
Toward abstract profiling

Nguyen-Minh BUI
Département d’informatique et de génie logiciel,

Université Laval, Canada
nguyen-minh.bui.1@ulaval.ca

Abstract
Profiling is a well-known technique in program analysis with many
applications in compiler optimization. However, traditional profil-
ing often requires instrumentation and execution of programs as
well as many test suites. In this paper we propose a new notion:
“abstract profiling” which is a program analysis that aims at pro-
ducing similar results of traditional profiling yet with a trade-off
between precision and broader applicability. Based on static anal-
ysis, this approach computes abstract program profiles without the
need to modify and run the programs. Our technique proceeds in
two phases. In the first phase, we use a technique in static analy-
sis that supplies the information of control flow and types for all
the expressions in the programs. In the second phase we construct
a system of equations based on probability. Then we compute the
abstract profile of the program by iteration. The obtained results
have a similar form to that of traditional profiling: we have the ab-
stract result and the execution frequency of each expression in the
program. However, there remain several issues needed to be ad-
dressed, such as: the consistence of the system’s solution, the over-
estimation and the disappearance of some abstract values, the effect
of the initial value of variables.

1. Introduction
We usually wish to optimize our programs such as making them
run faster and/or consume less memory. To optimize a program, the
information about the pieces of code that we intend to optimize is
very important. For example, it makes much more sense to optimize
a function which is called thousands of times than one which is
called once in a program. In general, profiling is a set of techniques
for estimating the properties of various portions of a program at
runtime, including: the amount of time spent in each function, the
execution frequency of each function/piece of code, the appearance
frequency of data, and so on. Moreover, these types of information
can help find bugs that had otherwise been unnoticed, for instance,
when we see a function executed more or less than expected or data
whose appearance frequency is abnormal.

Conventionally, profiling refers to empirical measurements and
so is normally performed by using dynamic analysis. A technique
widely used in profiling is carried out by injecting code into a

Proceedings of the 2007 Workshop on Scheme and Functional Programming
Université Laval Technical Report DIUL-RT-0701

program and then executing the modified program. By recording
the program behaviors and measuring the program performance,
we can compute the profile of the program [5]. There are also many
other well-known profilers using this technique such as gprof [3].

Static analysis and dynamic analysis are two complementary
techniques to analyze a program. Static analysis does not execute
the program. It examines the program’s source code to find its
properties that hold for all of its executions. Static analysis has
many applications in software engineering such as finding potential
bugs (e.g.: buffer overflow) that sometimes are impossible or very
difficult to discover when using others techniques. On the other
hand, dynamic analysis examines the properties of a program at
runtime based on program behaviors during its execution. So the
results of static analysis are usually safe, for some notion of safety,
and approximate while the results of dynamic analysis are more
concrete but dependent on program input [2, 1].

However, being a dynamic analysis, dynamic profiling has some
drawbacks such as: lack of generality, dependence on test suite, etc.
[6]. If profiling were to be performed statically, thanks to the nature
of static analysis, we would expect the elimination or reduction of
some of dynamic profiling’s drawbacks.

The goal of abstract profiling is to estimate the frequency of
function calls and abstract results for all the expressions in a pro-
gram. First, one can wonder if the imprecise measures of profil-
ing are useful and in which applications we can use them? On the
other hand, there are many applications which need a more concrete
analysis than traditional static analysis. Some applications can tol-
erate the erroneous information of profiling, such as in compiler
optimization. With distorted information about the execution fre-
quencies of functions, an optimization could be applied to rarely
executed parts of a program, resulting in little or no benefit. An
ill-applied optimization could also slow down a program. In either
case, it does not make these programs’ results wrong. We need a
method that can deal with the profiling for functional languages
as well as bring a broader applicability, despite less exact results.
Abstract profiling is a natural idea.

This paper is organized as follows. Section 2 discusses about
some related works. Section 3 presents a tiny, purely functional
language used to illustrate our methodology. Section 4 contains a
static analysis of control flow of functional languages that is similar
to the method of Shivers [4]. It tracks not only functions but also all
object types. The goal of this analysis is to get qualitative (i.e. non-
numerical) results of the values that each expression in a program
evaluates to and to minimize the number of the abstract values of
each expression that the second phase uses. Section 5 shows our
main idea of abstract profiling. We present rules to construct a sys-
tem of equations that models (qualitatively) the run-time behavior
of a program, we then discuss about solving the system numeri-
cally, we at last give an example and some discussions on the re-
maining issues needed to be addressed. Section 6 points out future
work with numerous open questions. Section 7 concludes the paper.

Scheme and Functional Programming 2007 105



2. Related work
There are two properties that we wish to compute in static profiling:
execution frequencies and data appearance frequencies.

The problem of computing execution frequencies for impera-
tive languages has been studied for a long time. Ball and Larus [7]
present some heuristics to predict branch direction based on pro-
gram source code. Wu and Larus [8] present an algorithm to com-
pute this property, starting with the prediction values that come
from Ball and Larus’s heuristics. This algorithm uses the theory
of evidence in probability to calculate intra-procedural and inter-
procedural block execution frequencies, local and global branch
probabilities, function call and invocation frequencies.

Another approach is presented in by Wagner et. al [9]. They use
the estimation of branch probabilities and Markov model of control
flow to compute execution frequencies.

Pugh [10] describes a method to count the number of solutions
to Presburger formulas. Using this method, we can exactly compute
the execution frequency of a statement, (e.g.: the branch probability
of an if conditional statement), within nested loops provided that all
constraints are linear.

Ramalingam [11] presents a framework to compute the appear-
ance frequencies of data for a class of data flow problem. This
work, to a degree, is inspired by the lattice-theoretic framework
for dataflow analysis by Kildall [12]. However, this framework re-
quires the information of the probabilities of all edges in the control
flow graph and certain conditions about the data to be computed.
Our problem do not respect these conditions. In the approaches
presented in [8, 9, 11], we are supposed to know some branch prob-
abilities and the control flow of the program.

Our approach is focused on abstract profiling for functional lan-
guages. The functional languages are based on symbolic calcula-
tion, the control flow is so heavily dependent on input data and
very loosely constrained that many analysis techniques for impera-
tive languages cannot be used. Control flow and data flow in func-
tional languages are so mutually dependent that it seems difficult
for us not to compute these properties all together.

In the 0CFA [4], Shivers presents a method to compute control
flows for functional languages. This approach gives safe, conserva-
tive, and qualitative results. In our approach, we would like to have
quantitative results. We wish to compute not only the control flow
but also the probability of each branch in the control flow, despite
erroneous results. 0CFA can answer the question: Can the function
F be called from a particular site? But we need to know how often
a call site calls F . To the best of our knowledge, there is no similar
solution to the problem in functional languages.

3. Language of application
We present here a language used to illustrate our methodology. The
syntax of this language is similar to that of Scheme yet it is more
compact, purely functional and focused on symbolic computation.
In our language, a program is an expression and to run the program
is to evaluate the expression.

From now on, let us suppose that we label all the expressions in
a program, each syntax node corresponding to an expression has an
unique label. We also drop labels when they are not necessary. We
denote the set of labels by Lab.
The following is the syntax of expressions:

e ::= #f constant “false”
| x reference
| (λx. e) λ - expression
| (e e) function call
| (if e e e) condition
| (µx. e) fixed-point
| (cons e e) creation of pair
| (car e) extraction of

the 1st field of a pair
| (cdr e) extraction of

the 2nd field of a pair
| (pair? e) test whether an expression is a pair

The operational semantics of this language is of the small-step kind
as one-step reductions are repeatedly applied to form reduction
sequences. For brevity’s sake, we do not present here the context of
α-reduction as well as its rules. We also assume that all variables
are different therefore we do not need to do α-reduction in our
program. The context of β-reduction is as follows:

Cβ ::= (Cβ e)
| (v Cβ)
| (if Cβ e e)
| (cons Cβ e)
| (cons v Cβ)
| (car Cβ)
| (cdr Cβ)
| (pair? Cβ)
| [[·]]

The following is the syntax of value v. Similarly to Scheme, our
language does not have an explicit boolean value for “true”. In-
stead, we treat all others values except the constant “false” – #f as
“true”.

v ::= #f constant “false”
| (λx. e) function
| (cons v v) pair

Here are the rules of β-reduction:

Cβ [[(λx. e) v]]
β7→ Cβ [[e[x 7→ v]]]

Cβ [[if #f e2 e3]]
β7→ Cβ [[e3]]

Cβ [[if (λx. e1) e2 e3]]
β7→ Cβ [[e2]]

Cβ [[if (cons v1 v2) e2 e3]]
β7→ Cβ [[e2]]

Cβ [[µx. e]]
β7→ Cβ [[e[x 7→ (µx. e)]]]

Cβ [[car (cons v1 v2)]]
β7→ Cβ [[v1]]

Cβ [[cdr (cons v1 v2)]]
β7→ Cβ [[v2]]

Cβ [[pair? #f ]]
β7→ Cβ [[#f ]]

Cβ [[pair? (λx. e)]]
β7→ Cβ [[#f ]]

Cβ [[pair? (cons v1 v2)]]
β7→ Cβ [[cons v1 v2]]

Note that this language is strict since the arguments of a function
are always evaluated completely before the function is applied. The
evaluation is performed from left to right. For the sake of simplicity,
we do not give here an explicit treatment of errors but it can be
easily added. Our language is similar to Scheme, however, there
are some differences worth noting:

• It looks strange that our language does not have an input rou-
tine. Therefore it is not suitable for use in practice. Since our
goal is to do abstract profiling, we do not run the program, no
input is provided to it. The interest of having a read function
is trivial. Static profiling also does not have control of the in-
put expressions in the program. An input expression is merely

106 Scheme and Functional Programming 2007



an expression with a statistical description of the possible val-
ues. We would consider to add this type of construct of input
expression in the next version.

• To express infinite computations, we do not have letrec or labels
forms as in Scheme, instead, we use a fixed-point operator (µ)
on top of λ-calculus. More concretely, suppose that we need
to evaluate the expression el = (µlx. el1). To evaluate el, we
evaluate the expression el1 with the variable x is replaced by
el. Note that, although x is replaced by el, we only evaluate the
“later” el when needed. That helps the process of evaluation
be able to terminate. For example, the following expression
evaluates to a list of two identify functions and a #f value:

(1 (µ2 f. (λ3 L. (if4 L5 (cons6 (λ7 x. x8)
(9 f10 (cdr11 L12)))

#f13)))
(cons14 #f15 (cons16 #f17 #f18)))

4. Estimation of abstract values
We need to predict the values of each expression in a program but it
is inefficient to introduce variables for probability of each abstract
value at each expression. Hence, it is a good idea to cut off the
values that we know for sure cannot be in the results.

The goal of this phase is to get a set of the “possible” abstract
values of each expression in a program. We construct a system
of constraints that satisfy the criteria of monotonic functions in
the theory of lattices, and solve the system by iteration. This is
a technique in static analysis to compute static properties of a
program, such as in type analysis, data flow analysis, etc. [1, 4].

The main idea of the algorithm is as follows. From the source
code of a program, at each expression, according to the kind of
the expression, we put constraints on the variables that hold the
analysis results. Finally, we find the minimal fixed-point of the
constraint system by iteration.

4.1 Definition of abstract values
First, we define the abstract values used in the results of this phase,
the sub-scripts are the labels of expressions.

v ::= #f
| λl function created by expression

(λlx. el1)
| Pl pair created by expression

(consl el1 el2)
| ER when an error occurs during

evaluation of the current expression.

From now on, for convenience, if we say expression e evaluates
to ER that means there is an error triggered during the evaluation
of e. Note that expression e also evaluates to ER when an error is
triggered during the evaluation of one of its sub-expressions.

4.2 Definition of α and δ values
In the following, we define some variables used to denote the
results of this phase:

• αl is the set of the abstract values that an expression el could
possibly evaluate to during the execution of the program.

• αx is the set of the abstract values that a variable x could pos-
sibly take during the execution of a program. More concretely,
αx is the set of the values of the argument corresponding to
variable x during the calls of functions or during the evaluation
of µ-expressions.

• δl is a boolean variable indicating whether an expression el is
evaluated or not during the execution of a program.

To facilitate the presentation, we also define the following sets:

• Val is the set of all the possible abstract values that an expres-
sion in a program can evaluate to. Val contains #f , ER, the
functions, and the pairs. We have αl ⊆ Val for all l ∈ Lab.

• Valv is the set of the possible abstract values that a variable can
take during the execution. Valv contains #f , the functions, and
the pairs. We have αx ⊆ Valv for all variables x .

• OK is the set of the abstract values indicating that the evalua-
tion of an expression succeeds (terminates without error). OK
contains #f , the functions, and the pairs.

• TRUE is the set of the abstract values that are treated as true by
the expression if in our language. TRUE contains the functions
and the pairs.

For convenience, we say expression e evaluates to OK if e evalu-
ates to v, and v ∈ OK , similarly for TRUE . The goal of the first
phase is to compute all the αl, αx and δl. Note that there are many
possible αl, αx, and δl for each l and x, a trivial example is αl =
Val , αx = Valv , and δl = true , but we need the smallest possible
αl, αx, and δl. (Here, for δl, false is considered smaller than true)

4.3 Constraint system
We present here the rules to construct the constraint system that is
used to compute the abstract results of expressions. Note that the
value of ER is not passed as arguments of function calls and fixed-
points. The followings are the rules to generate the constraints for
different kind of expressions:

• If el = #fl:
If el is evaluated (δl = true), it always evaluates to #f .
Therefore:

δl ⇒ αl ⊇ {#f}
• If el = xl:

Here the variable x is read, the value of el is the value of x. So
we have:

δl ⇒ αl ⊇ αx

• If el = (λlx. el1):

From the definition of λl: λl is the function created by the
expression el, therefore:

δl ⇒ αl ⊇ {λl}
Expression el1 is executed whenever the function (λlx. el1)
is called, that is, (αx 6= ∅). So we have the constraint:

(αx 6= ∅) ⇒ δl1

• If el = (lel1 el2):

If el is executed then el1 and el2 are executed:

δl ⇒ δl1

δl ⇒ δl2

If el1 evaluates to a function, say λl3 = (λl3x. el4) then x
will take the value of el2 as an argument to the call of the
function and αl will contain αl4 as the return result of the
function:

αx ⊇ αl2

αl ⊇ αl4

If el1 evaluates to a pair or the constant false, since we
cannot make a function call on these values, the evaluation
of el produces ER:

Pi ∈ αl1 ⇒ ER ∈ αl

#f ∈ αl1 ⇒ ER ∈ αl

Scheme and Functional Programming 2007 107



ER ∈ αl1 ⇒ ER ∈ αl

ER ∈ αl2 ⇒ ER ∈ αl

• If el = (ifl el1 el2 el3):

To evaluate el, we first evaluate el1 :

δl ⇒ δl1

Depending on the evaluation result of el1 , we decide to
evaluate el2 or el3 . If el1 evaluates to a true value (a pair or
a function) then el2 is evaluated. Otherwise if el1 evaluates
to the false value (#f ) then el3 is evaluated.

(αl1 − {#f,ER} 6= ∅) ⇒ δl2

(#f ∈ αl1) ⇒ δl3

ER ∈ αl1 ⇒ ER ∈ αl

The value of the evaluation of el is either the value of el2 or
the value of el3 :

αl ⊇ αl2 ∪ αl3

• If el = (µlx. el1):
To evaluate el, we evaluate the expression el1 with the variable
x is replaced by el. Note that ER cannot be passed to x. So we
have:

δl ⇒ δl1
αl ⊇ αl1
αx ⊇ {αl1} − {ER}

• If el = (consl el1 el2):
If the evaluation of el1 and el2 terminates without error then el

evaluates to a pair:
δl ⇒ δl1

δl ⇒ δl2

δl ⇒ αl ⊇ {Pl}

ER ∈ αl1 ⇒ ER ∈ αl

ER ∈ αl2 ⇒ ER ∈ αl

• If el = (carl el1):
δl ⇒ δl1

If el1 evaluates to a pair then el evaluates to the first field of
that pair:

∀Pl2 ∈ αl1 such that el2 = (consl2 el3 el4) then αl ⊇ αl3

Here the errors are transferred from the cons-expression to
the expression of extraction but it is acceptable since our
analysis is still conservative.
If el1 evaluates to a function or the constant false then we
meet an error during the evaluation of el:

λi ∈ αl1 ⇒ ER ∈ αl

#f ∈ αl1 ⇒ ER ∈ αl

ER ∈ αl1 ⇒ ER ∈ αl

• If el = (cdrl el1):
Similarly to the case of car, we have:

δl ⇒ δl1
∀Pl2 ∈ αl1 such that el2 = (consl2 el3 el4) then

αl ⊇ αl4
λi ∈ αl1 ⇒ ER ∈ αl

#f ∈ αl1 ⇒ ER ∈ αl

ER ∈ αl1 ⇒ ER ∈ αl

• If el = (pair?l el1):
δl ⇒ δl1

If el1 evaluates to a pair then el evaluates to a true value
which is the pair itself. We have no choice here as it is the
operational semantic that determines how to evaluate the
program and the analysis must follow.

let π = {Pl2 ∈ αl1}
αl ⊇ π

If el1 evaluates to a function or the constant false then el

evaluates to the false value:
let π = {Pl2 ∈ αl1}

if αl1 − π 6= ∅ then αl ⊇ {#f}
ER ∈ αl1 ⇒ ER ∈ αl

• Finally, as the program starts with the evaluation of the expres-
sion e1, we have the initial condition:

δ1 = true

4.4 Results of the first phase
Since all the constraints are monotonic, we can use the iteration to
compute the minimal fixed-point of the system. Suppose that we
must compute the control flow of the following program:

(1 (λ2 f. (3 (λ4 z.
(5 (6 f7(λ8y. #f9))

#f10))
(car11 (12 f13(cons14 #f15 #f16))))

(λ17x. x18))

The results of the first phase (the fixed-point of the system of
constraints) is presented in Figure 1.

As we observe from the results, each of the expression α6

and α12 can evaluate to two abstract values, but in the concrete
evaluation, they evaluate to only one value. As for expression α18,
it evaluates to two values during the execution but to only one value
at each evaluation. Our static analysis cannot model the concept of
“two distinct evaluations” of expression α18. We also observe that
there are many ER in the results, contrary to the reality that the
errors are rare during executions of programs. This is because our
analysis is rather conservative.

5. Abstract Profiling
After the first phase, we have “qualitative” results: We know the
set of the abstract values that each expression or variable can
produce or take, respectively, during execution but we do not know
yet, among these values, which value has higher probability of
appearance and which has lower one.

In the second phase, to get quantitative results, we use nu-
merical variables to represent the measures of profiling. As men-
tioned above, one important thing we need to know is, for example,
whether the expression el1 is evaluated more than the expression
el2 during the execution of the above program? Which expression
in the program is computed more than the others? Which is never
computed, etc. We use the notion execution frequency to express
that measure.

In the “traditional profiling”, the profile can be considered as
an “average value” of many executions of a program and we
get the final result based on the results of a large number of test
runs. We adopt a similar idea, that is, we make our programs
never terminate (conceptually). We suppose that once the program
terminates (normally or because of an error), it will automatically
return to the beginning and restart execution.

In this phase, we model the flow of execution by probability
variables. To run a functional program is to evaluate its expressions.

108 Scheme and Functional Programming 2007



α1 #f,ER δ1
√

αf λ17

α2 λ2 δ2
√

αz #f
α3 #f,ER δ3

√
αy #f

α4 λ4 δ4
√

αx λ8, P14

α5 #f,ER δ5
√

α6 λ8, P14 δ6
√

α7 λ17 δ7
√

α8 λ8 δ8
√

α9 #f δ9
√

α10 #f δ10
√

α11 #f,ER δ11
√

α12 λ8, P14 δ12
√

α13 λ17 δ13
√

α14 P14 δ14
√

α15 #f δ15
√

α16 #f δ16
√

α17 λ17 δ17
√

α18 λ8, P14 δ18
√

We denote
√

= true .

Figure 1. The results of the first phase

The control flow starts from the main expression and proceeds to
other expressions in the program. Supposing we are interpreting a
program and we are now at the expression E1. During the evalu-
ation of E1 (or just after finishing evaluating E1, if the program
does not terminate yet) there will be another expression E2 needed
to be evaluated and so forth. Therefore the process of interpreting
a functional program creates a chain of expresions to be evaluated.
The proportion of the appearance of an expression in the chain is
its execution frequency. Since our program is cyclic (so the chain
is infinite) we define that based on probability. Supposing we pick
randomly an expression in the chain, then the execution frequency
of an expression is the probability of the event: that expression is
picked. We say it is the next expression to be evaluated.

In the first phase, we do not take into account the possibility that
the evaluation of an expression does not terminate. In addition, in
the case of the expression el = (µlx. el1), we simply “approxi-
mate” αx by αl1 with the elimination of ER value. In the second
phase, we introduce two new types of abstract value to address the
above cases:

• When the evaluation of current expression el does not termi-
nate, we denote the value of el by ⊥.

• µl denotes the fixed-point created by expression el = (µlx. el1).
Due to the nature of fixed-point, variable x is now bound to µl.

With the introduction of new abstract types, we need to adapt the
results of the first phase:

• We suppose that the evaluation of all the expressions in a pro-
gram have a possibility of not terminating, therefore we add ⊥
to all αl.

• For the fixed-point expressions, for example el = (µlx. el1),
we set αx = {µl}.

We define the following quantities:

• Πl(v) – the probability that el, when evaluated, evaluates to v
(v ∈ Val ).

• χl – the probability that el is the next expression to be evalu-
ated.

• Πx(v) – the probability that x, when bound to a value, takes
value v during a program execution, v ∈ αx.

(ifl el1 el2 el3)

el1

TRUE

el2

OK

. . .

ER ⊥

#f

el3

OK

. . .

ER ⊥

ER, ⊥

Figure 2. The evaluation of the expression el = (ifl el1 el2 el3)

Note that two new abstract values are now included in Val and
Valv . In the above definition of Πl(v), if v = ER or v = ⊥ then
the event should be understood as “an error is triggered during the
evaluation of the expression” and “the evaluation of the expression
does not terminate”, respectively.
We also define the following notational shorthands:

• Πl(S) =
X
v∈S

Πl(v) where S ⊆ Val .

• Πx(S) =
X
v∈S

Πx(v) where S ⊆ Valv .

So the goal of abstract profiling is to compute all the variables
Πl(v), Πx(v), and χl.

5.1 Equation system
Our idea here is to construct a system of equations between Πl(v),
Πx(v), and χl then we try to find a solution of the system.

5.1.1 An example
First, we give an example to illustrate the idea. We intend to con-
struct the constraint between our variables based on the kind of
each expression in the program. To make the problem tractable, we
need to make an assumption about the independence of the proba-
bility distributions. That is, the result of an expression is indepen-
dent of the results of others expressions and the control flow of the
program except for some particular cases. Let us consider an ex-
pression in the program, for instance:

el = (ifl el1 el2 el3)

The diagram of evaluation is presented in Figure 2. To evaluate el,
we must first evaluate el1 . Depending on the value of el1 (constant
#f or a true value), the result of el will be the result of el2
or el3 . From the assumption of the probability distributions, the
probability Πl(v) (v ∈ OK ) is computed based on the probabilities
of the following events:

• Expression el1 evaluates to TRUE and el2 evaluates to v.
• Expression el1 evaluates to #f and el3 evaluates to v.

Therefore we have the constraint that we wish to construct:

Πl(v) = Πl1(TRUE)Πl2(v) + Πl1(#f)Πl3(v) if v ∈ OK .

The system we construct is neither a linear nor a monotonic sys-
tem. It seems difficult to use traditional methods to find solutions.

Scheme and Functional Programming 2007 109



(lel1 el2)

el1

λi

el2

OK

. . .

ER ⊥

Pi,#f

el2

OK ER ⊥

ER,⊥

Figure 3. The evaluation of the expression el = (lel1 el2)

We chose an iterative numerical method to find an “approximate”
solution. In order to compute the Πl(v), Πx(v), and χl by iteration,
we construct a system of equations that allows one to compute the
values of Πl(v), Πx(v), and χl at step n + 1 from their values at
step n. We use the symbol “:=” (instead of “=”) to imply that.

The followings are the rules to construct the system of equations
from the source code of a program. For simplicity, in the following
equations, the left side of the equations refers to new values (values
at step n + 1) and the right side refers to old values (values at step
n):

5.1.2 Rules to compute Πl

• For el = #fl:

Πl(v) :=

8<: 1 if v = #f

0 otherwise.
for v ∈ Val .

It reflects the fact that el = #fl always evaluates to the value
#f

• For el = xl:
Here the variable x is read. There are two different types of
variables: function (λ) and fixed-point (µ). So there are two
types of probability that can “contribute” to Πl(v):

One is from the functions that contributes the part Πx(v) to
Πl(v).
The other is from the fixed-points. When x is bound to µl,
once x is read, x will be replaced by el itself. So the part of
the fixed points is

P
µi∈Valv Πx(µi)Πi(v).

And we have the equation:

Πl(v) := Πx(v) +
X

µi∈Valv

Πx(µi)Πi(v) for v ∈ Val .

• For el = (λlx. el1):
From the definition of abstract value λl, we have:

Πl(v) :=

8<: 1 if v = λl

0 otherwise
for v ∈ Val .

• For el = (lel1 el2):
The diagram illustrating the evaluation of the expression is pre-
sented in Figure 3. The evaluation of el is performed in three
steps. First, we evaluate el1 then we evaluate el2 . If el1 evalu-

ates to a function and el2 evaluates to OK then we continue to
evaluate the body of the function. el evaluates to v (v ∈ OK )
whenever the three conditions below are satisfied at the same
time:

Expression el1 evaluates to a function.
Expression el2 evaluates to a OK value.
The body of the function evaluates to v.

From the assumption of the probability distributions, the prob-
ability of the event: el evaluates to v, v ∈ OK is computed as
follows:

Πl(v) := Πl2(OK )
X

λl3∈Val, el3=(λl3x. el4 )

Πl1(λl3)Πl4(v)

To compute Πl(ER), from the diagram of evaluation, we can
see that there are the following cases that lead to an error in the
evaluation:

Expression el1 evaluates to ER.
Expression el1 evaluates to OK and el2 evaluates to ER.
Expression el2 evaluates to OK and el1 evaluates to the
constant #f or a pair (since we cannot make a call on these
values, an error is triggered).
el2 evaluates to OK , el1 evaluates to a function and the
body of that function evaluates to ER.

So we have:
Πl(ER) := Πl1(ER) + Πl1(OK )Πl2(ER)+

Πl2(OK )

0@Πl1(#f) +
X

Pi∈Val

Πl1(Pi)

1A +

Πl2(OK )
X

λl3∈Val, el3=(λl3x. el4 )

Πl1(λl3)Πl4(ER)

The probability of the event that el evaluates to ⊥ is computed
from the probabilities of the following events:

Expression el1 evaluates to ⊥.
Expression el1 evaluates to OK and el2 evaluates to ⊥.
Expression el2 evaluates to OK , el1 evaluates to a function
and the body of that function evaluates to ⊥.

We have:
Πl(⊥) := Πl1(⊥) + Πl1(OK )Πl2(⊥)+

Πl2(OK )
X

λl3∈Val, el3=(λl3x. el4 )

Πl1(λl3)Πl4(⊥)

• For el = (ifl el1 el2 el3):
As above discussed, we have the following equations:

Πl(v) := Πl1(TRUE)Πl2(v) + Πl1(#f)Πl3(v) if v ∈ OK .

Πl(ER) := Πl1(ER)+Πl1(TRUE)Πl2(ER)+Πl1(#f)Πl3(ER)

Πl(⊥) := Πl1(⊥) + Πl1(TRUE)Πl2(⊥) + Πl1(#f)Πl3(⊥)
• For el = (µlx. el1):

From the definition of fixed-point, we have:

Πl(v) := Πl1(v) for v ∈ Val

• For el = (consl el1 el2):
The diagram of the evaluation of this expression is presented

in Figure 4. Expression el evaluates to a pair whenever el1 and
el2 are evaluated without error:

Πl(Pl) := Πl1(OK )Πl2(OK )

Πl(v) := 0 if v ∈ OK \ {Pl}
Πl(v) := Πl1(v) + Πl2(OK )Πl2(v) if v ∈ {ER,⊥}

110 Scheme and Functional Programming 2007



(consl el1 el2)

el1

OK

el2

OK

. . .

ER ⊥

ER ⊥

Figure 4. The evaluation of the expression el = (consl el1 el2)

(carl el1)

el1

Pi

.. . .

λi,#f ER ⊥

Figure 5. The evaluation of the expression el = (carl el1)

• For el = (carl el1):
The diagram of the evaluation of this expression is presented

in Figure 5. In the case of car, this functions extracts the first
field of el1 if el1 is a pair. The value of Πl(v), (v ∈ OK ) is
computed based on probability of the following events:

Expression el1 evaluates to a pair, for example: Pl2 ∈
Val , el2 = (consl2 el3 el4)

The first field of that pair contains to v.

The second probability is computed with the hypothesis that
the expression el2 evaluates to a pair. We use the conditional
probability to compute that:

P (A|B) =
P (A ∩B)

P (B)

Here:

A is the event: el3 evaluates to v (v ∈ OK ).
B is the event: el2 evaluates to a pair.
The probability of the event B is Πl3(OK )Πl4(OK ).
The probability of the event A ∩B is Πl3(v)Πl4(OK )

So we have:
Πl(v) :=

X
Pl2∈Val, el2=(consl2 el3 el4 )

Πl1(Pl2)
Πl3(v)Πl4(OK )

Πl3(OK )Πl4(OK )

Also note that, in the above formula, if Πl4(OK ) = 0, we
consider that the value of the fraction equals zero. The values

(pair?l el1)

el1

Pi

Pi

. . .

λi; #f

#f

. . .

ER ⊥

Figure 6. The evaluation of the expression el = (pair?l el1)

of Πl(ER) and Πl(⊥) are computed as follows:

Πl(ER) := Πl1(ER) + Πl1(#f) +
X

λi∈Val

Πl1(λi)

Πl(⊥) := Πl1(⊥)

• For el = (cdrl el1):
Similarly to the case of car we have:

Πl(v) := X
Pl2∈Val, el2=(consl2 el3 el4 )

Πl1(Pl2)
Πl4(v)Πl3(OK )

Πl3(OK )Πl4(OK )

if v ∈ OK

Πl(ER) := Πl1(ER) + Πl1(#f) +
X

λi∈Val

Πl1(λi)

Πl(⊥) := Πl1(⊥)

• For el = (pair?l el1):
The diagram of the evaluation of this expression is presented

in Figure 6. Expression el evaluates to true value whenever el1
is a pair.

Πl(#f) := Πl1(#f) +
X

λi∈Val

Πl1(λi)

Πl(λi) := 0 ∀i ∈ Lab

Πl(v) := Πl1(v) if v ∈ {ER,⊥} ∪ {Pi|i ∈ Lab}

5.1.3 Rules to compute Πx

There are two different types of variables: function (λ) and fixed-
point (µ). Each type has a different rule to compute Πx.

• For x in (λlx. el1), we compute Πx by examining all function
calls in the program:

Πx(v) :=

X
l2∈Lab, el2=(l2el3 el4 )

χl2Πl3(λl)Πl4(v)

X
l2∈Lab, el2=(l2el3 el4 )

χl2Πl3(λl)Πl4(OK )

if v ∈ Valv

The numerator refers to the probability that x, among all vari-
ables, takes value v during a program execution. The denom-
inator refers to the probability that x takes a value in the set
of abstract values OK . These probabilities are computed in the
probability space for all variables and all values.

Scheme and Functional Programming 2007 111



• For x in (µlx. el1), from the definition of µ, we have:

Πx(v) :=


1 if v = µl

0 otherwise if v ∈ Valv

5.1.4 Rules to compute χl

We construct the rules based on the relation of the expressions
which are the next expression to be evaluated during execution
of the program. For example, supposing that the expression el =
(consl el1 el2) is evaluated. Then we know for sure that the next
expression to be evaluated is el1 , therefore:

χl1 = χl

We also know that, after the evaluation of el1 , if this evaluation
succeeds, el2 will be the next expression to be evaluated, therefore:

χl2 = χlΠl1(OK )

The detailed rules are presented as follows:

• For el = (lel1 el2):
If el is executed with the probability p then el1 will be executed
with the same probability. Expression el2 is executed if and
only if el1 is executed and the evaluation of el1 succeeds. We
have:

χl1 := χl

χl2 := χlΠl1(OK )

• For el = (ifl el1 el2 el3):
Once the expression el is executed then el1 is executed. The
result of the evaluation of el1 decides which expression will be
the next to be evaluated: el2 or el3 . We have:

χl1 := χl

χl2 := χlΠl1(TRUE)

χl3 := χlΠl1(#f)

• For el = (consl el1 el2):
Expression el2 is evaluated whenever the evaluation of el1
terminates without error. We have:

χl1 := χl

χl2 := χlΠl1(OK )

• For el = (carl el1) or el = (cdrl el1) or el = (carl el1):
We have:

χl1 = χl

because el1 will be evaluated once el is evaluated.
• The main expression e1 is a special case. As we assumed, once

a program terminates (either normally or due to an error during
execution), it will return to the beginning and restart execution,
the value of χ1 must be computed based on the values of the
previous χ1, Π1(OK ) as well as the probability of the event:
other expressions in the program trigger ER:

χ1 := χ1Π1(OK )+X
l∈Lab;el=(lel1 el2 )

χlΠl2(OK )(Πl1(#f) +
X

Pi∈Val

Πl1(Pi))+X
l∈Lab;el=(carl el1 ) or el=(cdrl el1 )

χl(Πl1(#f)+
X

λi∈Val

Πl1(λi))

The first term is the probability that expression e1 evaluates
to OK (that is, the program terminates normally). The second
is the probability that an error is triggered during function calls.
The last one is the probability that an error is triggered during
evaluation of car and cdr expressions.

The expression el = (λlx. el1) and el = (µlx. el1) are other spe-
cial cases where the normal flow of control ends. We must exam-
ine the entire program because the flow of control is distributed to
many expressions in the program via function calls and references
of fixed-point.

• For el = (λlx. el1):
el1 is executed when the function λl is called from some call
site el2 = (l2el3 el4) when the first child el3 evaluates to λl

and the second child el4 is evaluated successfully. Therefore,
to compute χl1 , we must compute this probability on all the
function calls of the program and make a sum of all of these
probabilities.

χl1 :=
X

l2∈Lab, el2=(l2el3 el4 )

χl2Πl3(λl)Πl4(OK )

• For el = (µlx. el1):
el1 is executed if el is executed or the variable x is read and
evaluates to µl (and starts the process of the evaluation of el).
So we have:

χl1 := χl +
X

l2∈Lab;el2=xl2

χl2Πx(µl)

5.2 The invariants of the system
We show here some invariants of the above system. Note that, since
we construct the system based on the distribution of probability,
by definition these invariants must be always satisfied. When we
compute the solution by iteration, we always have:X

v∈Val

Πl(v) = 1 for each label l

X
v∈Valv

Πx(v) = 1 for each variable x

provided that when we initialize the Πl and Πx, the above sums
are satisfied. In other words,

P
v∈Val Πl(v) and

P
v∈Valv Πx(v)

are unchanged over iterations.
In the case of χ, in our current model, the sum

P
l∈Lab χl

varies over iterations. Therefore, after each iteration, we must re-
normalize χ so that

P
l∈Lab χl always equals 1. So the above rules

is to compute the “raw” χl at step (n + 1) from the normalized χl

at step n. The raw χl then are re-normalized as follows:

χl,normalized =
χl,rawP

i∈Lab χi,raw

5.2.1 Initialization of variables
Thanks to the results of the first phase, we can reduce a number of
variables of the system. That is, all the following variables have the
value of zero therefore they can be excluded from the system:

• Πl(v) = 0 for v 6∈ αl

• Πx(v) = 0 for v 6∈ αx

• χl = 0 if δl = false

Since we have little information about the variables, we can
initialize the Πl(v) and χl with any value provided that the sum
condition holds. A simple choice is to set all the variables to the
same value:

Πl(v) =

8><>:
1

‖αl‖
for v ∈ αl

0 for v ∈ Val but v 6∈ αl

112 Scheme and Functional Programming 2007



Πx(v) =

8><>:
1

‖αx‖
for v ∈ αx

0 for v ∈ Valv but v 6∈ αx+

χl =
1

‖{δi, i ∈ Lab, δi = true}‖

That is, all the abstract values of each expression (after first phase)
have the same probability and all the expressions in the program
have the same execution frequency.

We can also initialize the variables with random values. In some
cases, the final results do not depend on initial values.

5.3 Example
We continue with our example, supposing that we compute the
abstract profiling of following the program:

(1 (λ2 f. (3 (λ4 z.
(5 (6 f7(λ8y. #f9))

#f10))
(car11 (12 f13(cons14 #f15 #f16))))

(λ17x. x18))

After the first phase we have the set of the abstract values that
each expression in the program possibly evaluates to during ex-
ecution. We model only these objects. We choose random initial
values of probability on condition that the invariants of the sys-
tem are satisfied. (That is,

P
v∈Val Πl(v) = 1,

P
v∈Valv Πx(v) =

1,
P

v∈Valv χv = 1).

The initial values are presented in Figure 7. The result after 200
iterations is presented in Figure 8. The “ideal” result comes from
the (concrete) interpretation of the program is presented in Fig-
ure 9, it also can be considered as the results of dynamic profiling.

Comparing the two results, we have some comments:

• Thanks to results of the first phase, we have cut off many “im-
possible” values. Each expression possibly evaluates to maxi-
mum three abstract values.

• Each of the expressions e1 and e14 evaluates to only one value
in reality but it has three values in the result of the abstract pro-
filing. The analysis in the first phase was not able to eliminate
the fake values.

• We correctly identify the expression e18 is most executed but
give wrong result that e9 is least executed.

• We observed in our experiments that all Π(⊥) decrease to zero
after a few iterations. It is because we do not have any expres-
sion which can contribute to the Π(⊥) after each iteration. An-
other model of system of equations can address this problem.

• We also observed in our experiments that the value of ER are
overestimated as our system proposes a too coarse approxima-
tion of the values and does not take the execution context into
account. A finer approximation or some heuristics may improve
the situation.

5.4 Discussion
The system we construct is not a linear system. That makes it
hard to solve the system by simple algebra methods. Our idea
is not to solve the system by a rigorous way but to model it by
probability variables. We hope that, these variables, which vary
during the interations but follow the rules, will converge to an exact
or near exact result. It seems difficult to prove rigorously that we
can always find the fixed-point of the system by using iteration.

Π1(#f) 0.755
Π1(ER) 0.080
Π1(⊥) 0.165
Π2(λ2) 1.0
Π3(#f) 0.310
Π3(ER) 0.341
Π3(⊥) 0.349
Π4(λ4) 1.0
Π5(#f) 0.462
Π5(ER) 0.096
Π5(⊥) 0.442
Π6(λ8) 0.050
Π6(P14) 0.539
Π6(⊥) 0.411
Π7(λ7) 0.613
Π7(⊥) 0.387
Π8(λ8) 1.0
Π9(#f) 1.0
Π10(#f) 1.0
Π11(#f) 0.553
Π11(ER) 0.431
Π11(⊥) 0.016
Π12(λ8) 0.394
Π12(P14) 0.540
Π12(⊥) 0.066
Π13(λ17) 0.167
Π13(⊥) 0.833
Π14(P14) 0.931
Π14(⊥) 0.069
Π15(#f) 1.0
Π16(#f) 1.0
Π17(λ17) 1.0
Π18(λ8) 0.064
Π18(P14) 0.626
Π18(⊥) 0.310

Πf (λ9) 1.0
Πz(#f) 1.0
Πy(#f) 1.0
Πx(λ8) 0.809
Πx(P14) 0.191

χ1 0.045
χ2 0.036
χ3 0.043
χ4 0.005
χ5 0.102
χ6 0.019
χ7 0.090
χ8 0.123
χ9 0.011
χ10 0.077
χ11 0.056
χ12 0.029
χ13 0.061
χ14 0.014
χ15 0.118
χ16 0.012
χ17 0.094
χ18 0.057

Figure 7. The initial values of Πl, Πx, and χ

Morever, there exists some systems that have several fixed-points.
Nevertheless, since all the variables are tied with the invariants
of the system, it is likely that there exist two following cases in
practice:

• Our system converges to a fixed-point. This occurs in a few
simple programs.

• The system does not converge but it creates a “loop”. That is,
after certain iterations, the new χ are just a permutation of the
old χ in previous iterations.

To address this problem, after the calculation of the variables at
each iteration, we apply a technique in machine learning: use a
leaning rate. The result at step n + 1 is computed from the result
at step n and the “raw” result at step n + 1:

χ
(n+1)
l = χ

(n)
l (1− φ) + χ

(n+1)
l,raw φ

φ is the learning rate, 0 < φ < 1.
So it should be noted that, in the above rules, the left sides are

the “raw” χl at step (n+1) (before applying learning rate) and the
right sides refer to the χl at step n (after applying learning rate).
The above example is computed with φ = 0.5, small φ makes the
system more stable but it takes more time to converge. However, we
are not able to prove that using the learning rate can always make
the system converge.

Scheme and Functional Programming 2007 113



Π1(#f) 0.236
Π1(ER) 0.764
Π1(⊥) 0.0
Π2(λ2) 1.0
Π3(#f) 0.236
Π3(ER) 0.764
Π3(⊥) 0.0
Π4(λ4) 1.0
Π5(#f) 0.382
Π5(ER) 0.618
Π5(⊥) 0.0
Π6(λ8) 0.382
Π6(P14) 0.618
Π6(⊥) 0.0
Π7(λ7) 1.0
Π7(⊥) 0.0
Π8(λ8) 1.0
Π9(#f) 1.0
Π10(#f) 1.0
Π11(#f) 0.382
Π11(ER) 0.618
Π11(⊥) 0.0
Π12(λ8) 0.382
Π12(P14) 0.618
Π12(⊥) 0.0
Π13(λ17) 1.0
Π13(⊥) 0.0
Π14(P14) 1.0
Π14(⊥) 0.0
Π15(#f) 1.0
Π16(#f) 1.0
Π17(λ17) 1.0
Π18(λ8) 0.382
Π18(P14) 0.618
Π18(⊥) 0.0

Πf (λ9) 1.0
Πz(#f) 1.0
Πy(#f) 1.0
Πx(λ8) 0.382
Πx(P14) 0.618

χ1 0.063
χ2 0.063
χ3 0.063
χ4 0.063
χ5 0.039
χ6 0.039
χ7 0.039
χ8 0.039
χ9 0.015
χ10 0.039
χ11 0.063
χ12 0.063
χ13 0.063
χ14 0.063
χ15 0.063
χ16 0.063
χ17 0.063
χ18 0.101

Figure 8. The values of Πl, Πx, and χ after 200 iterations

The effect of the initial values of the variables to the system is
an issue that has not been solved yet. In practice, in some cases,
we can initialize with random values and consistently get the same
result.

As we use a numerical method, the stability of the system is
also a problem. In some constraints we compute the probability by
some divisions that could lead to a “division by zero” error.

6. Future work
Since our work is only in a preliminary state, there remain many
open questions. Our future work will focus on the following issues:

• Clarify the consistence of the system, the connection between
operational semantic, the equations of abstract profiling, and the
control-flow analysis.

• As we construct our model based on the distribution of proba-
bility and the control-flow analysis, we define χl based on the
probability of the appearance of el as the next expression to be
evaluated in the chain of execution, we need to clarify if this
probability always exists for all programs.

• We can improve the system by using the models of probabilistic
inference that make fewer independence assumptions such as
Bayesian inference in graphical models.

• We also can consider to change the syntax of our language so
that it has a more natural link with the equations of profiling.

Π1(#f) 1.0
Π2(λ2) 1.0
Π3(#f) 1.0
Π4(λ4) 1.0
Π5(#f) 1.0
Π6(λ8) 1.0
Π7(λ7) 1.0
Π8(λ8) 1.0
Π9(#f) 1.0
Π10(#f) 1.0
Π11(#f) 1.0
Π12(P14) 1.0
Π13(λ17) 1.0
Π14(P14) 1.0
Π15(#f) 1.0
Π16(#f) 1.0
Π17(λ17) 1.0
Π18(λ8) 0.5
Π18(P14) 0.5

Πf (λ9) 1.0
Πz(#f) 1.0
Πy(#f) 1.0
Πx(λ8) 0.5
Πx(P14) 0.5

χ1 0.053
χ2 0.053
χ3 0.053
χ4 0.053
χ5 0.053
χ6 0.053
χ7 0.053
χ8 0.053
χ9 0.053
χ10 0.053
χ11 0.053
χ12 0.053
χ13 0.053
χ14 0.053
χ15 0.053
χ16 0.053
χ17 0.053
χ18 0.106

Figure 9. The “ideal” result of Πl, Πx, and χ

• In this model, we must re-normalized the χ after each iteration
because the sum of χ is not preserved. In the next paper we
intend to develop a solution that can preserve the sum of χ.

For the system of equations, we need to address the following
issues:

• Investigate the consistency of the system of equations.
• We also need to study the accuracy and the numeric stability of

the system.
• Study the effect of the initial values of variables. We can use

some heuristics to predict and initialize the variables base on
the semantic context so that our system converges faster and
has a better result?

• In this example we just find one “approximate” solution of the
system, but it is likely that the system will have more than one
solution. If possible we can find and compare these solutions.

• The iterative method is not the only method that can solve the
system of equations, there exist many other methods to do so.
It would be interesting to measure their performances.

• Our modeling that we have proposed here is still coarse. A
finer modeling of abstract values and context of evaluation can
help improve the quality of profiling and maybe address the
problems of overestimating the values of ER as well as the
disappearance of Π(⊥).

7. Conclusions
We have proposed a methodology to compute abstract profiling.
This methodology aims at computing a “similar” results of tra-
ditional profiling yet without having to execute programs. This
methodology is applied to the functional languages and can be con-
sidered as a static approach to the profiling.

In the first phase of our algorithm. we use a control flow analy-
sis to get qualitative results and to limit the numbers of numerical
variables in the second phase. In the second phase, we propose a
methodology based on probability to model the control flow of pro-

114 Scheme and Functional Programming 2007



grams. We use numerical variables to represent the measurements
of abstract profiling. We also present a set of rules that can be used
to construct an equation system that tie these variables together. Fi-
nally, we use iteration to compute an “approximate” solution of the
system.

The approach used to illustrate the methodology is just one
among many approaches that can be proposed and it still has many
drawbacks. After all, since our work is at a very preliminary stage,
there are still numerous issues that need to be addressed.

Acknowledgments
I wish to thank professor Danny Dubé for his advice when carefully
reviewing this paper and the anonymous referees for their helpful
comments. This work has been funded by Natural Sciences and
Engineering Research Council of Canada.

References
[1] Flemming Nielson, Hanne R. Nielson, Chris Hankin. Principles of

Program Analysis. Springer, 1999.
[2] Thomas Ball. The Concept of Dynamic Analysis. Foundation of

Software Engineering, p. 216-234, 1999.
[3] gprof documentation.

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

[4] Olin Shivers. Control-flow analysis in Scheme. Proceedings of the
ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation. 1988.

[5] Thomas Ball, James R. Larus. Optimally Profiling and Tracing
Programs. ACM Transactions on Programming Languages and Systems,
16(4), p. 1319-1360, 1994.

[6] Michael Ernst. Static and dynamic analysis: synergy and duality. ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering. 2004.

[7] Thomas Ball , James R. Larus, Branch prediction for free. Proceedings
of the ACM SIGPLAN 1993 Conference on Programming Language
Design and Implementation, p.300-313, 1993,

[8] Youfeng Wu, James R. Larus, Static branch frequency and program
profile analysis. Proceedings of the 27th annual international
symposium on Microarchitecture, p.1-11, 1994.

[9] Tim A. Wagner, Vance Maverick, Susan L. Graham, Michael A.
Harrison, Accurate static estimators for program optimization.
Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, p.85-96, 1994.

[10] William Pugh, Counting solutions to Presburger formulas: How
and Why. Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation, p.121-134, 1994.

[11] G. Ramalingam, Data flow frequency analysis. Proceedings of the
ACM SIGPLAN 1996 Conference on Programming Language Design
and Implementation, p.267-277, 1996.

[12] Gary A. Kildall, A unified approach to global program optimization.
Proceedings of the ACM SIGACT-SIGPLAN 1973 Symposium on
Principles of Programming Languages, p.194-206, 1973.

Scheme and Functional Programming 2007 115



116 Scheme and Functional Programming 2007


