommodate cross-references. However, the keywotd styXML
parameter passing is more bulky than native positionalrpeter passing
of Scheme functions. This is the reason behind the desigmeafdtt form.

Scheme and Functional Programming 2007

Source A
Document
Type
Derived Edited and Edited Edited and
- secondary [~~~ merged ——— secondary —— merged secondary [~ »
source secondary source source source
Compre- Legend
hensive
documents \
1 Delta Delta } 13:;?2?3;
source source
Manual
f f Consistency
Management
Initial Edited Edited Edited
Concise T ® | primary ————-] primary B primary ————P primary |~ »> ——p Manual
document source source source source Editing
»
Time

Figure2. An overview of the editing and derivation of primary and sedary sources.

material. As a typical scenario, the concise slide documemt-
resented by the primary source, is updated through a nuldtitxd
modifications. Without specialized tool support it is veiffidult

to manage the corresponding updates of the comprehenskte, t
book document. This is especially the case if the updatinthef
comprehensive document is done days or weeks after theingdat
of the concise document. Figure 2 shows a scenario of theaethp
development of both sources. In the figure we distinguistvéen

manual editing, manual consistency management, and atitoma

derivations (see the legend of the figure).

It is not realistic to go for an automatic updating of the sec-

ondary source, because only the author can sort out thecatigins

of the changes to the concise document. The solution in LENO i

to automatically derive a new secondalgjta source, similar to the
original derivation, in which the new elements in the coedscu-
ment are clearly marked in the secondary source. Techyithis
is done by identifying those elements of the primary sourbéekv
are not represented somewherelago-elements in the exist-
ing secondary source. It should be noticed thaio-elements

that are dropped in the secondary source will not be rediscov

ered, and not marked as new, relative to the primary souhge. (
contrast, leno-elements that are physically deleted from the

secondary source will be marked as new elements in subsequen
delta sources). The author of the secondary source can now ma

ually merge the existing secondary source and the seconéitey

source, and hereby effectuate the updating of the comprehen

sive document. Typically, this updating process also &dfdbe
existing theme-text elements, and it may call for adding new
theme-text elements as well.

page or a lazily delete page constituent is still internalhgilable,
and it can be addressed from the secondary source.

It is sometimes necessary to modify the wording of the print
version in relation to the wording of the hypertext versiGuch
variations are accomplished by use of conditionafsdr cond) of
the Scheme programming language.

Taken all together, the LENO solution to the consistencypro
lem requires a great deal of work. We find, however, that thuigkw
is unavoidable due to the individual sequencing of the g@ndbc-
ument and the comprehensive document. The LENO solutiggshel
the author to keep an overview of the changes, and it makealit r
istic to update the secondary source with use of fragmeois fhe
secondary delta source.

The granularity of reuse has together with the granulariyoof
sistency management been chosen as that of the note page con-
stituents of the primary source. Recall that a typical naigepcon-
stituent is an itemized list, a point in terms of a single eagibed
statement, an image, a source program, or an exercise. ghe ar
ments behind this choice are the following:

e The individual note page constituents make up the structura
units, which reflects a natural and conceptual decompasitio
the primary source.

e The individual note page constituents are identifiable ahd a
dressable, and therefore they are easy and attractivege.reu

e An individual note page constituent is conceived as a unit,
which typically should appear in its totality.

In principle, the granularity could have been either larger
smaller. In one extreme, the secondary document could be cre

Reorganizations of the primary source do not harm the sec- 5ied as a copy of the primary document, extended with additio

ondary source, as long as the identities of lectures, ngespand
note page subelements are not affectBaletions of note pages or
note page constituents from the primary source should be dgn
marking these as deleted (lazy deletion, by usérep attributes).
Actual deletions of note pages, or constituents of note pageay
cause dangling references in the secondary source. A Beligged

7Unfortunately, a reorganization that moves a primary elenfiom one
note-page to another does affect the identity of the element, as adddes
from the secondary source. In the current version of theesydtis there-
fore tedious to deal with such reorganizations.

Scheme and Functional Programming 2007

contents, and subsequently managed by general versiorokont
and diff tools in relation to the primary document. This wabble

an unstructured and low-level approach. In the other exrémali-
vidual atoms (such as textual characters) of the primaryent
could be reused from the secondary document. It would, hexvev
be difficult and convoluted to provide for addressing of ssistall
units.

4.4 Post processing

We post process the print version of the HTML document in an
interactive word processor (Microsoft Word). The most imtpot
concern in this process is page breaking (which is tricky diffd

121

cult to deal with in batch processing mode). In addition we de-
tails such as page numbers. Finally, a PDF version of the \dtocel
ument is generated using a PDF generator, such as the tted cal
PDF Creator. As an alternative to interactive use of an interactive
word processor, we could have used XSL-FO (W3C 2000) for a
description of the printable version. With this approaan XL
batch processing tool (such as the Apache FOP processadd)m®u
use to obtain a PDF document. It is a long term goal of the work
with LENO to support PDF creation via XSL-FO.

5. Document Engineeringin Scheme

In the work presented in this paper the Scheme programming la
guage serves several different purposes:

1.
2.
3.

Scheme is used as a text processing language.
Scheme is used as an image processing language.

Scheme is used as a host of several XML languages, most
notable the primary and secondary source languages of LENO.

. Scheme is used for abstraction of document details, wieh
want to encapsulate and hide in the document sources.

. Scheme is used as the implementation language of the tool,
which transforms the primary and secondary sources to the
target formats.

We will now discuss each of the purposes in turn.

Ad 1. Scheme as a text processing language. First and fore-
most, it may be asked if it is reasonable to write large anwoht
text—with markup—as Scheme expressions. In such text,odnbr
ken pieces of textual contents are represented as strémglét

Based on my experience, it reasonable and profitable to use
Scheme for text processing purposes. The primary key taesscc
seems to be good editor support for embedding of textuat thetes
in Scheme forms, splitting of a string in substrings, opgnirf
a new form with initial empty content, nesting of forms in eth
forms, and cleaning up of messy markup. Over the years we have
developed very helpful Emacs editor commands for theseogesp
These commands are applicable in LENO and in other contexts
where Scheme is used for programmatic authoring.

Ad 2. Scheme asan image processing language. Teaching ma-
terials contain both text and images. It is disruptive feraluthor to
create text and images in two different editors. Therefaemrate
most graphical illustrations in SVG, on a textual bdsiske the
LENO XML languages and XHTML, SVG is mirrored in Scheme.

is represented by a nametrror function®. An expression rooted
by a mirror function generates an internal syntax tree. Threom
functions have exact knowledge of possible attributes ag$ip
ble document constituents. As a consequence, a Schemeasigpre
that activates several mirror functions validates theesponding
XML document (relative to the XML DTD) when the expression
is evaluated. Relative and absolute links (URLS) that apjpethe
expression can also be checked.

Itis very important to provide for a clean and smooth XML no-
tation in Scheme. A source form in LENO/LAML is an expression
that activates named mirror functions (see Appendix A forccete
examples). Mirror functions pass and interpret the actashimpe-
ters in a special antiberal way (see Section 3 of (Ngrmark 2005)
for details). As an alternative to the LAML approach, theutnent
source could have been a list expression, which revealsitbnal
AST representation. Such a representation, either doadriat list
functions or quasiquotations, is at a lower level of absimac and
therefore it typically appears to be polluted with distadbdetails.

In LAML/LENO a list of XML attributes, a list of element
content items, or a mixed list of attributes and element ent
items is automatically and recursively spliced into itstesth The
following three XHTML mirror expressions are equivalent:

(a ’href "URL" "Anchor text")

(a "Anchor text" (list ’href "URL"))

(a (list "Anchor" (list "text"))
(list (list ’href "URL")))

In real-life situations, the instances bist stand for specific
list-valued functions. The automatic and recursive sptjagineans
that a part a document easily can be abstracted by a lisedalu
function. Without systematic splicing of lists it would begessary
for the document author to deal with list-flattening. Thisuleb
severely disturb the cleanliness of the source.

At the most detailed level, the handling of white spacingterat
a lot. In a LENO/LAML source document there are white space
in between element content items, unless explicitly sugy@e.
With this decision, it is not necessary to have annoying yrefi
suffix white spacing in literal text strings (such &stext" or
"text "). A white space suppress value, bound to an underscore,
is used if two content items next to each other should appear
without spread. With this convention, the two expressi¢sgsan
"The end.") and (span "The" "end" _ ".") are equivalent.
The already mentioned editing commands insert most unolersc
symbols automatically if a string is splitted in the neighimod of

As a consequence, SVG images can be authored as Scheme expreBunctuation characters.

sions, and they can be inlined in the primary LENO source docu
ment. It is our experience that most of our illustrations graph
structures (in terms of nodes and edges) occasionally ire gem
laxed meaning. We have created a graph library extensioVéf S
(Ngrmark 2007a), which we currently use for a teaching niedter
about object-oriented programming in C# (Ngrmark 2007bjhé
target documents we most often transform SVG to a more aecess
ble format, such as PNG (by use of the Apache Batik SVG tgolkit

Ad 3. Scheme as a host of XML. There exist several differ-
ent ways to deal with XML in Scheme: SXML (Kiselyov 2002),
Weblt (Bender), Scribe/Skribe (Serrano and Gallesio 28@2;ano
2006), and LAML (Ngrmark 2005). In LAML each XML element

8]t is a pain to switch between text and image editing envirents. It may
also be felt as a pain to create graphical illustrations exaual commands
or markup. It would be possible to go for an integrated emvitent like
MS Word or Powerpoint. | have used MS Powerpoint extensitietgugh
several years. The lack of abstraction mechanisms and g&ngisupport

of authoring without duplications, see Section 2, makes Powerpoint a poor
solution to the encountered document engineering chadkeng

122

Ad 4. Schemefor ad hoc document abstraction. When work-
ing with textual markup, there is frequently a need for idtro-
ing ad hoc abstractions beyond the abstractions of the mdaku
guage. (In TeX and LaTeX this need can, to some degree, be reme
died by TeX macros). When a document is authored in Scheme it
is straightforward to write a number of auxiliary documebstaac-
tion functions in Scheme. When textual contents or XML btités
appear as parameters to such functions, it is our expertbatée
functions should accept parameters in the same liberal waljea
mirror functions of the XML language. The higher-order ftion
xml-in-laml-abstraction generates such afunction. As an ex-
ample, the definition

(define f
(xml-in-laml-abstraction
(lambda (contents attributes)
(list contents attributes))))

9Each named Scheme function is seen as a mirror of the comeisgp
XML element. Hence, the nanmarror function.

Scheme and Functional Programming 2007

binds £ to a function with liberal parameter passing. "t" ’x ally written in two different documents. The main challerigeo
5 "s" ’y "6") is evaluated to the list("t" #t "s") (x "5" keep the documentation up-to-date when the program is reddifi
y "6")) in which the first element represents the contents and the In that respect, we deal with the exact same challenges inQ.LEN
last element represents the attributes. The attributagpresented However, our starting point is different, because one ofdbeu-

as a property listtt represents a forced white space value. ments (the comprehensive document) is initially derivem@ati-
Mixed parameter passing, as in the definition cally from the other document (the concise document).
As already noticed earlier in this paper, the PriSec modél an
(define g o . the LENO approach have much in common with the ideas of
(xml-in-laml-positional-abstraction 2 1 single sourcingRockley 2001; Fraley 2003; Kostur 2000). Single

(lambda (x y contents attributes z)

(list x y z contents attributes)))) sourcing is defined as the use of a “single document source to

generate multiple types of document outputs” and “workfldars
bindsg to a function in which the two first parameters and the last creating multiple outputs from a document or database sburc

parameter are positional. The actual parameters in betivese (STC). In the strict sense, PriSec is not a single sourcingemo
are interpreted in the liberalwagg 1 2 "t" _ "s" ’y "6" ’x but of adouble sourcing approach. The reason is that two different
5 3) is evaluated ta{(1 2 3 ("t" #f "s") (y "6" x "5")). sources are used to control the independent sequencingroéets
#f represents a white space suppress value. in the two documents. In the starting point, however, thec®of
)] the concise document serves as “the single source”, useatit@d
Ad 5. Scheme as an implementation language. The LENO theinitial source of the comprehensive document.
system is implemented in Scheme. Currently, the size of EéQ Continuing our comparison with software documentation, it
system is approximately 15.000 lines of code on top of the LAM s interesting to notice that the program documentatiorragmh
libraries. The day-to-day needs of features in the teachiateri- known as Literate Programming (Knuth 1984) can be seen as a

als, through almost a decade, have led to a messy impleriwentat single sourcing program documentation approach, in whitth b

and to a complex web of Scheme source files behind the LENO the program and the documentation are authored in an extende

encapsulation mechanisms have made it difficult to keep st of Javadoc (Friendly 1995), Doxygen (van Heesch 2004), and

dards in the underlying LENO implementation. If timed alemya ~ schemeDoc (Ngrmark 2004) can be seen as single sourcing, be-

complete rewrite of the system would be desirable. cause this kind of documentation is represented as spesali
comments in the program source text.

6. Reated Work The use of double sourcing (in terms of a primary and a sec-

ondary, derived source) can be seen as a reminiscence ofethe p
ferred authoring process. This particular authoring pssdiest pro-
duces a slide material as the basis for an oral presentatioriater

a written account in the style of a textbook. The reverseairh
process is also possible, and in fact quite well-known frbmdu-
thoring of scientific papers and subsequent productionidésifor
oral presentation at conferences or workshops. We are,Jsowe
not aware of any attempt to derive slides (semi)automdyifam

the full paper.

We are not aware of similar work, which directly shares thesai
and the goals of the work described in this paper. In thisi@ect
we will therefore describe related work, which positions BriSec
model and the LENO system with respect to similar issues in
different contexts.

Slideshow (Findler and Flatt 2004; PLT) is similar to the-pri
mary LENO slide language, but without support of the seconda
(textbook) language. Both Slideshow and LENO are basedru fu
tional programming, and both rely on Scheme. Slideshowidesv
a programmatic and functional approach to slide authormpgar- :
ticular with use of abstractions, and it is strong with respe 7. Conclusions
the handling of pictures. The Slideshow system comes with it As the main contribution of this paper we have developed a-doc
own processor, which is embedded in the DrScheme environmen ment model, called the PriSec model, which is based on a pyima

Slideshow produces slides via its own interpreter, and abie to source and a secondary source. The primary source, whick-rep

create a PDF file. In contrast, the distinctive characiergt_.ENO sents a concise document, can be used to derive an initsibwer

is its orientation towards XML source formats (in the LENO XM of the secondary source of the comprehensive document. @nce

languages) and HTML/SVG target formats. rived, the secondary source is assumed to be elaboratedauya
The derivation of one source from another is known from the ways, leading to a situation where both the primary sourcktia@

area of source-to-source transformations. Source-teesadwans- secondary source need to be kept mutually up-to-date.

formation is used in programs and specifications for softvear- The PriSec model is implemented in the LENO system, and

gineering purposes (Baxter et al. 1994; Partsch and Stejgkn supported by commands in the Emacs text editor. Most irtiaggs
1983). Source-to-source transformation is also used imtéa of we have developed an approach where a secondary delta sanrce
XML documents (Leinonen 2003; Krishnamurthi et al. 200@), a be re-derived from the primary source and the existing sdsgn
for instance, supported via XSLT (W3C 1999). As a genera,rul source. This secondary delta source can manually be mernged w

however, it is not the case that both the source and the tnamsti the existing version of the secondary source, with the e puf
source are maintained. In other words, the document auites d updating it relative to changes of the primary source.

not actively edit both the source and the transformed salwce- The LENO system has been used since 1999 (by the author and
ment. In comparison, our work on the PriSec model calls fdnma a colleague) to produce collections of teaching materiadsdff-
tenance of both the primary and the secondary sources. ferent programming-related computer science coursescdmmese

The area of software documentation (Forward and Lethbridge and comprehensive documents for these courses are agaiiabl
2002; Vestdam and Ngrmark 2002) represents an example of two(Ngrmark 2007c).

levels of source documents (source programs and interogtgom The authoring process of a comprehensive material is sttere
documentation, for instance) which are mutually dependamd ing in its own right. As the first step, the essential key elsta®f
both of which are simultaneous maintained. What is wortlciral the material are formulated, including elements such a®itapt
is that the program documentation is not derived from thec®u concepts, main points, itemized overviews, etc. In a LEN@-co
program, or vice versa. The program and its documentat®osr- text, these key elements constitute the concise documéuetstitie

Scheme and Functional Programming 2007 123

presentation. As the second step, the key elements are @tumb
together by adding additional contents, such as intro,0oownd
explanations. For the materials mentioned above, we hawedfo
this two-step authoring process both interesting and riwgr The
process encourages the author to concentrate on the etsémti
the first phase. The second phase is concentrated on caigwniid
and additional explanations, in order to make the matee#t s
contained and approachable without an accompanying aeaépr
tation. The comprehensive document, as delivered by the itoo
typically affected by the process through which is has been c
ated. The itemized lists, which dominate most slide predimts,
can either be used as introductory overviews or for summary p
poses.

Our concrete experience with the PriSec model is gainedmwith
the area of computer science teaching materials. We hygiathe

however, that the model can be used in other situations where

concise and comprehensive documents with massive oveataps
needed. We also hypothesize that the two-step authorircegso
as discussed above, can be beneficial in these situations.

LENO is free software, bundled with LAML, and available from
the LAML home page (Ngrmark 2007d). The LENO home page
(Ngrmark 2003a) holds all available LENO resources, inolgic
gentle introduction, examples, and a tutorial.

Acknowledgement

I wish to thank the anonymous reviewers for valuable inpuhe
final version of the paper.

References

Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. &M
Program transformations for practical scalable softwardue
tion. In The proceedings of the 26th international conference on
software engineering. IEEE Computer Society, 1994.

Jim Bender. Weblthttp://celtic.benderweb.net/webit/.
Robert Bruce Findler and Matthew Flatt. Slideshow: Funetlo
presentations. IrProceedings of the Ninth ACM S GPLAN
International Conference on Functional Programming, pages

224-235. ACM Press, September 2004.

Andrew Forward and Timothy C. Lethbridge. The relevance
of software documentation, tools and technologies: a sur-
vey. In DocEng ’'02: Proceedings of the 2002 ACM sym-
posium on Document engineering, pages 26—-33. ACM Press,
2002. ISBN 1-58113-594-7. URhttp://doi.acm.org/-
10.1145/585058.585065.

Liz Fraley. Beyond theory: Making single-sourcing actya¥ork.

In Proceedings of the 21st annual international conference on
Documentation, pages 52-59. ACM Press, 2003.

Lisa Friendly. The design of distributed hyperlinked prengr
ming documentation. In Sylvain Frass, Franca Garzotto,sTom
Isakowitz, Jocelyne Nanard, and Marc Nanard, edit®rs-
ceedings of the International Workshop on Hypermedia Design
(IWHD'95), Montpellier, France, 1995.

Richard Kelsey, William Clinger, and Jonathan Rees. Relise
report on the algorithmic language Scheme. Higher-
Order and Symbolic Computation, 11(1):7-105, August
1998. URL http://www.schemers.org/Documents/-
Standards/R5RS/rb5rs. pdf.

Oleg Kiselyov. SXML, August 2002. URhttp://okmij.org/-
ftp/Scheme/SXML.html.

Donald E. Knuth. Literate programminghe Computer Journal,
May 1984.

124

Josef Kolbitsch and Hermann Maurer. Transclusion in an HTML
based environment. Journal of Computing and Information
Technology, 14(2):161-174, 2006.

Pamela Kostur. Information modeling for single sourcingn |
18th Annual Conference on Computer Documentation - IPCC,

S GDOC 2000, pages 333-342. ACM and IEEE, 2000.

Shriram Krishnamurthi, Kathryn E. Gray, and Paul T. Graunke
Transformation-by-example for XML. In E. Pontelli and V.riBa
tos Costa, editorsPADL 2000, LNCS 1753, pages 249-262.
Springer Verlag, 2000.

Paula Leinonen. Automating XML document structure transfo
mations. InDocEng' 03, pages 26—28. ACM Press, November
2003.

Theodor Holm Nelson. The heart of connection: Hypermedia
unified by transclusionCommunication of the ACM, 38(8):31-
33, August 1995.

Kurt Ngrmark. Programmatic WWW authoring using Scheme and
LAML. In The proceedings of the Eleventh International World
Wide Web Conference - The web engineering track, May 2002.
URL http://www2002.0org/CDROM/alternate/296/.

Kurt Ngrmark. Web programming in Scheme with LAML.
Journal of Functional Programming, 15(1):53-65, January
2005. URL http://www.cs.aau.dk/~normark/laml/-
papers/web-programming-laml.pdf.

Kurt Ngrmark. The LENO home page, 2003a. URttp:-
//wuw.cs.aau.dk/~normark/leno/.

Kurt Ngrmark. The why and wherefore of the LENO system,
August 2003b. URLlhttp://www.cs.aau.dk/~normark/-
laml/papers/leno/why-and-wherefore.pdf.

Kurt Ngrmark. Functional programming in Scheme -
with web programming examples, 2003c. URittp:-
//www.cs.aau.dk/~normark/prog3-03/html/notes/-
theme-index.html.

Kurt Ngrmark. Scheme program documentation tools. In Olin
Shivers and Oscar Waddell, editoRroceedings of the Fifth
\Wbrkshop on Scheme and Functional Programming, pages 1-11.
Department of Computer Science, Indiana University, Septe
ber 2004. URLhttp://www.cs.aau.dk/~normark/laml/-
papers/documentation-tools.pdf. Technical Report 600.

Kurt Ngrmark. A graph library extension of SVG. In
Proceedings of SYG Open 2007, Tokyo, Japan, September
2007a. URLhttp://www.cs.aau.dk/~normark/laml/-
papers/svg-open-2007/paper.html.

Kurt Ngrmark. Object-oriented programming in C# - for
C programmers, 2007b. URLhttp://www.cs.aau.-
dk/~normark/oop-07/html/notes/theme-index.html.

Kurt Ngrmark. Web resources of the current paper, Augus?7200
URL http://www.cs.aau.dk/~normark/cc.html.

Kurt Ngrmark. The LAML home page, 2007d. URittp://-
www.cs.aau.dk/~normark/laml/.

H. Partsch and R. Steinbriiggen. Program transformatistes)s.
ACM Computing Surveys, 15(3):199-236, 1983.

PLT. PLT slideshow. URLhttp://www.plt-scheme.org/-
software/slideshow/.

Ann Rockley. The impact of single sourcing technolo@schnical
Communication, 48(2):189-193, 2001.

Manuel Serrano. Skribe, 2006. URlttp://www-sop.inria.-
fr/mimosa/fp/Skribe/.

Manuel Serrano and Erick Gallesio. This is Scribe! Wibrk-
shop on Scheme and Functional Programming (2002), October
2002. URLhttp://www-sop.inria.fr/mimosa/Manuel.-

Scheme and Functional Programming 2007

Serrano/scribe/doc/scribe.html.

STC. URLhttp://www.stcsig.org/ss/.

Dimitri van Heesch. Doxygen, 2004. URhttp://www.-
doxygen.org.

Thomas Vestdam and Kurt Ngrmark. Aspects of internal pro-
gram documentation - an elucidative perspective.10th In-
ternational Workshop on Program Comprehension. IEEE, June
2002. URL http://dopu.cs.aau.dk/publications/-
aspects-paper.pdf.

W3C. Scalable vector graphics (SVG) 1.1 specification, dgnu
2003. URLhttp://wuw.w3.org/TR/SVG11/.

W3C. Extensible markup language (XML) 1.0, February 1998.
URL http://www.w3.org/TR/REC-xml. http://www.w3.-
org/TR/REC-xml.

W3C. Extensible stylesheet language (XSL) version 1.0hiiieal
report, W3C, November 2000. URkttp://www.w3.org/-
TR/xsl/.

W3C. XSL transformations (XSLT) version 1.0. W3C Recommen-
dation, November 1999. URhttp://www.w3.0rg/TR/xs1t.

Scheme and Functional Programming 2007

125

A. Anexample

In this appendix we show the primary and secondary sourcasohple LENO demo material. The Scheme sources, corresmpXd/L
sources, and the resulting HTML documents are availableshsresources of this paper (Ngrmark 2007c). The web resparedocated at
http://www.cs.aau.dk/~normark/cc.html.

A.1 Theprimary source

The primary source of a simple slide presentation is showh fihe list ofLleno-front-matters attributes has been abbreviated.

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/lecture-notes/lecture-notes")

(leno-front-matters
(front-title "Concise and Comprehensive Documents")
(front-author "Kurt Normark")
(front-affiliation "Aalborg University")
(front-abstract
"An ultra brief exposition of the relations between
concise and comprehensive documents")

’slide-view "true" ’annotated-slide-view "false"
’aggregated-view "false" ’theme-view "true"

’primary-view "slide-view" ’scheme-prefix "pre-notes.scm"
’scheme-suffix "post-notes.scm"

’css-prestylesheet "large-size" ’css-stylesheet "original"
’theme-auto-process "false" ’theme-source "new"

; Some attributes have been elided in this version

)
(begin-notes)
(note-page ’id "intro-sec" (section-title "Introduction"))

(note-page ’id "intro"
(title (main-text "Introduction"))
(point ’id "pti"
(main-text
"This paper is about derivation of a comprehensive document from a concise document"))
(items ’id "it1"
(item (main-text "Outline:")
(items (item (main-text "Model"))
(item (main-text "The LENO system"))
(item (main-text "Conclusions"))))))

(note-page ’id "model-sec" (section-title "Model"))

(note-page ’id "primsec"
(title (main-text "The Prisec model"))
(concept-list ’id "conl" (concept ’concept-name "Prisec"
(main-text "The Prisec model is a model with a primary and secondary source
of the concise and comprehensive documents resp.")))
(items ’id "it1"
(item (main-text "Issues:")
(items (item (main-text "Derivation of the secondary source from the primary source"))
(item (main-text "Consistency between the sources "))
(item (main-text "An alternative to a single source model")))))
(point ’id "ptl" (main-text "LENO implements the Primsec model")))

(note-page ’id "leno-sec" (section-title "LENO"))

(note-page ’id "leno-prim"
(title (main-text "The primary LENO source"))
(point ’id "ptl" (main-text "LENO is an XML-based presentation tool in the LAML family"))
(cross-references ’id "cri"
(internet-reference ’href "http://www.cs.aau.dk/“normark/laml/" (main-text "LAML")))
(items ’id "it1"
(item (main-text "LENO primary source characteristics:")
(items (item (main-text "Slide view, annotated slide view, and aggregated view"))
(item (main-text "Aims at elimination of duplicated source elements"))
(item (main-text "Structured as sectioned lectures and slide pages")))))
(point ’id "pt2" (main-text "A secondary source can be derived from the primary source ")))

126 Scheme and Functional Programming 2007

(note-page ’id "leno-seco"
(title (main-text "The secondary LENO source"))
y
(point ’id "pt1" (main-text "The secondary source contains lots of references to primary source elements"))
(items ’id "it1"
(item (main-text "LENO secondary source characteristics:")
y
(items (item (main-text "Theme-text elements add to the comprehensiveness"))
(item (main-text "Presented as traditional paper material"))
(item (main-text "Structured as chapters and sections")))))
(point ’id "pt2" (main-text "A PDF version can easily be provided for"))
p p y P

)

(end-notes)

A.2 Thederived secondary source

Below we show the secondary document source, as derivethatitally from the primary source. As discussed in Sectiohi4 intended
that the author adds textual contents to this source in tefriBeme-text elements. A version with addetheme-text elements can be
consulted in the accompanying web resources (Ngrmark 2007c

(load (string-append laml-dir "laml.scm"))
(laml-style "xml-in-laml/lecture-notes-themes/lecture-notes-themes")
(leno-themes-front-matters

’scheme-prefix "pre-notes.scm"

’scheme-suffix "post-notes.scm"

)

(begin-themes)

(theme ’id "intro-sec"
eno-elemen ecture-i emo age-id "intro-sec" ’element-type "section-title" ’element-number
(1 1 t)1 t 'd Ild n }p g 'd "a t n) 1 t typ n t' t'tl n) 1 t b "1")
(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "title" ’element-number "1")
(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "point" ’element-id "ptl")
(leno-element ’lecture-id "demo" ’page-id "intro" ’element-type "items" ’element-id "itl1")
)
(theme ’id "model-sec"
(leno-element ’lecture-id "demo" ’page-id "model-sec" ’element-type "section-title" ’element-number "1")
(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "title" ’element-number "1")
eno-elemen ecture-i emo age-i rimsec" ’element-type "concept-lis element-id "con
(1 1 t)1 t 'd Ild n }p g 'd "p 1 n) 1 t typ n pt 1' tll) l t 'd n 1")
eno-elemen ecture-i emo age-i rimsec" ’element-type "items" ’element-id "i
(1 1 t)1 t 'd Ild n }p g 'd "p 1 n) 1 t typ ll‘t n) 1 t 'd "'tlll)
(leno-element ’lecture-id "demo" ’page-id "primsec" ’element-type "point" ’element-id "ptl")
)
(theme ’id "leno-sec"
eno-elemen ecture-i emo age-i eno-sec" ’element-type "section-title" ’element-number
(1 1 t)1 t 'd Ild n }p g 'd "1 n) 1 t typ " t' t'tl ") l t b II1II)
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "title" ’element-number "1")
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "point" ’element-id "ptl")
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "cross-references" ’element-id "cri")
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "items" ’element-id "it1")
(leno-element ’lecture-id "demo" ’page-id "leno-prim" ’element-type "point" ’element-id "pt2")
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "title" ’element-number "1")
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "point" ’element-id "ptl")
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "items" ’element-id "itl")
(leno-element ’lecture-id "demo" ’page-id "leno-seco" ’element-type "point" ’element-id "pt2")

)

(end-themes)

Scheme and Functional Programming 2007

127

128 Scheme and Functional Programming 2007

