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ABSTRACT

One of the key issues with the practical applicability of
Proof-Carrying Code (PCC) and its related methods is the
difficulty in communicating the proofs which are inherently
large. One way to alleviate this problem is to transmit,
instead, a proof generator for the program in question in
a generic extended PCC framework (EPCC). The EPCC
needs to provide the execution of the proof generator at
the consumer side in a secure manner. The ability to se-
curely run arbitrary untrusted proof generator is a challeng-
ing problem.
We explore the design of a small and safe virtual machine
(VEP) which provides the EPCC with a robust security
guarantee. The VEP is a minor TCB extension of less than
300 lines of code which works as a safe execution environ-
ment and brings about a practical solution to the common
security and resource management issues.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture
Styles—Stack-oriented processors;
D.2.4 [Software Engineering]: SoftwareProgram Verifica-
tion—Correctness proofs;
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages;
D.3.2 [Programming Languages]: Language Classifica-
tions—Macro and assembly languages;
D.3.4 [Programming Languages]: Processors—Inter-
preters
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1. INTRODUCTION
Proof-Carrying code (PCC) is a static code analysis tech-

nique in which the code consumer is enabled to verify that
a received code from an untrusted producer complies with
its safety policy. The safety policy is specified by means of
a set of axioms and rules that the code producer can use
for the purpose of constructing a proof. Using the verifica-
tion condition generator (VCGen), the consumer constructs
a verification condition (VC) which is a formula in a certain
logic. The VC has the property that it is provable only if the
code respects the safety policy. The constructed VC then is
sent to the code producer (or the producer, given a copy of
the VCGen, can construct the VC himself). The code is ac-
companied by what the code producer claims to be the proof
of the VC. Before executing the code, the consumer uses a
proof checker to verify that the received proof is indeed a
proof of the VC. If so, the code is safe and can be executed.
Figure 1 shows the interaction between the entities involved.

Once the safety of an untrusted code is successfully estab-
lished, there is no need to check the code anymore. As a
result, we have a computing system with less overhead and
more security [1, 9].

The traditional PCC approach suffers from some short-
comings. Apart from the difficulty of building or generating
the proofs for the code, one of the crucial obstacles for the
practical applicability of Proof-Carrying Code and related
techniques is the size of the proofs that must accompany
the code. It is important to have a compact representa-
tion of the proofs because they are possibly sent through
communication networks. This difficulty of communicating
the proofs, which are inherently large, makes the PCC less
scalable. In traditional PCC framework, it is not unusual
to see proofs that are 1000 times larger than the associated
code, which makes the use of PCC impractical for all but
the tiniest examples [10].

Another issue in PCC framework is that it does not pro-
vide the producer with enough flexibility. That is, the pro-
ducer is constrained to submit a proof in a logic which has
been imposed by the consumer. That is, even if the producer
finds it possible to build a simpler proof in a higher-order
logic, he is forced to build the proof in the consumer’s logic
which might result in an overweight proof.

The anxiety about the trusted computing base (TCB)
grows along with its number of lines. Any bug in these com-
ponents can compromise the security of the whole system.
Therefore, to have a safe and implementable PCC frame-
work, one of the obstacles in front is to make a big TCB
enlargement.
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Figure 1: Traditional PCC framework

Extended Proof-Carrying Code (EPCC) tackles these
problems by equipping the traditional PCC framework with
a small safe virtual machine. The virtual machine of EPCC
(VEP), enables the EPCC framework to offer a solution to
the PCC’s scalability issue. This article, presents the design
of the VEP and describes the trade-offs we had to make
throughout the design process. It also discusses the way in
which VEP works.

In the rest of this article, we first present our generic Ex-
tended Proof-Carrying Code framework in Section 2 and
present an overview of the requirements for the VEP in Sec-
tion 3. Sections 4 and 5 give the detailed design process
of the VEP. Section 6 discusses the way in which the VEP
enforcement security requirements. Section 7 presents a de-
tailed description of the workings of the VEP and, at the
same time, demonstrates the simplicity of the VEP. Finally,
we briefly discuss about other VMs, present an experiment,
present future work, and conclude.

2. EXTENDED PROOF-CARRYING CODE

FRAMEWORK
One of the crucial issues for the practical applicability

of PCC and its related techniques is the size of the proofs
that must accompany the code. Therefore, it is desirable
that proofs be represented in a compact format. One way
to reach this goal is proof optimization in which the proofs
are rewritten in a more compact form which preserves the
meaning of the proof of the original form [12, 3]. This could
be done finding for a given term t a smaller equivalent term
s and replacing all the occurrences of t with s in the proof
(e.g., in the arithmetic system, there could be a rule x ∗
1 → x which always reduces the size of a term). Using
proof optimization in an approach called lemma extraction,
Necula et al. could not obtain a reduction better than 15%
in the size of the proofs.

Another way of compacting the proofs is through data
compression. Data compression techniques try to find more
compact representations for data, from which the original
data can be reconstructed exactly. Many such algorithms
compress data by searching for more efficient encodings that
take advantage of repetition in the data. These techniques
are not well exploited in PCC framework due to the fol-
lowing reasons. The consumer of compressed data must
first decompress it, this needs a safe decompresser on the
consumer side. Generating the proof of safety for a nor-
mal decompressor (relatively big program with about 3000
lines of code) is a difficult task not worth performing be-
cause such a decompressor would be a specific decompresser
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Figure 2: The generic EPCC framework

that cannot have the potential to work with a proof com-
pressed by an appropriate but different compressor. That is,
to gain the advantage of a good compression, each time, the
safety of a new decompresser should be proven according to
the compression method which is appropriate for the safety
proof of a code. In OPCC approach, Necula et al. used the
idea of the proof compression. Although their approach re-
sulted in proofs which were smaller than the original proofs,
they payed the price of a considerable enlargement of the
TCB [10, 13, 8]. We are not in favor of compromising the
security of the system with a big TCB expansion simply
because the proofs are too large.

We present an extended framework that allows the PCC
proofs to be represented as programs. This contributes to
reduce the negative impact of the size of the proof and en-
ables the PCC to handle even very large programs. The
idea of representing the proofs as programs is inspired by
the Kolmogorov complexity. Roughly speaking, the Kol-
mogorov complexity of a string x is the shortest computer
program that produces x, i.e., that computes it, prints it,
and then halts. One important observation is that this
measure of complexity indicates how much a string (or, in
the context of proof-carrying code, a proof) can be com-
pressed: the ideal compressed form for a given proof is the
shortest program that outputs that proof. Formally, the
Kolmogorov complexity KU(x) of a string x is defined as
the length of the shortest program capable of producing
x on a universal computer U (such as a Turing machine).
KU(x) = minp∈{0,1}∗{ℓ(p) : p on U outputs x}. Note that
the Kolmogorov complexity is incomputable.

The idea behind the Extended Proof-Carrying Code
(EPCC) [11] is simply to send the proof in the form of a
program. In this way, we make it possible for the producer
to send a proof generator instead of the proof where, accord-
ing to Kolmogorov complexity, the proof generator ideally
can be the shortest program which can output the original
proof. For this to work, the consumer should be capable of
running the proof generator on a universal computer, in a
secure manner, and obtain the proof.

A diagram of an EPCC system is given in Figure 2. In an
EPCC system, there are two main parties, a code producer,
who sends a code along with its safety proof generator, on
the left-hand side, and a code consumer, who wishes to run
the code, provided that it is proven safe by the system, on
the right-hand side.

The communication between these two parties may consist
of a multi-step interaction between the producer and the
consumer depending on the underlying proof-carrying code
framework that they extend. Generally, at the first step,
the producer runs a theorem prover to get a safety proof of



the code he intends to send. Here, in contrast with other
PCC frameworks, the consumer is not forced to generate the
safety proof in the logic that the consumer imposes. The
producer can use this opportunity to build the proof in a
logic (e.g., a higher-order logic) that results in a smaller
proof. In other words, the producer has the possibility of
reducing the size of the safety proof by using a custom logic
which can be later converted (translated) to the logic set by
the consumer.

Then, the producer builds a proof generator. In accor-
dance with the Kolmogorov complexity, this proof gener-
ator can, in principle, be the shortest program which can
output the safety proof in the format which is acceptable to
the consumer. That is to say, the generic EPCC framework
provides the producer with the opportunity of compacting
the proof in two steps of optimization and compression.

In the next step, the producer submits the code accom-
panied by its safety proof generator to the consumer. The
consumer is required to check the proof before executing
the code submitted by the producer. Therefore, he runs the
safety proof generator on the virtual machine of EPCC (the
VEP) and obtains the safety proof. Then he runs the proof
checker. Upon success, the consumer can repeatedly exe-
cute the code safely. As one can easily observe, the EPCC
framework is tamper proof, like PCC.

One of the crucial components in the EPCC framework
is the VEP which is a universal computer in the trusted
computing base of the EPCC. The safe execution of the
proof generator depends on the safety of the VEP and the
way it imposes the security requirements.

3. CAPTURED REQUIREMENTS FOR

THE VEP
In EPCC framework, we execute the proof generator on

the VEP. The proof generator can be a package of a de-
compression algorithm and the compressed proof. In this
way, by executing the proof generator, the consumer is ac-
tually decompressing the compressed proof. We used the
GUNZip algorithm as a representative of algorithms within
the decompression techniques area. As a guideline, we tried
to design the VEP in a way that it can support an efficient
execution of programs written in a broad range of languages.

The virtual machine design process starts by capturing
the requirements. In the case of VEP, we dealt with the
following requirements.

1. VEP should provide us with a platform which has the
potential of working with the Kolmogorov ideal com-
pressor. According to the Kolmogorov complexity, this
ideal compressor runs on a universal computer.

2. It should enable the execution of the proof generator
at the consumer side in a secure manner. That is, VEP
should provide a tightly controlled set of resources for
proof generator. Network access, the ability to inspect
the host system, or read from input devices and write
into file streams should be disallowed. Therefore, VEP
should be able to perform execution monitoring.

3. As indicated in EPCC framework, VEP is a part of the
TCB. Knowing that any bug in TCB can compromise
the security of the whole system, we need the VEP to
have a size and simplicity, such that, it be feasible for

a human to inspect and verify it by pen and paper.
This would give the VEP the potential to be proved
safe by the PCC itself.

4. The proof generators are sent in the language of VEP.
Consequently, the language of VEP is a factor which
can affect the size of proof generator. It would be
helpful if VEP can provide us with small size of code.

5. In EPCC framework the producer sends a proof gen-
erator to the consumer side. The consumer should run
the proof generator on his side to obtain the proof.
Considering that any execution has an overhead, code
execution performance is a concern.

6. A virtual machine can die a quick death because no
one writes codes specific to that VM. This could be
due to its high complexity. Therefore, we want the
complexity of VEP to be low, and design it in a way
that has the potential to become popular.

The mentioned goals and requirements are not equally
important to us. The three first items of the above list are
of very high importance. There also exist trade-offs between
the list items. For instance, the low complexity and small
code size, both depend on the number of instructions in VEP
instruction set; having small set of instructions results in a
virtual machine with low complexity and, on the other hand,
a big list of instructions makes the code smaller. Although
these two factors are contradictory, there can be a good
balance between them. As a result, finding a good trade-off
is our major endeavor. For this, in making a design trade-off,
we favor the more important over the less important cases.
Having established the set of requirements, we discuss the
design choices in the following.

4. MACHINE TYPE
Conventionally, a VM can either be stack-based or

register-based. In order to decide between these two de-
sign choices, we kept an eye on the captured requirements.
Implementing a universal computer can be done with a stack
machine which has more than one stacks or has one stack
with random access. Nevertheless, register machines can be
universal computers, therefore, both approaches can satisfy
the requirement 1.

The most popular virtual machines, like Java Virtual Ma-
chine [6] and Common Language Runtime [7], use a stack
machine type rather than the register-oriented architectures
used in real processors, due to the simplicity of their imple-
mentation. Hence, a stack-based machine helps us to better
fulfill the requirement 3 on the list. Furthermore, the simple
stack operations can be used to implement the evaluation of
any arithmetic or logical expression and any program writ-
ten in any programming language can be translated into
an equivalent stack machine program. Moreover, the stack
machines are easier to compile to. Potentially, this could
prevent a quick death of the VEP to happen as stated on
the requirement 6.

The last among the reasons which led us to choose the
stack machine type over the register one was the fact that
a compiled code for a stack machine has more density than
the one for the register machine. In an experiment, Davis
et al. [4] the corresponding register format code after elim-
ination of unnecessary instructions was around 45% larger
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Figure 3: Schemata of the stack and the heap

than the stack code needed to perform the same computa-
tion. This can specially affect the size of the proof generator
written for VEP as mentioned in requirement 4. Accordingly
we chose the stack machine type over the register one.

5. INSTRUCTION SET ARCHITECTURE
The Instruction Set Architecture (ISA) of a virtual ma-

chine is the VM interface to the programmer. In the case of
VEP, available data types, the set of memory spaces are de-
fined by ISA. The ISA definition also includes a specification
of the set of opcodes (machine language) and the VEP’s in-
struction set. Next, we discuss each of these parts and their
design choices.

5.1 Data Types
On the VEP, we have two distinct types of values: num-

bers and pairs. Considering that the VEP is implemented
using 32-bits machine words, the least significant bit of the
cell shows the data type of the stored value in that cell. This
bit is not visible to the programmer while the remaining 31
bits are visible. If we have a cell that references a pair, the
contents of the cell represents the address of a pair in the
heap memory. For a cell with its type number, the contents
of the cell is a signed integers.

5.2 Memory
The VEP uses three blocks of memory: a code space

(whose cells are bytes), a heap (made to contain pairs of ma-
chine words), and a stack (whose cells are machine words).
The stack grows towards the high addresses (the first item
pushed on the stack is stored at address zero) and the stack
pointer points at the topmost element. The heap provides
the programmers with additional flexibility by supplying the
VEP with memory for objects of arbitrary lifespan.

Figure 3 shows schemata of the stack, the heap, and the
code space in VEP. For each of these three schemata, sample
binary content are shown on the right-hand side and the
human readable format of the same content on the left-hand
side. The second stack element from the top has the type
pair (the type bit is one) and rest of the bits show the address
of the pair in the heap which is 1 (1p in human-readable
format). The pair 1p in the heap is a pair of the two values
34 and 0p which are respectively the car and the cdr1 of 1p,
where car returns the first item of the pair and cdr returns
the second one. It should be mentioned that the values in
the pairs follow the same typing convention as we have in
the stack.

1Generalized from the LISP operations on binary tree struc-
tures, where cdr returns a list consisting of all but the first
element of its argument and car returns the first element.

 

Rank 80x86 instructions % Execution 

1 Data transfer instructions 38.00% 

2 Control instructions 22.00% 

3 Comparison instructions 16.00% 

4 Arithmetical instructions 13.00% 

5 Logical instructions 6.00% 

 Total 96.00% 

Figure 4: Instruction distribution approximation

5.2.1 Memory Management

The VEP provides automatic memory management of the
heap, thus there can be no dangling reference or memory
leak due to manual memory management errors and the
programmer can put more time on productivity instead of
managing low-level memory operations.

Reference counting is the automatic memory management
technique used in VEP. In reference counting technique, each
object (pair) in the heap contains a counter which tracks the
number of references to that object (references from stack
elements andor heap objects). The reference-count field of
the object is incremented when there is a new reference to
that object, and it is decremented when the reference is re-
moved. The VEP uses a word-sized reference counter which
is as large as the maximum number of references the mem-
ory can hold. In Figure 3, the content of the address 1p,
which is not visible to the programmer, is the number of
references to the pair 1p.

When the reference count falls to zero, there are no more
references to the object. Therefore, we can immediately
find unreachable objects, and then reclaim them. When
the reference count falls to zero, the reference counts of off-
spring objects should be decremented before the object is
reclaimed.

A major drawback of reference counting is its failure in
reclaiming cyclic garbage data structures. Every value in the
VEP is built up out of existing values, hence, it is impossible
to create a cycle of references, resulting in a reference graph
(a graph which has edges from objects to the objects they
reference) that is a directed acyclic graph. Therefore, the
reference counting in the VEP does not have the drawback
of failure in reclaiming cyclic data structures.

5.3 Instruction Set
The design of the instruction set is one of the most in-

teresting and important aspects of VEP design. The code
space, being made of bytes, naturally leads to an instruction
set of 256 instructions. The VEP has a RISC-like instruc-
tion set which provides random access to stack, plenty of
arithmetic, logical, comparison, data transfer, and control
instructions and restricted access to the pair-based heap.
This gives application developers a good flexibility in im-
plementing their ideas and innovations. It also guarantees
an acceptable execution performance (requirement 5). We
provide the VEP with a rich set of data transfer instruc-
tions which might help to execute the proof generators on
the VEP more efficiently.

The VEP instructions can be classified into the following
categories.

• Data transfer instructions (POP, PEEK, POKE,
LOAD1, LOAD2, LOAD3, LOAD4, PEEKI n, POKEI
n, LOADI n, PUSH-PC, READC): these instructions



move data from one location in memory to another.
These instructions come in a variety of ranges and
density of operations, for instance, PEEKI n, POKEI
n have shorter range (i.e. they perform their opera-
tions on the eight top elements of the stack), while
PEEK and POKE have broader range and less density
of operations (e.g. a LOAD1 -1 followed by a PEEK,
is equivalent to PEEKI -1 ).

• Control instructions (HALT, NOP, JUMP, JMPR,
JMPRF, JMPRT): machines and processors, by de-
fault, work on instruction sequence. Redirection from
this sequence is possible through control instructions.
The most basic and common kinds of program control
are the unconditional jump and the conditional jumps
(branches). Control instructions also include instruc-
tions which directly affect the entire machine such as
HALT or no operation (NOP).

• Comparison instructions (EQU, LEQ, LTH, NEQ):
the compare instructions compare values by using a
specific comparison operation. Typical logical opera-
tions include equal and not equal.

• Arithmetic instructions (ADD, SUB, MUL, DIV,
MOD): the basic four integer arithmetic operations are
addition, subtraction, multiplication, and division.

• Logical instructions (BSHIFT, BAND, BNOT,
BOR): these instructions usually work on a bit by bit
basis. Typical logical operations include logical nega-
tion or logical complement, logical and, logical or.

• Heap related instructions (CONS, CAR, CDR, IS-
PAIR): these instructions whether perform their action
on a pair (CAR and CDR, respectively return the first
and the second item of a pair), result in a pair (CONS),
or verify if an stack element is a pair (ISPAIR).

• Input/Output instructions (OUTPUT): the VEP
provides a tightly-controlled set of resources for proof
generators to run in. In order to be able to output
the resulting proof, a proof generator is allowed to
print characters onto the standard output. This is the
sole way provided by the VEP for a proof generator
to communicate with the outside world. Other than
that, network access, the ability to inspect the host
system, or reading from input devices and writing into
file streams are disallowed. In this sense, the VEP
performs the dynamic analysis.

The distribution of the instructions is based on an ap-
proximate interpretation of the work of Hennessy et al [5] in
which 10 simple instructions that account for 96% of instruc-
tions executed for a collection of integer programs running
on the popular Intel 80x86 was presented (Figure 4). We
also kept an eye on our representative algorithm to find out
how frequently some operations are executed.

6. SECURITY ENFORCEMENT BY

THE VEP
We designed the VEP such that it guarantees a certain

number of fundamental safety properties in order to execute
the untrusted code in a secure manner. Memory safety is
one of these properties which prevents reading and writing

to illegal memory locations. The code space is read-only
and the legal code space locations are 0, . . . , Nc − 1, where
Nc is the code size. Even the instruction loading must be
performed as legal reads from the code space.

In the case of the stack, reads and writes are permitted.
Any read or write to the stack is preceded by a memory
check which ensures that the read and write are going to
be performed on valid stack locations as their destination.
What a valid destination is varies from instruction to in-
struction. Generally, the valid read and write destinations
are stack locations from the bottom of the tack to the top
of the stack.

In the case of the heap, reads and writes are very re-
stricted. Since the construction of the pairs is governed by
the VEP, the programmer has no means to modify the type
bit to forge a new pair and he has no means to read and write
in the heap other than to use CONS, CAR, CDR. Further-
more, memory safety in the VEP asserts that each operation
has a sufficient amount of required memory (stack and/or
heap) to perform the instruction (e.g., the VEP raises an er-
ror if an attempt is made to pop when the stack is empty or
to push an item onto a full stack). Control-flow safety pre-
vents jumps outside of the code space and resource bound
check enforces limitations on the size of the code space, the
size of the stack, the size of the heap, and the number of
instructions the VEP may execute. There are other security
requirements such as type safety and numeric safety which
will be explained in following subsections. It should be men-
tioned that the VEP has the ability to deal with all errors
automatically.

The security enforcement by the VEP is simple and
straightforward. The VEP enforces these security require-
ments at different levels. Categorizing the security checks
according to their enforcement level shows better how easy
the VEP security enforcement is to perform and understand
(interested readers can find a complete schema of the secu-
rity enforcement mechanism in Appendix A).

6.1 Initial Security Enforcement
The VEP checks the following requests for resources, only

once, just before executing the code. Note that each request
is made using a declaration in the header of the untrusted
code. Each time, the VEP verifies whether the demanded
amount of resources is no greater than the maximum value
settled in an agreement between the producer and the con-
sumer. The demanded code size and demanded stack size
are, respectively, denoted by Nc and Ns. The amount of
demanded heap size of the untrusted code, is represented in
number of pairs Nh.

• Code size: if the VEP refuses or fails to allocate the
requested block of memory, the VEP refuses the un-
trusted code. Otherwise, the VEP allocates a block of
Nc bytes of memory as the code space and inserts the
code into the code space.

• Stack size: if the VEP refuses or fails to allocate the
requested block of memory above agreed-upon limit,
the VEP refuses the untrusted code. Otherwise, the
VEP allocates a block of Ns words of memory as the
stack memory.

• Heap size: if the VEP refuses or fails to allocate the
requested block of memory, the VEP refuses the proof
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Figure 5: Instruction-wise security enforcement

generator. Otherwise, the VEP allocates a block of Nh

words of memory as the heap memory.

• Timeout : the untrusted code should finish its task
within a definite time period (i.e. number of opera-
tions) (No). In the case where the No is more than the
limit the VEP refuses the proof generator.

When the code is not refused during the initial security
enforcement, it is ready to be executed by the VEP.

6.2 Global Security Enforcement
Throughout the execution, the VEP enforces two security

checks globally. That is, these two checks are independent
of the actual next instruction that is about to be executed.
The global security enforcement consists of checking the fol-
lowings.

• Execution time: before fetching the next instruction,
the VEP makes sure that the code execution time
(measured as the number executed operations) has not
exceeded the No. If the number of executed operations
is less than the approved number, then the check is
passed, otherwise the code is refused for having run
for too long.

• Program counter : the VEP should check if the pro-
gram counter points inside the code space (i.e., non-
negative and less than the code size).

6.3 Instruction-wise Security Enforcement
The third level of security enforcement by the VEP is the

fine-grained level and is done per instruction. By enforcing
this level of security checks the untrusted code is prevented
to perform any unsafe operation.

Generally, after fetching each instruction and before the
execution of the instruction, the VEP performs a combina-
tion of the following checks.

• Number of operands: the number of operands of an in-
struction can vary from zero to two implicit operands
on the stack, depending on the instruction. For an
instruction that requires with one or more operands
on the stack, the existence of a sufficient number of
operands must be checked before execution of the in-
struction. If insufficient operands lie on the stack, the
execution is discontinued and the untrusted code gets
refused.

• Type of operand : the VEP checks if the type of the
operands conforms with the operation. As mentioned
earlier, the values in the VEP can be numbers or pairs.
The VEP can distinguish the type of an operand ac-
cording to its type bit. Depending on the instruction
and the operand, the latter may have to be a number,
it may have to be a pair, or it may be free to be of
either types. Checking the type of operands ensures
that a code is well-typed according to the VEP’s type
system. That is, the operations are applied only to
operands with correct types.

• Legal range of operands: the arithmetic instructions
should have legal arguments. The VEP checks the
operand legality to prevent potential error of using
partial operators with arguments outside their defined
domain (e.g., division by zero).

• Legal code destination: before changing the program
counter to the jump destination, the VEP checks if
the destination is within the code space. It should be
mentioned that the VEP does not enforce the concept
of instruction boundaries.

• Legal stack destination: For any instruction which re-
sults in a read or write to the stack, the VEP ensures
that the reads and writes have legal stack locations as
their destination.

• Stack overflow : the VEP verifies whether there is
enough stack to perform an instruction which works
with stack memory.

• Heap overflow : the VEP verifies whether there is
enough free space on the heap to perform an instruc-
tion which works with the heap memory.

As it is shown in Figure 5, the complete set of instructions
with their safety checks can be simply put into a table. In
this way it would be an easy task to verify the safety of the
VEP by pen and paper.

7. SEMANTICS OF THE PROGRAMS FOR

THE VEP
We start with some notation. We denote sequences (or

arrays) as comma-separated elements between angles; e.g.,
〈4, 2, 98〉. When we are interested in referring to the last few
elements of a sequence, we write for instance 〈σ|x, y, z〉 to
indicate that the sequence is a (sub-)sequence σ followed by



Instr. S before Saf. check pc after S after H after O where . . .

LOAD1 〈S ′|〉 Tc(pc + 1) pc + 2 〈S ′|n〉 H ǫ n = Fl(C[pc + 1], 0, 0, 0, 24)
LOAD2 〈S ′|〉 Tc(pc + 2) pc + 3 〈S ′|n〉 H ǫ n = Fl(C[pc + 1], C[pc + 2], 0, 0, 16)
LOAD3 〈S ′|〉 Tc(pc + 3) pc + 4 〈S ′|n〉 H ǫ n = Fl(C[pc + 1], . . . , C[pc + 3], 0, 8)
LOAD4 〈S ′|〉 Tc(pc + 4) pc + 5 〈S ′|n〉 H ǫ n = Fl(C[pc + 1], . . . , C[pc + 4], 0)
PEEK 〈S ′|n〉 Ts(S , 0, n) pc + 1 〈S ′|v〉 H + v ǫ v = Fs(S , 0, n)
POKE 〈S ′|v1, n〉 Ts(S , 0, n) pc + 1 〈S ′′|〉 H − Fs(S , 0, n) − v2 ǫ 〈S ′′|v1, v2〉 = Fu(S , 0, n, v1)
LOADI n 〈S ′|〉 pc + 1 〈S ′|n〉 H ǫ
PEEKI n 〈S ′|〉 Ts(S , 1, n) pc + 1 〈S ′|v〉 H + v ǫ v = Fs(S , 1, n)
POKEI n 〈S ′|v1〉 Ts(S , 1, n) pc + 1 〈S ′′|〉 H − Fs(S , 1, n) ǫ 〈S ′′|v2〉 = Fu(S , 1, n, v1)
POP 〈S ′|v〉 pc + 1 〈S ′|〉 H − v ǫ
PUSH-PC 〈S ′|〉 pc + 1 〈S ′|n〉 H ǫ n = pc

READC 〈S ′|n1〉 Tc(n1) pc + 1 〈S ′|n2〉 H ǫ n2 = C[n1]
HALT 〈S ′|〉 — — — ǫ
JUMP 〈S ′|n〉 n 〈S ′|〉 H ǫ
JMPR 〈S ′|n〉 pc + n 〈S ′|〉 H ǫ
JMPRF 〈S ′|n, v〉 Ff (pc, v, n) 〈S ′|〉 H − v ǫ
JMPRT 〈S ′|n, v〉 Ft(pc, v, n) 〈S ′|〉 H − v ǫ
NOP 〈S ′|〉 pc + 1 〈S ′|〉 H ǫ
EQU 〈S ′|v1, v2〉 pc + 1 〈S ′|n〉 H − v1 − v2 ǫ n = ((v1 = v2) ? 1 : 0)
LEQ 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = ((n1 ≤ n2) ? 1 : 0)
LTH 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = ((n1 < n2) ? 1 : 0)
NEQ 〈S ′|v1, v2〉 pc + 1 〈S ′|n〉 H − v1 − v2 ǫ n = ((v1 6= v2) ? 1 : 0)
ADD 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 + n2)
SUB 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 − n2)
MUL 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 ∗ n2)
DIV 〈S ′|n1, n2〉 Tz(n2) pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(⌊n1/n2⌋0)
MOD 〈S ′|n1, n2〉 Tz(n2) pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 mod n2)
BAND 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 & n2)
BOR 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(n1 | n2)
BNOT 〈S ′|n1〉 pc + 1 〈S ′|n2〉 H ǫ n2 = Fr(~ n1)
BSHIFT 〈S ′|n1, n2〉 pc + 1 〈S ′|n3〉 H ǫ n3 = Fr(⌊n1 ∗ 2n2⌋−∞)
CONS 〈S ′|v1, v2〉 Th(H) pc + 1 〈S ′|p〉 Fp(H, v1, v2) + p ǫ p = Fn(H)p
CAR 〈S ′|p〉 pc + 1 〈S ′|v〉 H + v − p ǫ v = F1(H, p)
CDR 〈S ′|p〉 pc + 1 〈S ′|v〉 H + v − p ǫ v = F2(H, p)
ISPAIR 〈S ′|v〉 pc + 1 〈S ′|n〉 H − v ǫ n = ((∃p. v = p) ? 1 : 0)
OUTPUT 〈S ′|n〉 Tb(n) pc + 1 〈S ′|〉 H n

Figure 6: Semantics of the instructions

elements x, y, and z. It is possible to read and update a se-
quence in random-access fashion. The expression σ[i] gives
the element of σ at index i and σ[i 7→ v] produces a sequence
that is identical to σ except that the element at index i is
now v. Indices start at 0. The length of σ is |σ|. The code
space is denoted by C, the stack, by S , and the heap, by H.
The program counter, which points at the instruction that
is being executed, is denoted by pc. C is a never-updated
sequence of bytes. S is a sequence of machine words that
gets updated and whose length varies. H is a couple (n, H),
where H is a sequence of Nh pairs and n is the index of the
first free pair in the chain of free pairs. A pair is a triple
(r, v1, v2) of machine words, where r is the reference count.
All the free pairs of a heap are chained together through their
third field and the last pair of the chain contains the index
Nh, which points beyond the upper bound of H and marks
the end of the chain. In the presentation of the semantics,
n ranges over values of type number, p ranges over values of
type pair, v ranges over values of either type, and r ranges
over reference counts. The semantics makes use of test func-
tions to enforce safety. The name of each test function is T
with a subscript; e.g., Ts. Note that failure to satisfy the
condition specified by a test function causes the abortion of

the execution of the program. The semantics also uses helper
functions, whose names are F with subscripts; e.g., Ft.

A program for the VEP contains the four declarations of
resource consumption, Nc, Ns, Nh, and No, followed by the
Nc bytes that make up the code proper. If the VEP accepts
the four declarations, it loads the Nc bytes into C. Then, it
initializes pc to 0, S to 〈〉, and H to the heap with all pairs
in the chain of free pairs:

(0, 〈(0, 0, 1), (0, 0, 2), . . . , (0, 0, Nh)〉).

After the initialization, the execution of the instruc-
tions begins. Before the execution of an instruction, two
instruction-independent checks are performed. First, the
VEP verifies whether the number of instructions until now
is below No. If not, the execution is aborted. Second, a
check is performed on pc to ensure it points inside of C’s
bounds so that loading the next instruction’s opcode is safe.
That is, the check Tc(pc) is performed (see Figure 8). Once
the instruction-independent checks are passed, the opcode
of the current instruction, C[pc], is read. Depending on the
opcode, the execution continues with additional instruction-
specific checks, if any, and with the intended effects of the
instruction. The details of the execution of each instruction



F1(H, p)
∆
= let (n1, H) = H and n2p = p and (r, v1, v2) = H [n2] in v1

F2(H, p)
∆
= let (n1, H) = H and n2p = p and (r, v1, v2) = H [n2] in v2

Fa(S , δ, n)
∆
= (n ≥ 0) ? n : |S| − 1 + δ + n

Fd(H, {}) ∆
= H

Fd(H, {n, v1, . . . , vk}) ∆
= Fd(H, {v1, . . . , vk})

Fd(H, {p, v1, . . . , vk}) ∆
= let (n1, H) = H and n2p = p and (r, v′

1, v
′
2) = H [n2] in

if r = 1 then
Fd((n2, H [n2 7→ (0, 0, n1)]), {v′

1, v
′
2, v1, . . . , vk})

else
Fd((n1, H [n2 7→ (r − 1, v′

1, v
′
2)]), {v1, . . . , vk})

Ff (pc, v, n)
∆
= (v = 0) ? pc + n : pc + 1

Fl(b1, b2, b3, b4, n)
∆
= Fr(((b1 ∗ 256 + b2) ∗ 256 + b3) ∗ 256 + b4)/2

n

Fn(H)
∆
= let (n, H) = H in n

Fp(H, v1, v2)
∆
= let (n, H) = H and (0, 0, n′) = H [n] in (n′, H [n 7→ (0, v1, v2)])

Fr(n)
∆
= ((n + 230) mod 231) − 230

Fs(S , δ, n)
∆
= S [Fa(S , δ, n)]

Ft(pc, v, n)
∆
= (v 6= 0) ? pc + n : pc + 1

Fu(S , δ, n, v)
∆
= S [Fa(S , δ, n) 7→ v]

H + n
∆
= H

H + p
∆
= let (n1, H) = H and n2p = p and (r, v1, v2) = H [n2] in (n1, H [n2 7→ (r + 1, v1, v2)])

H− v
∆
= Fd(H, {v})

Figure 7: Definition of the helper functions

Tb(n)
∆
= 0 ≤ n ≤ 255

Tc(n)
∆
= 0 ≤ n < Nc

Th(H)
∆
= Fn(H) < Nh

Ts(S , δ, n)
∆
= 0 ≤ Fa(S , δ, n) < |S|

Tz(n)
∆
= n 6= 0

Figure 8: Definition of the safety check functions

is presented in Figure 6. The definitions of the test func-
tions appear in Figure 8 and those of the helper functions,
in Figure 7.

Figure 6 encodes a lot of information and deserves some
explanation. The semantics describe the transformation of
the current state of the VEP into a new state. The current
state is made of pc, S , and H. (C never changes, so it is
not really a part of the state.) Only S of the current state
is presented in the table. On the other hand, all of the new
program counter, the new stack, and the new heap are pre-
sented. Moreover, the output produced by each expression is
given in the column labeled O. The two remaining columns,
Saf. check and where . . . , indicate particular safety checks
and intermediate computations for the instructions, respec-
tively.

Most of the instruction-wise safety is described implicitly
in the table. First, there has to be a check for stack under-
flow (U) when an instruction gets one or two operands from
the stack. The shape of the stack in column S before shows
the operands that are consumed by each instruction. Note

that an instruction requires a stack underflow check (see
Figure 5) if and only if it consumes one or two operands.
Second, there has to be a type check (T) when an instruc-
tion requires operands of specific types. The need for spe-
cific types is indicated by variables like n or p. Note that
EQU and NEQ need not check the type of their arguments
because we allow values of either types to be compared.
Third, a check of the range of the numerical value of an
operand (R) is explicitly indicated. DIV and MOD have
to avoid divisions by zero and OUTPUT is allowed to print
out bytes only. Fourth, checks for a valid access in the code
space (C) are indicated explicitly. Instructions LOAD1 to
LOAD4 need to retrieve 1 to 4 extra bytes that are part of
the instruction’s encoding. These instructions are the only
ones that are encoded in more than one byte. Note that the
branching instructions, like JUMP, do not check where they
branch. This is because the new pc will be checked prior
to the execution of the next instruction. Fifth, a check for
a valid access in the stack space (S) has to be made each
time a read or write access happens in the stack. Note that
such R/W accesses exclude the customary consumption of
the operands and production of the results (“pushes” and
“pops”) performed by almost all the instructions. The check
consists in verifying the validity of the index where the ac-
cess is about to happen. Such a check is rather complicated
because an access may be performed from either the bottom
or the top of the stack. So the check starts by converting
the indexing operand into an absolute index. Sixth, a stack
overflow check (O) is indicated implicitly only. Such a check
has to be performed for instructions where the stack grows;
i.e. the stack after is larger than the stack before. Seventh,



a heap overflow check (H) is indicated explicitly and must
be performed when trying to allocate a new pair. The check
verifies whether the index of the leading pair in the chain of
free pairs points in H .

When all the safety checks are passed (uniform and/or
specific), the instruction is allowed to have an effect on the
state (and on the outside world in the case of OUTPUT).
For most instructions, the effect on the state is clear except
for the modifications on the heap. Here are just a few notes.
The immediate constants manipulated by LOAD2, LOAD3,
and LOAD4 are stored in C in big-endian format. In the case
of PEEK, POKE, and their specialized variants, an extra ad-
justment δ has to be used in order to compute the absolute
index where the access is to be performed. This is due to
the fact that, for instance, PEEKI −3 is supposed to act
exactly like LOADI −3 followed by PEEK. No −3 constant
ever gets pushed on the stack but its phantom presence has
to be taken into account. All arithmetic and bit-wise oper-
ations are based on 31-bit numbers that wrap around when
over- or underflowing. The BSHIFT operation, when shift-
ing to the right, works like an arithmetic shift; i.e. the sign
bit gets extended. In the description of CONS and other
operations, there is a conversion from a number, say n, to a
reference to a pair, np, simply by adding the “p” suffix. The
reverse conversion is made by stripping the suffix. Testing
the type of a value v, as in ISPAIR, may simply consist in a
comparison with a pair value (or a numeric value). At this
point, the only difficult issue that remains is the update of
the reference counts. This is performed using the mysteri-
ous H+v and H−v expressions. These expressions indicate
that there now exists an extra reference to v or that we lost
a reference to v, respectively. Gaining or losing a reference
to a number has no impact. No update is attempted when
we know that we are dealing with a number. When we deal
with a pair, or when we might, the update expressions have
to be used. The implementation of the these operations
is rather complicated but their meaning is simple. Let us
recall that, as is customary in reference counting, losing a
single reference might cause a pair to be abandoned, which
in turn might cause other pairs to be abandoned, and so on.
In general, the loss of a reference might have a cascading
effect.

8. THE VEP VERSUS OTHER VMS
There are many systems that execute untrusted codes in

virtual machines to limit their access to system resources.
Therefore, a question one could ask is “why not use another
existing virtual machine instead of the VEP?”. Here, we
highlight the main reasons of choosing the VEP over two
best-known virtual machines. These two virtual machines
are: Java virtual machine (JVM) [6] introduced in 1995 by
Sun, and the .NET platform (CLR) [7] developed more re-
cently by Microsoft.

Any virtual machine that we choose would be a part of
the TCB in EPCC framework. Knowing that any bug in
the TCB can compromise the security of the whole system,
we should choose a virtual machine which increases the size
of the TCB the least. Using either JVM or .NET results
in a large TCB (these large TCBs were the motivations for
introducing the PCC approach in the first place). Appel et
al. [2] measured the TCBs of various Java virtual machines
at between 50,000 and 200,000 lines of code. The TCB size
in these JMVs is even bigger than the TCB size of the tra-

ditional PCC. Therefore, using these virtual machines to
extend the PCC framework results in an undesirably huge
TCB and ineffective PCC framework.

For EPCC, we need a virtual machine so simple that, it
is feasible for a human to inspect and verify it. None of
the mentioned virtual machines and any other that we are
aware of have been developed with this goal. JVM, .NET,
and other well-known virtual machines are mostly focused
on the performance, portability, etc. The implementation of
the VEP is less than 300 lines of code which makes it possible
to be easily verified by human and gives it the potential of
being proven safe in future. Therefore, we have shown that
the VEP is orders of magnitude smaller and it is simpler
than popular virtual machines.

9. EXPERIMENT
In order to test the practicality of our approach, we have

constructed a prototype implementation of an EPCC frame-
work which uses the VEP. We needed to implement the proof
generator builder which outputs a VEP executable proof
generator. Since it would be tedious to write programs in
the VEP machine language, we implemented an assembler
for the VEP that allows a programmer to use instruction
mnemonics instead of opcodes. Writing the proof generator
program in a high-level language is even more convenient.
Thus, we implemented an assembler to generate the machine
code for the VEP, a C compiler which generates the assem-
bly code for the assembler, and a proof generator program
in the C language.

The safety proofs in PCC are represented in the Edin-
burgh Logical Framework (LF). The typical LF representa-
tion of the proofs is large, due to a significant amount of
redundancy. The fact that proofs contain many repeated
patterns of proof rules and redundant arguments, makes
them suitable for data compression. A compressed proof
can get decompressed using the corresponding decompres-
sor. Therefore, a bundle of the compressed proof and a VEP
machine executable decompressor which can decompress the
compressed proof can make a sample proof generator. In our
experiment, we used Gzip, an off-the-shelf compressor. The
Gzip source code is stripped down so that it only performs
the decompression task. That is, we extracted the decom-
pressor part of the Gzip program which is called GUNzip.
This GUNzip C code is given to the compiler to generate the
VEP assembly code of the GUNzip. This assembly code is
then given to the assembler as input which results in having
the GUNzip machine code as its output. Meanwhile, the
proof is compressed by the Gzip compressor. Finally, the
GUNzip machine code and the compressed proof are packed
together as a proof generator. The packing is done manually
by allocating the compressed stream statically in the code
space.

In our experiment, the proof generator machine code with-
out the compressed data is 10KB and the proof generator
bundled together with the compressed proofs average 5% the
original proofs which is about 20 times smaller than before.

10. FUTURE WORK
In the future, a first practical step will be to prove the

VEP safe in a PCC framework. In this way, the VEP would
not increase the size of the TCB at all. Writing an oracle-
based proof generator could be another possible direction to



explore. This proof generator could be one which use the
proof witness in order to rebuild the original proof. There-
fore, there would be no need to use any non-deterministic
proof checker on the consumer side and the verification could
be done with the original PCC proof checker. In this way,
we would not force the consumer to change the PCC struc-
ture to gain the benefit of small proofs in OPCC and there
will be no need for compromises in the size of the TCB.

11. CONCLUSION
The VEP enables the EPCC framework to make the PCC

idea more scalable and practical by providing the code con-
sumer with the luxury of using a safe environment in which
a big class of proof generators can be executed in a secure
manner, regardless of the original logic in which the proofs
were represented. In this way, EPCC leaves the easier tasks
to the consumer (like PCC) and gives adequate means to
the producer to do the hard task (to the contrary of PCC).
This major flexibility for the consumer and producer, in ad-
dition to the alleviation of the proof size issue, are gained
through the VEP –a minor TCB extension of less than 300
lines of code– which can be easily verified and has the po-
tential to be proved safe in a PCC framework. EPCC asks
you to believe very little and gives the highest priority to
the security.
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APPENDIX

A. SECURITY ENFORCEMENT PROCESS
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Figure 9: Security Enforcement of the VEP


