
ADAPTATION OF BIT RECYCLING TO ARITHMETIC CODING

Ahmad Al-rababa’a and Danny Dubé

Computer Science and Software Engineering Department
Laval University, Canada

Ahmad.al-rababaa.1@ulaval.ca and Danny.Dube@ift.ulaval.ca

ABSTRACT

The bit recycling compression technique has been intro-
duced to minimize the redundancy caused by the multi-
plicity of encoding feature present in many compression
techniques. It has achieved about 9% as a reduction in the
size of the files compressed by Gzip. In this paper, we
propose to adapt bit recycling to arithmetic code instead
of Huffman code. This adaptation enables bit recycling
to achieve better compression and a much wider applica-
bility. A theoretical analysis that estimates the average
amount of data compression that can be achieved by this
adaptation is presented as well.

1. INTRODUCTION

Data compression aims to reduce the size of data so that
it requires less storage space and less bandwidth of the
communication channels. Many compression techniques
suffer a problem that we call the redundancy caused by
the multiplicity of encoding. The multiplicity of encoding
means that the source data may be encoded in more than
one way. In its simplest form, it occurs when a compres-
sion technique with multiplicity of encoding feature has
the opportunity at certain steps during the encoding pro-
cess to encode the same symbol differently, i.e. different
codewords for the same symbol can be sent to the decoder,
any one of theses codewords can be decoded correctly.
When this opportunity occurs, the default behaviour of
most techniques is to encode the symbol using the shortest
codeword and less computation if possible. Many applica-
tions include the multiplicity of encoding feature, such as
LZ77 (Lempel and Ziv, 1977) [1] and its variants, some
variants of Prediction by Partial Matching (PPM) tech-
nique [2], Volf and Willems switching-compression tech-
nique [3], and Knuth’s algorithm [4] for the generation of
balanced codes.

The bit recycling technique [5] has been introduced
to minimize the redundancy caused by the multiplicity of
encoding problem. It has exploited the multiplicity of en-
coding in a certain way, in which it is not always neces-
sary to select the shortest codeword, but instead to take all
the appropriate codewords into account with some agree-
ment between the encoder and the decoder. It turned out
that bit recycling was able to achieve better compression
by exploiting the multiplicity of encoding feature rather
than systematically selecting the shortest codeword. Vari-
ants of bit recycling have been applied on LZ77 algorithm

in [6] and [8], the experimental results of [7] showed that
bit recycling has achieved a reduction of about 9% in the
size of files that has been compressed by Gzip [9]. The
authors of bit recycling have pointed out that their tech-
nique could not minimize the redundancy perfectly since
it is built on Huffman coding [10], which does not have the
ability to deal with codewords of fractional lengths, i.e. it
is constrained to generate codewords of integral lengths.
Moreover, Huffman recycling has imposed an additional
burden to avoid some situations that affect its performance
negatively. On the other hand, arithmetic coding [11] does
have the feature of treating the probabilities fractionally.
Moreover it has attracted the researchers in the last few
decades since it is more powerful and flexible than Huff-
man coding. Consequently, this work aims to address the
problem of adapting bit recycling to arithmetic code in or-
der to achieve better compression with fewer burdens.

The outline of the next sections will be as follows. In
Section 2, we review LZ77 technique, the principle of bit
recycling, the weakness of bit recycling, and arithmetic
coding. In Section 3, we describe the proposed scheme
that is on arithmetic coding. Section 4 contains a theo-
retical analysis that estimates the performance of the pro-
posed scheme. Finally, the conclusion and future work are
given in Section 5.

2. BACKGROUND

2.1. LZ77 and the multiplicity of encoding

LZ77 is a compression technique that compresses a string
of characters S by transmitting a sequence of messages. A
message is either a literal message, denoted by [c], which
means that the next character is c, or a match message, de-
noted by 〈l, d〉, which means that the next l characters are
a copy of the l characters that appear d characters before
the position of the symbol being encoded in S. For ex-
ample, let S be ”abbaaabbabbabbb”, the underlined sub-
string is the prefix that has been encoded so far. The next
character to be encoded is ”a”. The position of character
”a” is called the current position of encoding. Notice that
the substrings ”a” ,”ab” (”a” followed by the first ”b”)
and ”abb” have many copies at different d’s in the already
encoded prefix before the current position. For instance,
”abb” has a copy at the distances 3, 6, and 11. LZ77 typ-
ically selects the longest match (”abb”) and, among the
available longest matches, it selects the choice at the clos-
est distance (d = 3), therefore the match message 〈3, 3〉

will be transmitted and the current position will be moved
to the last ”b”.

It is clear that LZ77 has the selection freedom to en-
code ”abb” by any one of the equivalent messages 〈3, 3〉,
〈3, 6〉, and 〈3, 11〉, denoted by M1, M2, and M3 respec-
tively. These messages are called equivalent messages
since any one of them can be used to encode the same sub-
string ”abb”. Accordingly, many different sequences of
messages can be transmitted to represent the compressed
stream of S, any possible sequence will be decoded cor-
rectly. This feature is an instance of the multiplicity of en-
coding. Most implementations of LZ77 select the longest
match, since selecting the longest match enables the en-
coder to use almost the same number of bits to encode
the longest possible string. For instance, encoding three
characters (”abb”) using M1, M2, or M3 is better than en-
coding one character (”a”) using the message [a] or two
characters (”ab”) using the message 〈3, 2〉. When many
longest matches exist, the closest one is preferred based on
the notion that the statistical distribution of the transmit-
ted distances tends to be skewed, with higher frequencies
for the short distances. This allows the statistical encoders
to take advantage of this skewness and send shorter code-
words on average.

2.2. Bit recycling compression technique

The main objective of the bit recycling technique is to
minimize the redundancy caused by the multiplicity of
encoding. To show the principle of bit recycling by ap-
plying it on the same example given above, consider the
bit recycling compressor depicted in Fig. 1. The current
position of encoding is represented by the point at time t.
The same three equivalent messages M1, M2, and M3 are
available to encode the string ”abb” from t to t + 1. The
arc length represents the cost of each message, i.e. the
message codeword length in bit. We already mentioned
that M1 is the default choice in most implementations of
LZ77.

What could we hope to obtain by selecting a message
other than M1? The answer of this question is that the act
of choosing among the equivalent messages constitutes a
form of implicit communication from the compressor to
the decompressor; bit recycling utilizes this implicit com-
munications to achieve better compression. Let’s explain
the answer based on Fig. 1. At time t, the compressor
creates a prefix code for the messages M1, M2, and M3

and according to their probability. The created codewords,
say 0, 10, and 11 for M1, M2, and M3 respectively are
called the recycled codewords. Before moving on, it will
be much easier to explain how the decoder behaves at time
t, then to resume the discussion of the encoding process.

On the other side, the decoder will receive Mi, i ∈
{1, 2, 3}, at time t . So it first decodes the received mes-
sage to ”abb”, then it can infer that the decoded substring
”abb” has two other copies in the decoded prefix, i.e. the
decoder can list the three equivalent messages that could
have been sent by the encoder. Therefore, the list of equiv-
alent messages at time t can be established by both the en-
coder and the decoder identically and implicitly. Knowing

Fig. 1. Principle of bit recycling compressor

the list of equivalent messages, the decoder can rebuild the
corresponding Huffman tree that has been built by the en-
coder, which means that one of the recycled codewords
of the available messages has been transmitted implicitly
from the encoder to the decoder. If the compressor has
decided to send M1, M2, or M3 then the codeword 0, 10,
or 11 is transmitted implicitly respectively. The selection
of message Mi among M1, M2, and M3 constitutes an
eye wink from the encoder to the decoder. The key ques-
tion now is: where is the compression? According to an
agreement between the encoder and decoder and based on
the available information, the decoder inserts the recycled
codeword of the received message into the compressed
stream just before t+1; accordingly, these bits have been
omitted from that location by the encoder. Note that the
compressor can offer to omit these bits because they are
transmitted implicitly by the selection process among the
equivalent messages. Next, we show how and why the re-
cycled codeword of the selected message (eye wink) can
be omitted by the encoder.

Let us get back to the encoder at time t. The en-
coder at this point has three recycled codewords 0, 10,
and 11 available, but it does not know which one to se-
lect yet. Hence, these codewords need to be compared
with the bits starting from t + 1, which is the beginning
of the next message codeword. There will be one and
only one match between the first bits of the next mes-
sage and a recycled codewords. The corresponding mes-
sage of the match will be the eye wink. As a consequent,
the matched bits starting from t + 1 need not be sent.
The matched bits can be omitted from the stream, since
they can be deduced implicitly by the decoder as described
above. The bits that have been omitted at the encoder side
and restored at the decoder side are called the recycled
bits and the technique itself, bit recycling. The recycled
bits at each step is one of the recycled codewords created
at that step, that is why we called it the recycled code-
word. Therefore, the inserted codeword is sent for free
by transmitting it through the message selection process
rather than through the explicit communication which is
the compressed stream. The sequence of implicitly trans-
mitted recycled codewords forms a kind of implicit chan-
nel between the encoder and the decoder. We call this
implicit channel the side-channel.

For example, let the standard codewords of M1, M2,
and M3 be (1001)b, (11110)b, and (111110000010101)b,

Fig. 2. Illustration of the bit stream when bit recycling

respectively. Let us illustrate the state of the decompres-
sor’s bit stream in Fig. 2 at instant I. The decompressor
at Instant II has decoded the underlined codeword (code-
word of M2). According to the discussion given above,
it can realize that M2 is the second of the three equiv-
alent messages M1, M2, and M3 that has been selected
by the encoder. It can build the recycling code of Fig. 2
and then determines that codeword (10)b should be re-
cycled. The recycled codeword (10)b need to inserted
into the bit stream as illustrated at instant III. At time
t + 1 and Instant I, the bit stream is exactly left as it
was at time t and instant III. If the bit stream at instant
I were (10010011011010101.....)b, the underlined code-
word would be the codeword of M2, then the decoder
would have to recycle bit 0. So the bit stream at instant III
be (00011011010101.....)b. Since recycling proceeds by
extracting prefixes of the bit stream, which is a sequence
of entropy-encoded events, the bit stream starts by 0 half
the time, and by 1 the other half of the time; also the bit
stream starts by 11 one fourth the time and so on. Accord-
ingly, M1 has probability 1

2 of being selected because its
recycled codeword is 1-bit long (0), M2 has probability
of 1

4 of being selected because its recycled codeword is
2-bits long (10) and so on.

Let ci is the cost of message i. The cost of the message
is the codeword length in bits for that message. Let the
costs of the messages M1, M2, and M3 be 4, 5, and 15
bits, respectively. Let pi be the probability of message i,
and assume roughly p1, p2, and p3 be 0.0625, 0.03125,
and 0.0000305 respectively. By default 4 bits is the cost
of the message selected by LZ77, i.e. the closest longest
match. By applying bit recycling, the net cost of M1 is 3
bits, since the cost of M1 is 4 bits minus 1 recycled bit,
which is less than the default cost. If M2 was the selected
message, then the net cost would be 3 bits (5 minus 2).
But what if M3 was the selected message? The net cost
would be 13 bit (15 minus 2) which is much greater than
the default cost. The average net cost NC of the available
messages is:

NC =

n∑
i=1

(ci − |ri|) ·
1

2|ri|
(1)

where n is the number of the available messages, r is the
recycled codeword, and |r| is the length of the recycled
codeword. So NC for M1, M2, and M3 is 5.5 bits, which
is also greater than the default cost, the reason of this high
average net cost is the costly message M3. Therefore the
authors solved the problem of the costly messages by de-
veloping an efficient algorithm for constructing an optimal
whole-bit recycling code in their work [8]. The main tar-
get of the algorithm is to drop the costly messages that af-
fect NC negatively. To examine NC after dropping M3;

the recycled codewords for the two messages M1 and M2

become 0 and 1, therefore each time 1 bit get recycled.
Then NC will be: (4 − 1)2−1 + (5 − 1)2−1 = 3.5 bits.
This is cheaper than systematically choosing M1.

2.3. The weakness of bit recycling

We have shown that the average net cost (3.5 bits) of the
choices after dropping the costly message is less than the
default cost (4 bits) that has been achieved by LZ77. But
did bit recycling achieve the perfect (maximum) recycling
by this average net cost? To answer this question, we first
need to know what the minimum average net cost accord-
ing to the messages probabilities is. Let T be the self-
information of the set of the equivalent messages {Mi}ni=1,
where n is the number of the available messages. T repre-
sents the minimum average net cost of n of the available
messages. T equals:

T = − log

n∑
i=1

pi (2)

T in our example without dropping the costly message
is 3.414 bits, and with dropping the costly message is
3.415 bits. So Huffman-based bit recycling (HuBR) did
not achieve perfect recycling neither with dropping the
costly message nor without. Notice that, after dropping
M3, HuBR has assigned the two remaining messages M1

and M2 the same opportunity (50 % for each one) to recy-
cle one bit, while p1 � p2. To achieve perfect recycling,
a higher probability (p1/(p1+ p2) = 0.667) should be as-
signed to M1 to recycle less bits (4 − 3.415 = 0.58 bit),
and less probability (p2/(p1 + p2) = 0.333) for M2 to
recycle more bits (5− 3.415 = 1.58 bits). This fractional
assignment will enable bit recycling to achieve perfect re-
cycling by utilizing the choices probabilities fractionally.
But Huffman code is constrained to generate codewords of
integer lengths, so it can utilize only powers of 1

2 probabil-
ities. Therefore, HuBR could not achieve perfect recycling
due to the nature of Huffman coding.

Arithmetic coding is unlike Huffman coding, since it
does have the ability to utilize the ratio between the mes-
sages probabilities fractionally and to recycle fractions of
bits. It is able to use the fractional assignment explained
above. Moreover, it is much closer to the theoretical lower
bound described above, since it has been proven by Howard
and Vitter in [12] that the degradation in the code effi-
ciency caused by practical arithmetic coding is negligible.
Consequently, it is worthwhile to adapt bit recycling to
arithmetic code.

2.4. Arithmetic code

In this section we briefly review the main notations of
the first-in first-out (FIFO) recursive version of arithmetic
coding [13]. Let the statistical model consist of the al-
phabet symbols indexed by i = 0,1. . . m-1, with the corre-
sponding symbol probability pi and the cumulative prob-
ability Qi, where:

Qi =

i−1∑
i=0

pi (3)

and Q0 = 0. The unit interval [0,1) is divided into subin-
tervals proportionally to the alphabet symbols probabili-
ties. The following two recursive equations will be up-
dated at each coding step until the last symbol is encoded.

Cn+1 = Cn + (An ×Qn) (4)

An+1 = An × pn (5)

where n is the number of the coding step, C is the code
point of the encoded string, which is the code that is ready
to be emitted to the decoder and will never be changed
again and A is the interval width from C as the base of
the interval. The value of the product (An ×Qn) is called
the augend, that is the new added value to the current C
by encoding the next symbol. Initially (at time t = 0),
C0 = 0 and A0 = 1, so that the initial interval is [0,1).
At the last step of coding, the encoder emits any value v
within the interval [C,C +A).

The decoder at the other side reverses what the en-
coder did. It starts with the initial values A = 1 and
C = v. The first symbol is decoded directly by mapping
C value with the cumulative probabilities of the model.
To decode the next symbol, the value of C will be updated
according to the following equation:

Cn+1 = Cn − (An ×Qn) (6)

3. ARITHMETIC BIT RECYCLING SCHEME

We explain our scheme based on the same example given
in Section 2. We start by describing the interval compo-
sition and calculation for arithmetic-based bit recycling
scheme (ACBR), in which we set up the necessary arrange-
ment between the encoder and decoder to control the trans-
mission of equivalent messages self-information. To de-
scribe how ACBR works, let S be the same string at the
same current position of encoding. The encoder at time t
has the interval It shown in Fig. 3. It is divided into k
subintervals proportionally to the probabilities of the set
of messages {mi}k−1i=0 that could be sent at time t. This
set of messages can be seen as the alphabet at time t. The
encoder has the same equivalent messages M1, M2, and
M3.

Consider the arrangement shown in Fig. 3. Each equiv-
alent message offered a copy of the new composed inter-
val It+1, that is composed by stacking all the equivalent
messages according to their occurrence in the model from
message 0 to k-1. Let the subinterval corresponding to
the equivalent message i at time t + 1, denoted by Iit+1.
Interval It+1 represents the self-information of the avail-
able equivalent messages. The width L of interval It+1

equals: (P (M1) + P (M2) + P (M3))×L(It), where P
is the probability. It+1 will be the available interval to
encode the next message at time t + 1. According to the
position of the bit stream that continues the encoding of
the remaining messages at time t + 1, one and only one
of the equivalent messages will be encoded. The position
of the of the bit stream at time t + 1 depicted by the zero
thickness arrow in Fig. 3. Notice that the arrow points to
It+1 and to I2t+1 at the same time. Since I2t+1 belongs to

Fig. 3. Arithmetic bit recycling interval composition.

M2 (in its scope), then the encoder selects message M2.
The encoder provides the new interval It+1 for the next
message to be encoded instead of I2t+1. Accordingly, the
C and A values corresponding to It+1 need to be provided
for the next message instead of the C and A values of I2t+1

and according to (4) and (5). The same principle for M1

and M3 as follows. If the arrow points above I2t+1, so it
points to I3t+1, which is the part of It+1 related to M3,
accordingly, the encoder selects M3. In the same way,
the encoder selects M1 if the arrow points below I2t+1.
Clearly, this procedure reduces the amount of information
required to encode any one of M1, M2, and M3 messages
individually and according to (2). Hence, one and only
one of the three available copies will be used according to
the cumulative probability of next message to be encoded.
The reasoning behind this is that, the C value represented
by the arrow with respect to It is the value that will be
used by the decoder to decode one of the messages M1,
M2, and M3, so the decoder will be able to decode M2

successfully.
Encoding the next symbol using a wider interval re-

sults in fewer bits to be sent to the decoder, i.e. more re-
cycled bits. Widening the interval from I2t+1 to It+1 rep-
resents the arithmetic recycling, and according to (2), the
recycled bits will be: logL(It+1) − logL(I2t+1). In our
example, the number of recycled bits by ACBR is 1.585
bits, and the average net cost is 3.414. Notice that, 3.414
bits is less than 3.5 bit that has been achieved by HuBR.
On top of that, the costly message (M3) does not affect the
average net cost negatively like in HuBR, but conversely,
it contributes positively in widening the composed inter-
val, therefore, we need not to be worried about the costly
messages anymore.

The knowledge of this arrangement will be known for
the decoder; therefore this knowledge represents the im-
plicit information that can be sent for free to the decoder.
Intuitively, the extra compression is a result of sending
the knowledge about redundancy implicitly rather than ex-
plicitly through the compressed stream. Based on this ar-

rangement, the decoder at time t and instant I will decode
as usual according to (6), notice that the value of Ct (the
value of C at time t) is the position of the arrow with re-
spect to It, and At is the width of It. It is obvious that the
arrow points to M2, therefore M2 can be decoded success-
fully without any modification in the decoding process.
At instant II, the decoder realizes that M2 has two other
equivalents, M1 and M3, thereby, it has to do the neces-
sary modification according to the eye wink, of course it
can rebuild the necessary knowledge to do the required
modifications for both C and A. In other words, the de-
coder has to decode the next message according to It+1

instead of I2t+1. Therefore, the values of Ct+1 and At+1

will be:

Ct+1 = Ct −QM2 × L(It) + P (M1)× L(It) (7)

At+1 = L(It)× (P (M1) +P (M2) + P (M3)) (8)

The bold parts in (7) and (8) are the parts that are calcu-
lated by the decoder without recycling, which also repre-
sents the C and A values of I2t+1. The value of (P (M1)×
L(It)) is added in (7) because it has been subtracted from
the C value of M2 message by the encoder, i.e. the de-
coder exactly undoes what the encoder did. At time t+ 1
and Instant III, the same position of the arrow with re-
spect to It+1 will be used to decode the next message as
described above and so on. The performance of the ACBR
scheme is a bit above an order of magnitude slower than
arithmetic code.

4. THEORETICAL ANALYSIS

To compare the performance of HuBR and ACBR, we as-
sume that we have different number of choices to choose
among the equivalent messages with uniform probabili-
ties. This situation does not need to drop the costly choices
and will not affect the performance of HuBR negatively.
Note that this assumption will not affect the performance
of the ACBR. The estimated average number of recycled
bits for different number of choices will be computed for
both HuBR and ACBR based on this assumption.

To compute the average number of recycled bits for
HuBR with equiprobable choices, let m be the number of
the available choices and wi be the codeword length of
choice i for i = 2, ...m. Huffman tree of m equiprobable
choices contains two codeword lengths, k1 = blog2 mc
and k2 = dlog2 me . Accordingly, there will be m − 2d
codewords of length k1 and 2d codewords of length k2,
where d is given by:

d = m− 2blog2 mc (9)

The probability pi=(1/2kj) is the probability of choice i
to be selected. Since there are two different lengths (two
j’s), then the average number of recycled bits AVH for
HuBR will be:

AVH = (m− 2d) · k1 ·
1

2k1
+ 2d · k2 ·

1

2k2
(10)

Therefore,

Fig. 4. Comparison of HuBR and ACBR performance
with uniform distribution

AVH = (m− 2d) · blog2 mc ·
1

2blog2 mc

+2d · 1

2dlog2 me · dlog2 me
(11)

The estimated average number of recycled bits AVA for
ACBR scheme is simply:

AV A = log2 m (12)

The values of AV H and AV A have been calculated for
numbers of choices varying from 1 to 16. The results are
plotted in Fig. 4. It is clear that ACBR performance is
always better than or equal to HuBRR performance, and
the gap between the two curves is a tiny gap. The reason
behind this small gap is that, the equiprobable assump-
tion does not expose clearly the weakness of HuBR. How-
ever, the equiprobable assumption is not often the practi-
cal case. To show how this assumption is in advantage of
HuBR, we need to examine the choices with skewed prob-
abilities, in order to show how much this gap is sensitive
to any skew in the choices probabilities and if this skew-
ness is in advantage of ACBR. To do so, we need to discuss
the following simplest special case with only two choices
ch1 and ch2. Let c1 and c2 be the costs of ch1 and ch2
respectively, where the cost of each choice is given by:

ci = − log2 pi (13)

Now, the average net cost CH for HuBR without dropping
the costly choice is:

CH =
1

2
(c1 − 1) +

1

2
(c2 − 1) (14)

By substituting (13) into (14), we end up with the fol-
lowing equation:

CH=(− 1
2 log2(p1·p2))−1 (15)

In order to take into consideration the ability of HuBR to
drop the costly choice, let NCH be the average net cost
for HuBR with dropping the costly choice, which should
be selected such that, the minimum value of {CH , c1, c2}.
Therefore NCH is:

min

{(
−1

2
log2 (p1 · p2)

)
− 1,− log2 p1,− log2 p2

}
(16)

Fig. 5. Comparison of HuBR and ACBR performance with two
skewed choices

The average net cost NCA for ACBR is:

NCA = − log2 (p1 + p2) (17)

Assume p1 ≥ p2, then c1 ≤ c2. R is the ratio between
p1 and p2 (R = p1/p2). It has been proven in [8] that
HuBR achieves optimal whole-bit recycling by dropping
the costly choice (c2) when:

c1 + 2 ≤ c2 (18)

Substituting (13) into (18) yields:

− log2 p1 + 2 ≤ − log2 p2 (19)

(19) can be simplified to:

p1
p2
≥ 4 (20)

So the threshold where HuBR drops c2 is at R ≥ 4. The
difference D between NCH and NCA is:

D = NCH −NCA (21)

The maximum value of D is 0.32 bit at R = 4 and the
minimum value is 0 at R = 1. To put it all together, the
average net cost for both HuBR and ACBR have been com-
puted for R value that ranges from 1 to 32. The value of p1
has been selected to be (1/64), the computation results are
plotted in Fig. 5. It is clear that the gap between HuBR and
ACBR is proportional to R from R = 1 to the threshold
at R = 4, where HuBR starts dropping the costly choice,
then for R > 4, the gap decreases as R increases, the gap
value varies from 0 to 0.32 bit according to R, the mini-
mum value of the gap is at R = 1 (equiprobable choices)
and the maximum value at R = 4 (the threshold), which
is an indicator that any skew in the choices probabilities is
an advantage to ACBR performance. The value of p1 has
been selected to be (1/64) in order to obtain a clear graph,
but any other value of p1 gives the same results, the two
curves are just shifted up or down according to the value
of p1.

5. CONCLUSION AND FUTURE WORK

A new scheme named ACBR has been proposed to resolve
the weakness of Huffman-based bit recycling (HuBR), by
adapting it to arithmetic code. The framework and the
main concepts of ACBR have been explained. The theoret-
ical analysis showed that ACBR achieves perfect recycling

in all cases whereas HuBR achieves perfect recycling only
in particular cases. Consequently, a significant amount of
better compression can be achieved by ACBR. A lot of
work is needed to be done. A more general and precise al-
gorithm needs to be designed. We intend to adjust the pro-
posed scheme so that it can be implemented using fixed-
length registers, since it currently uses arbitrary-precision
calculations. Adapting ACBR with the multiplication-free
arithmetic coding [14] would be an issue to lessen the
computation complexity. Afterwards, ACBR can be im-
plemented and applied on the Calgary corpus files [15] to
evaluate its performance in practice.

6. ACKNOWLEDGEMENT

The authors would like to thank the anonymous referees
whose comments helped to improve this paper. This work
has been funded by NSERC of Canada.

7. REFERENCES

[1] J. Ziv and A. Lempel, ”A universal algorithm for sequential
data compression”, IEEE Trans. Inform. Theory, 1977.

[2] J. Cleary and I. Witten, ”Data compression using adaptive
coding and partial string matching”, IEEE Trans. on Comm.,
Vol. 32(4): pp. 396 to 402, 1984

[3] P. Volf and F. Willems, ”Switching between two universal
source algorithms”, In Proc. of DCC, pp. 491 to 500, March
1998.

[4] D. Knuth, ”Efficient balanced codes”, IEEE Trans. Inform.
Theory, Vol. IT-32, p.51 , 1986.

[5] D. Dubé and V. Beaudoin, ”Recycling bits in LZ77-based
compression”, In Proceedings of the (SETIT 2005), Sousse,
Tunisia, Marc 2005.

[6] D. Dubé and V. Beaudoin, ”Bit recycling with prefix codes”,
In Proc. Of DCC, page 379, Snowbird, Utah, USA, March
2007

[7] D. Dubé and V. Beaudoin, ”Improving LZ77 bit recycling
using all matches”, In Proc. of ISIT, Toronto ON, Canada,
July 2008

[8] D. Dubé and V. Beaudoin, ”Constructing Optimal Whole-
Bit Recycling Codes”, In Proc. of IEEE Information Theory
Workshop, Greece, 2009.

[9] J. Gaily. and M. Adler, ”The GZIP Compressor”
http://www.gzip.org/.Compressor.

[10] D. Huffman, ”A method for the construction of minimum-
redundancy codes”, In Proceedings of the Institute of Radio
Engineers, Vol. 40, pp. 1098 to 1101, Sep. 1952

[11] I. Witten, R. Neal, and J. Cleary, ”Arithmetic coding for
data compression”. Comm. of the ACM, vol. 30(6), pp. 520 to
540, 1987.

[12] P. Howard and J. Vitter, ”Analysis of Arithmetic Coding
for Data Compression”, Information Processing and Man-
agement Vol. 28, No. 6. pp. 749 to 763, 1992.

[13] R. Pasco, ”Source coding algorithms for fast data compres-
sion”, Ph.D. Elec. Eng., Stanford Univ., Stanford, CA, May
1976. Advisor: T. M. Cover.

[14] J. Rissanen and K. Mohiuddin, ”A Multiplication-Free
Multi alphabet Arithmetic Code”, IEEE Trans. Communica-
tion Vol. 37. pp.93 to 98, Feb. 1989.

[15] I. Witten, T. Bell, and J. Cleary. The Calgary corpus, 1987.
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

