

Adaptation of Bit Recycling to Arithmetic Coding

Ahmad Al-Rababa’a and Danny Dubé
 Université Laval, Canada

Objectives

Multiplicity of Encodings

The bit recycling compression technique has been introduced

to minimize the redundancy caused by the multiplicity of

encodings feature present in many compression techniques.

This work aims to adapt Huffman-based Bit Recycling (HuBR)

to Arithmetic Coding Bit Recycling (ACBR) in order to achieve

better compression and a much wider applicability.

The Weakness of HuBR

Theoretical Analysis

Conclusion and Future Work

Solution: Arithmetic Coding Bit Recycling

The theoretical analysis showed that ACBR achieves perfect recycling in

all cases whereas HuBR achieves perfect recycling only in particular

cases. Consequently, a significantly better compression can be achieved

by ACBR. We intend to adjust the ACBR scheme so that it can be

implemented using fixed-length registers, since it currently uses arbitrary-

precision calculations. Afterwards, ACBR can be implemented and applied

on many applications include the multiplicity of encoding property, such as

LZ77 and its variants, some variants of Prediction by Partial Matching

(PPM) technique, Volf and Willems switching-compression technique, and

Knuth’s algorithm for the generation of balanced codes.

Huffman-Based Bit Recycling (HuBR)

HuBR: the decompressor's bit stream

𝑁𝐶 = 𝑐𝑖 − 𝑟𝑖 ∙
1

2 𝑟𝑖

𝑛

𝑖=1

Let p1, p2, and p3 be 0.0625, 0.03125, and

0.0000305 respectively.

• NC for M1,M2, and M3 is 5.5 bits.

• NC for M1 and M2 is 3.5 bits.

• NC for M1 is 4 bits.

But the minimum (bit-fractional) NC = − log2 𝑝𝑖

𝑛

𝑖=1

=

1. Huffman coding is constrained to generate codewords of integral lengths.

2. HuBR imposes an additional burden (dropping the costly messages) to

avoid some situations that affect its performance negatively .

The simplest case: LZ77 Example.
Encoding the string “abbaaabbabbabbb”.

A message is either a literal message, denoted by [c], or a match message, denoted by 𝑙, 𝑑 .

The Principle of HuBR.

How does the HuBR encoder exploit the multiplicity of encodings?

𝐶𝑛+1 = 𝐶𝑛 + 𝐴𝑛 × 𝑄𝑛)

𝐴𝑛+1 = 𝐴𝑛 × 𝒑𝒏

𝐶𝑛+1 = 𝐶𝑛 − 𝐴𝑛 × 𝑄𝑛)

Arithmetic Encoding: Arithmetic Decoding:

𝑃 𝑀1) + 𝑷 𝑴𝟐) + 𝑃 𝑀3)

Comparison of HuBR and ACBR performance with uniform distribution.

Comparison of HuBR and ACBR performance with two skewed choices.

3.414 bits.

𝑁𝐶_𝐻 = min −
1

2
log2 𝑝1 ∙ 𝑝2) − 1,− log2 𝑝1, − log2 𝑝2

𝑁𝐶_𝐴 = − log2 𝑝1 + 𝑝2)

Assume:

• 𝑝1≥ 𝑝2

• 𝑝1= 1 64)

