CRT-938

Parameter Optimization for a Vehicle
Routing Heuristic Using Genetic Algorithms

by

Jean-Yves Potvin
Danny Dubé

C.ntre de recherche sur les transports, Université de Montréal, C.P. 6128, succursale
A, Montréal, Canada H3C 3J7.

Centre de recherche sur les transports — Publication #938
September 1993

Résumé. Dans cet article, un algorithme génétique est utilis¢ afin
de découvrir de bonnes valeurs pour les paramétres d'une
heuristique d'insertion classique pour le probleme de tournées de
véhicules avec fenétres de temps. Les valeurs identifiées par
l'algorithme génétique permettent d'améliorer les résultats obtenus
précédemment avec cette heuristique, sur un ensemble de problémes
tests. L'article contient également une introduction aux algorithmes
génétiques.

Mots Clés. Algorithmes Génétiques, Tournées de Véhicules,
Fenétres de Temps

Abstract. In this paper, a genetic algorithm is used to search the
space of parameter settings of a classical insertion heuristic for the
vehicle routing problem with time windows. The parameter settings,
as identified by the genetic search, greatly improve previous results
obtained with the insertion heuristic on a standard set of test
problems. The paper also provides a comprehensive introduction to
genetic algorithms. '

KeyWords. Genetic Algorithms, Vehicle Routing, Time Windows.

Section 1. Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is
currently the focus of very intensive research, and is used to model
many realistic applications [Solomon and Desrosiers 88]. The overall
objective is to serve a set of customers at minimum cost with a fleet
of vehicles of finite capacity housed at a central depot. Each customer
has a known demand for service (either for pick-up or delivery but
not both), as well as a time window or time interval for this service."
The time window at the depot defines the scheduling horizon.
Accordingly, each route must start and end within the bounds of this
horizon. It is worth noting that the scheduling horizon acts similarly
as a capacity constraint: when the horizon or the capacity is enlarged,
a larger number of customers can be served by the same vehicle, and
conversely.

Since the hard time window case is considered, a vehicle must
wait if it arrives too early at a customer location. Hence, the total
routing and scheduling costs include not only the total travel distance
(or total travel time), but also the waiting time.

Interesting results are reported in the literature for route
building and route improvement heuristics [Or 76, Solomon 87,
Solomon et al. 88, Potvin and Rousseau 90, Savelsbergh 90, Potvin
and Rousseau 93]. An exact algorithm for the VRPTW is also
described in [Desrochers et al. 92]. In this work, a few 100-customer
problems were solved to optimality with a column generation
technique. However, due to its exponential nature, the algorithm did
not find the optimum on many other problems of the same size.

Of particular interest is a paper by Solomon describing a variety
of route construction heuristics for the VRPTW ([Solomon 87}. In this
paper, a sequential time-space based insertion algorithm
outperformed all other tested approaches on a standard set of
problems. Various parameter settings were suggested by Solomon to
tune this heuristic. In this paper, we show that it is possible to
greatly improve the results reported in the paper via a careful
search in the space of parameter settings. To this end, a genetic
algorithm is used to search the parameter space, and find "good”
parameter settings for Solomon's heuristic.

In the following, Solomon's heuristic is first introduced. Then,
Section 3 briefly describes the basic principles at the core of the

genetic search. Section 4 provides additional details about our
implementation of the genetic search for the parameter tuning
problem. Finally, computational results are reported in Section 3.

Section 2. Solomon's Insertion Heuristic

In this section, we briefly introduce Solomon's approach to the
VRPTW [Solomon 1987]. Here, routes are created one at a time. A
route is first initialized with a "seed" customer, and the remaining
unrouted customers are added to this route until it is full with
respect to the time window or capacity constraints. If unrouted
customers remain, the initialization and insertion procedures are
repeated until all customers are served.

After initializing a route with a seed customer, the method uses
two cost measures c2(i,u,j) and cj(i,u,j) to guide the selection and
insertion of the next unrouted customer u between adjacent
customers i and j. Let (ig, i1, i2,..., im) be the current route with ip and
im standing for the depot. For each unrouted customer, the best
feasible insertion place in the current route is first computed as
follows:

c1*((w),0,j(w) = minp=1,.. m [c1(ip-1.u.ip)].

ci1(iu,j) = aj c11(i,u,j) + a2 ci2(i,u,j),
ol+o2=1, o120, «2=0.
where

c11 (iuj) = diy + dyj - 1 dij

dk,1 = distance in time units between k
and 1.
c12 (i,u,j) = by,j - bj,
by current service time at l.

bk,;] = new service time at 1, given that
k is in the route.

Next, the best customer u* is selected as follows:

c2(i(u®),u*,j(u*)) =
maxy [¢2(i(u),u,j(u))}, v unrouted and feasible.

c2(i(u),u,j(w) = A ddepot,u - €1 (i(w),u,j(w)), A20

Client u* is then inserted in the route between i(u*) and j(u*).
When there is no feasible insertion place in the route for the
remaining unrouted customers, the method initializes a new route.
This procedure is repeated until all customers are routed.

The insertion cost c¢] is a weighted sum of detour et delay, while
the selection cost ¢ is a generalized savings measure (the classical
savings are obtained by setting a1=1, a2=0, n=1, A=2 [Clarke and
Wright 64]).

Solomon uses two different initialization criteria to select seed
customers, namely the farthest customer from the depot and the
customer with earliest deadline (earliest time window's upper
bound). In addition, he uses four different parameter settings to tune
his heuristic, namely (o1,c2.0,A) = {(1,0,1,1), (1,0,1,2), (0,1,1,1),
(0,1,1,2)}. Consequently, Solomon's heuristic is run eight times on
gach problem, and the best solution is selected as the final result

In the next sections, we show that much better results can be
obtained with the same heuristic, via a proper setting of the
parameter values. Since the search in the parameter space is
performed with a genetic algorithm, the next section first introduces
the genetic algorithms in general terms. Then, Section 4 describes
our implementation for tuning Solomon's parameters.

Section 3. Genetic Algorithms

At the origin, evolution algorithms were randomized search
techniques aimed at simulating the natural evolution of asexual
species [Fogel 66]. The work of Holland and his students extended
this model by allowing the combination or crossover of information
taken from two parents to create a new offspring. These algorithms
were called "genetic algorithms" [Bagley 67], and the introduction of
the crossover operator proved to be a fundamental ingredient in the
success of this search technique.

Broadly speaking, genetic algorithms differ from traditional
search techniques in the following ways [Goldberg 89]:

(a) Genetic algorithms manipulate bit strings or chromosomes
encoding useful information about the problem, but they do
not manipulate the information as such (no decoding or
interpretation).

(b) Genetic algorithms uses the evaluation of a chromosome, as
returned by the fitness function, to guide the search. They do
not use any other information about the fitness function or the
application domain.

(c) The search is run in parallel from a population of
chromosomes

(d) The transition from one chromosome to another in the search
space is done stochastically

Points (a) and (b), in particular, explain the robustness of the
genetic algorithms, and their wide applicability as meta-heuristics in
many application domains. In the following, we briefly introduce the
reader to the basic principles at the core of the genetic search.

3.1 Genetic Search

In order to get some insight about the nature of the genetic
search, we consider the following initial population of 6-bit
chromosomes and their respective evaluation or fitness (the column
"Interval” is derived from the running sum of the fitness values, and
is related to the proportional selection scheme, as described in
Section 3.2.1):

Fitness Interval
Chromosome 1: 110001 1.80]0.00, 1.80]
Chromosome 2: 010101 0.20 11.80, 2.00]
Chromosome 3: 111001 2.00 12.00, 4.00]
Chromosome 4: 100101 0.10 14.00, 4.10]
Chromosome 5: 000011 1.90 14.10, 6.00]
Chromosome 6: 010111 1.80 16.00, 7.80]
Chromosome 7: 001100 0.10 17.80, 7.90]
Chromosome 8: 101010 0.10 17.90, 8.00)

By looking at the similarities and differences between the
chromosomes, and by comparing their fitness values, it is possible to
hypothesize that chromosomes with high fitness values have two I's
in the first two positions, or two 1's in the last two positions.

These similarities are exploited by the genetic search via the
concept of schemata or similarity templates. A schema is composed
of O's and 1's, like the original chromosomes, but with the additional
"wild card” or "don't care" symbol * (standing either for O or 1). Via
the don't care symbol, schemata represent subsets of chromosomes

in the population. For example, the schema 11**** stands for
chromosomes 1 and 3 in the above population, while schema ****11
stands for chromosomes 5 and 6.

_ Two fundamental properties of schemata are the order and
defining length, namely:

(a) The order is the number of positions with fixed values (the
schema 11**** ig of order 2, the schema 110*00 is of order 5)

(b) The defining length is the distance between the first and last
positions with fixed values (e.g. the schema 11**** is of length
1, the schema 1****] is of maximal length 5)

A "building block" is a schema of low order, short defining length
and above-average fitness (the fitness of a schema is defined as the
average fitness of its members in the current population). Generally
speaking, the genetic algorithm moves in the search space by
combining building blocks from two parent chromosomes into a
single offspring. Consequently, the basic assumption at the core of
the genetic algorithm is that a better chromosome is likely to be
generated by combining the best features of two good chromosomes.
In the example above, the genetic algorithm would combine
substrings of bits taken from a chromosome with two 1's in the first
two positions and a chromosome with two 1's in the last two
positions, to create an offspring with two 1's in the first two positions
and two 1's in the last two positions (in the hope that this
chromosome is better fit than both of its parents)

3.2 A Simple Genetic Algorithm

Based on the above principles, a simple "pure" genetic search
algorithm is defined. In the following description, many new terms
are introduced. These terms will be defined more precisely in
sections 3.2.1 to 3.24.

1. Create an initial population of N chromosomes (Generation 0)
2. Evaluate the fitness of each chromosome

3. Select N parents from the current population via proportional
selection (i.e. the selection probability is proportional to the
fitness)

4. Choose at random a pair of parents for mating. Exchange
substrings of bits with the one-point crossover to create two
offsprings.

5. Process each bit in the offsprings by the mutation operator, and
insert the resulting offsprings in the new population

6. Repeat Steps 4 and 5 until all parents are selected and mated
(N offsprings are created).

7. Replace the old population of chromosomes by the new one
(new generation)

8. Evaluate the fitness of each chromosome in the new population

9. Go back to Step 3 if the number of generations is less than the
maximum number of generations. Otherwise, the final result is
the best chromosome generated during the search.

The above algorithm introduced many new concepts, like the
probability of a chromosome to be parent, the one-point crossover
operator to exchange bit strings, and the mutation operator to
introduce random perturbations in the search. These concepts are
now defined more precisely.

3.2.1 Selection Probability (selection pressure)

The parent chromosomes are selected for crossover via
proportional selection, also known as "roulette wheel selection™ It is
defined as follows:

1. Sum up the fitness values of all chromosomes in the population

2. Generate a random number between 0 and the sum of the
fitness values

3. Select the first chromosome whose fitness value, added to the
sum of the fitness values of the previous chromosomes, is
greater or equal to the random number.

Hence, the interval]Eizl,_”n_lFitnessi,Ei=1‘_”nFitnessi] is
associated to chromosome n, and the chromosome is selected if the
random number falls in this interval. In the population of
chromosomes of Section 3.1, the total fitness value is 8.00, and the
interval assigned to each chromosome is shown in the last column,
under the heading "Interval". Hence, the first chromosome is chosen
when the random number falls in the interval [0,1.80]. Similarly,
chromosomes 2 to 8 are chosen if the random number falls in the
intervals]1.80, 2.00],]2.00, 4.00], }4.00, 4.10], 14.10, 6.00], 16.00,
7.80], 17.80, 7.90] and]7.90,8.00]}, respectively. Obviously, a
chromosome with high fitness has a greater probability of being
selected as a parent (assimilating the sum of the fitness values to a

roulette-wheel, a chromosome with high fitness covers a larger
fraction of the roulette). Chromosomes with high fitness contain more
above-average building blocks, and are thus favored during the
selection process. In this way, good solution features are propagated
to the next generation.

It is worth noting that proportional selection has also some
drawbacks. In particular, a "super-chromosome” with a very high
fitness value can quickly become dominant in the population, and
cause premature convergence. When such a situation occurs, the
population does not evolve anymore, because all its members are
derived from the super-chromosome (and are similar). To alleviate
this problem, the ranks of the raw fitness values can be used to
evaluate the chromosomes [Whitley 89]. In this case, the selection
probability of a chromosome is related to its rank in the population,
rather than its absolute fitness value. Hence, the selection probability
of a super-chromosome becomes identical to the selection probability
of any other chromosome of rank 1 in a given population.

Another drawback of proportional selection is the large variance
associated to the number of selections of a single chromosome. For a
population of size N, any given chromosome can be selected between
zero and N times. In the latter case, the same chromosome is selected
at each trial, and consequently, all offsprings are derived from a
single chromosome! To alleviate this problem, many selection
schemes now provide bounds on the number of selections associated
to each chromosome, like Stochastic Universal Sampling (SUS) [Baker
87]. As opposed to roulette-wheel selection, SUS guarantees that each
chromosome i will be selected at least Floor(Fitness;) times and at
most Ceiling(Fitness;) times. Moreover, this procedure is very fast,
with a time complexity of O(N) for a population of N chromosomes (as
opposed to O(N2) for a naive implementation of the roulette-wheel
selection, and O(NlogN) for a clever implementation with B-trees).

On a classical roulette-wheel, there is a single random number
for selecting the winning chromosome. In stochastic universal
sampling, there are N equally spaced numbers indicating N winners.
When the sum of the fitness values in the population is equal to N,
the numbers are exactly 1.0 apart. The first number is randomly
chosen between zero and one, and each successive number is
obtained by adding one to the previous number. For the population
of Section 3.1, we get eight numbers (0.70, 1.70, 2.70, 3.70, 4.70,
5.70, 6.70, 7.70), if we assume that the initial random number is

0.70. The two first values fall within the interval of chromosome 1,
and this chromosome is selected twice. In the same way, the third
and fourth numbers fall in the interval of chromosome 3, and this

chromosome is also selected twice. The fourth and fifth numbers. ..

indicate chromosome 5, while the two last numbers indicate
chromosome 6. Hence, chromosomes 2, 4, 7 and 8 are not selected,
and do not contribute to the next population.

3.2.2 One-point crossover

The one-point crossover operator is aimed at exchanging bit
strings between two parent chromosomes. A random position
between 1 and L-1 is chosen along the two parent chromosomes,
where L is the chromosome's length, The chromosomes are then cut
at the selected position, and their end parts are exchanged to create
two offsprings. In the example below, the parent chromosomes are
cut at position 3.

Example: parentl 1 1 010 0 1
parent2 0 1 011 1
offspringl : 1 1 0 1 1 1
offspring2 : o 1 0 o o0 1

A probability is associated to the application of the crossover
operator, and it is usually set to 0.6. If the operator is not applied to
the selected parents, they are both copied in the new population
without any modification.

Extensions of this operator, like two-point crossover, M-point
crossover and uniform crossover are reported in the literature, but
their description would be beyond the scope of this paper [Goldberg
891].

3.2.3 Mutation

The bits of the two offsprings generated by the one-point
crossover are then processed by the mutation operator. This operator
is applied in turn to each bit with a small probability (e.g. 0.01).
When it is applied at a given position, the bit value switches from 0
to 1 or from 1 to 0. The aim of the mutation operator is to introduce
random perturbations into the search process. It is useful, in
particular, to introduce diversity in homogeneous populations, and to

restore bit values that cannot be recovered via crossover (e.g. when
the bit value at a given position is the same for every chromosome in
the population).

3.2.4 Generation replacement

In the simple genetic algorithm, the whole population is replaced
by a new population at each generation. Other approaches maintain a
fraction of the population from one generation to the next. For
example, the elitist approach maintains the best member of the old
population in the new population.

Section 4. Parameter Tuning with a Genetic Algorithm

In this application, the genetic search is used to find good
parameter settings for Solomon's heuristic (each chromosome
encoding one or more parameter settings). The parameter settings
encoded on a chromosome are provided to Solomon's heuristic, and
the solutions produced with these settings are used to evaluate the
chromosome's fitness.

In this section, we first describe the encoding of the parameters
as bit strings or chromosomes. Then, we give details about the exact
implementation of the genetic algorithm.

4.1 Encoding the Parameters

The domain of values to be explored for each numerical
parameter value is the following :

oy € [0,1] (note that o is determined through aj,
since aj+02=1 in Solomon's algorithm)

u € [0,1]

A € [1,2]

Seven bits are used to encode each parameter value. To decode a
substring as a numerical value, the integer represented by the
substring, namely a value between 0 and 27-1 or 127, is mapped to
the real domain of the parameter. For example, if the bit string is
1010101 for parameter o) (that is, 85 in decimal notation), the o
value encoded by this string is 85/127 or approximately 0.67. In
general, if the integer value corresponding to the bit string is x, the
real value of o is x/127. The same transformation applies to

parameter . For A, the transformation is x/127 + 1, because the
domain of values for this parameter is [1,2].

With 127 values maoped to real intervals of width 1, we get a
precision to the second decimal point. Greater precision can be
achieved by adding more bits to the encoding, but the length of the
chromosomes increases and the size of the search space grows up.

The three substrings of length 7 are concatenated on a single
chromosome to encode a parameter setting, which is then provided
to Solomon's heuristic. An additional bit is put at the end of the
chromosome to select the initialization criterion: if this bit is one,
route initialization is done with the farthest customer from the
depot, otherwise, initialization is done with the customer with
earliest deadline. A typical chromosome is depicted in Figure 1. In
this case, the parameter values are (al, w,A) = (71/127, 27/127,
70/127) = (0.56, 0.21, 0.55), and route initialization is done with the
farthest customer from the depot.

10001111 0011011 |1 1000110 |1

o] Vs A initialization
Figure 1. Decoding a chromosome

4.2 Implementation of the genetic search

Generally speaking, our implementation follows the guidelines
provided in Section 3. In the following, we provide additional details
about the components of our genetic search.

4.2.1 Fitness Values

The fitness of a chromosome is related to the quality of the
solutions generated by Solomon's heuristic, with the parameter
settings encoded on the chromosome. Solution quality is based first
on the number or routes, and second, on total route time (i.e. travel
time + waiting time + service time).

To assign a numerical fitness value to a chromosome, we use the
rank of the chromosome in the population, as suggested in [Whitley
89]. In the example below, the population is composed of five

10

chromosomes, encoding five different parameter settings. The
solution generated by Solomon's heuristic with each parameter
setting (for a given problem) is shown besides the corresponding
chromosome. Tn this example, chromosome 3 gets rank 1 because it
generated the minimum number of routes, while chromosomes 2, 1,
4, and 5 get ranks 2, 3, 4, and 5, respectively.

Number of Routes Route Time
chromosome 1 12 1612.0
chromosome 2 12 1588.1
chromosome 3 11 1660.0
chromosome 4 12 1644.0
chromosome 35 13 1928.0

With these ranks, it is possible to determine the fitness value of
a chromosome via the following formula:

Min + (Max - Min) (i-1/N-1)

where i is the rank of the chromosome, and N is the number of
chromosomes in the population. Hence, the best ranked chromosome
gets fitness value Max and the worst chromosome gets fitness value
Min. In the current implementation, Max and Min are set to 1.5 and
0.5, respectively. Note that the sum of the fitness values is equal to
the number of chromosomes in the population (N), because
Min+Max=2.0.

4.2.2 Selection Probability

Chromosomes are selected for crossover according to the above
fitness values. The selection scheme is Stochastic Universal Sampling
(SUS), as described in Section 3.2.1.

4.2.3 Crossover Operator

The crossover operator is the classical one-point crossover. The
crossover rate is set to 0.6. Hence, about 40% of the parent
chromosomes are not modified by the crossover operator.

4.2.4 Mutation Operator

The mutation operator is applied to each new offspring at a fixed
rate of 0.01.

11

4.2.5 Generation Replacement

Each new generation replaces the old one. However, elitism is
used, and the best chromosome at generation M is preserved in
generation M+1.

Section 5. Computational Results

For the computational tests, we used the standard set of
problems of Solomon, which are all 100-customer Euclidean
problems. In these problems, the travel times between customers are
equal to the corresponding Euclidean distances. The geographical
data were either randomly generated using a uniform distribution
(problem sets R1 and R2), clustered (problem sets Cl and C2) or
semi-clustered with a mix of randomly distributed and clustered
customers (problem sets RC1 and RC2). Problem sets R1, Cl and RC1
have a narrow scheduling horizon, and only a few customers can be
served by the same vehicle. Conversely, problem sets R2, C2 and RC2
have a large scheduling horizon, and many customers can be served
by the same vehicle. Additional details about these problems, in
particular details relating to the characteristics of the time windows,
may be found in [Solomon 1987].

The objective is first to minimize the number of routes, and
second, to minimize route time or schedule time, that is, the sum of
travel time, waiting time and service time (note that a fixed service
time value of 9,000 must be added to the sum of travel time and
waiting time in sets Cl and C2, and a value of 1,000 in the other
sets). Table 1 shows the results obtained by specializing the genetic
algorithm to each set of problems. In this case, a different genetic
search is performed on each set of problems. Consequently, the best
parameter settings are not necessarily the same from one problem
set to another.

In the Tables, "Solomon" corresponds to the solutions reported in
[Solomon 87]. In this case, the results were obtained by running the
algorithm with Solomon's parameter settings, that is:

For each problem j is set X do

run Solomon's heuristic eight times on problem j,
with the eight parameter settings suggested in
[Solomon 87], and take the best solution best;.

Compute the average of the bestj's over set X.

12

"Genetic-i" i=1,...,8, is the result of the genetic search with i
different parameter settings encoded on each chromosome. Note that
a chromosome of type i is obtained by concatenating i chromosomes
of the type shown in Figure 1. The rank of a chromosome of type i is
determined through the average solution obtained over a particular
set of problems in Solomon's testbed, namely:

For each problem j is set X do

run Solomon's heuristic i times on problem j, with
the i parameter settings encoded on the
chromosome, and take the best solution best;.

Compute the average of the bestj's over set X.

For each set of problems R1, R2, C1, C2, RC1, and RC2, the Tables
show the minimum number of parameter settings needed to improve
Solomon's results. We also show the results of Genetic-8 on each set
of problems. For i=1, the results were obtained after 15 generations,
on a population of chromosomes of size 30. For i=2,3, the results were
obtained after 20 generations, with the same population size. Finally,
for i=8, the results were obtained after 25 generations, on a
population of size 40. In each case, the initial populations were
seeded with chromosomes encoding parameter settings taken from
[Solomon 87]. More precisely, eight chromosomes were derived from
Solomon's settings, and the remaining chromosomes were randomly
generated.

The experiments were performed on a SPARCIO workstation.
Note that the heading "Comput. Time" in the Tables is the
computation time for running the genetic algorithms (and not the
time to run Solomon's algorithm with the parameter settings found
by the genetic search).

The final parameter settings are shown under each set of
problems. In these settings, init is equal to F or D. In the first case,
route initialization is done with the Farthest customer from the
depot, and in the second case, initialization is done with the customer
with earliest Deadline. Also, the numerical values for oy, 1, and A are
shown as integer values, and must be divided by 27-1 or 127, in
order to get the exact real values.

13

R1 Number { Distance | Waiting Route Comput.
12 problems of Time Time Time
Routes (min:sec)
Solomon 13.6 1436.7 258.8 2695.5 ---
Genetic-2 13.3 1382.5 286.2 2668.7 5:14
(13.7) | (1440.7) | (260.0) | (2700.7) | (12:04)
Genetic-8 13.2 1407.3 248.0 2655.3 21:48
Genetic-2 : (ay, u, A, init) = (122,123,161,F) ,(127,127,254,F)
Genetic-8 : (a1, W, A, init) = (127,120,201,F) ,(127,127,144,F) ,(127,125,157,F)
(000,127,254,F) ,(112,127,144,F) ,(047,036,167,F)
(008,095,127,D) ,(120,035,225,D)
R2 Number | Distance | Waiting Route Comput.
11 problems of Time Time Time
Routes (min:sec)
Solomon 3.3 1402.4 175.6 2578.1
Genetic-2 3.2 1408.8 161.7 2570.5 32:34
Genetic-8 3.2 1313.7 152.5 2466.2 58:03
Genetic-2 : (ay, M, A, init) = (028,079,182,F) ,(108,124,185,D)
Genetic-8 : (o, u, A, init) = (046,120,232,F) ,(004,125,191,D) ,(032,123,252,D)

Table 1a.

(083,127,224,D) (120,127,229,D) ,(103,127,251,D)
(100,012,235,D) ,(091,109,208,D)

Random Problems

14

Cl Number | Distance | Waiting Route Comput.
9 problems of Time Time Time
Routes (min:sec)
Solomon 10.0 951.9 152.3 10104.2 - --
Genetic-2 10.0 966.7 96.4 10063.1 4:28
Genetic-8 10.0 943.5 95.4 10038.9 16:19
Genetic-2 : (a1, K, A, init) = (074,124,254,F) ,(032,108,172,D)

Genetic-8 : (aq, p, A, init) = (013,068,225,F) ,(097,084,241,F) ,(000,126,213,F)

(003,035,163,D) ,(078,083,217,D) ,(122,039,158,D)
(073,092,155,D) ,(096,126,134,D)

C2 Number | Distance | Waiting Route Comput.
8 problems of Time Time Time
Routes (min:sec)
Solomon 3.1 692.7 228.6 9921.4 - - -
Genetic-3 3.0 798.7 54.0 9852.7 14:22
Genetic-8 3.0 728.9 50.8 9779.7 46:18
Genetic-3 : (aq, p, A, init) = (127,127,156,F) ,(027,018,163,D) ,(040,031,134,D)
Genetic-8 : (ag, p, A, init) = (000,126,129,F) ,(126,127,243,F) ,(098,122,254,D)

Table 1b.

(060,063,130,D) ,(000,103,127,D) ,(124,122,130,D)
(125,127,127,D) ,(123,113,143.D)

Clustered Problems

15

RC1 Number | Distance | Waiting Route Comput.
8 problems of Time Time Time
Routes (min:sec)
Solomon 13.5 1596.5 178.5 2775.0 - - -
Genetic-2 13.3 1661.5 132.2 2793.7 3:41
Genetic-8 13.1 1573.7 151.6 2725.3 13:04

Genetic-2 : (o, f, A, init) = (066,013,176,F) ,(008,127,147,F)

Genetic-8 : (o, M, A, init) = (074,059,191,F) ,(006,089,148,F) ,(046,064,171,F)
(127,119,206,F) ,(053,108,224,F) ,(033,026,206,D)
_ (120,087,127,D) ,(026,104,245,D)
RC2 Number | Distance | Waiting Route Comput.
8 problems of Time Time Time
Routes (min:sec)
Solomon 3.9 1682.1 273.2 2955.4 ---
Genetic-1 3.8 1721.8 160.9 2882.7 10:36
Genetic-8 3.5 1604.1 173.4 2777.5 72:21
Genetic-1 : {(oq, p, A, init) = (044,124,244,F)
Genetic-8 : (aq, u, A, init) = (068,123,235,F) ,(044,043,190,F) ,(061,101,220,F)

Table 1c.

(072,047,222,F) ,(122,087,209,F) (114,125,227 ,F)
(024,120,184,D) ,(071,013,160,D)

Mixed Problems

As we can see, the single parameter setting found by Genetic-1
outperforms the eight parameter settings of Solomon on set RC2 (c.f.
Genetic-1 in Table 1¢). For R1, R2, C1, and RCI1, the minimum number
of parameter settings is two, and for C2, it is three. Hence, it is
possible to improve Solomon's results on all problem sets by running
his algorithm three times (or less) on each problem, rather than eight
times! Of course, the gap with Solomon's solutions gets larger with
the eight parameter settings suggested by Genetic-8.

For illustrative purposes, the results on set R1, as obtained with
20%30=600 randomly generated chromosomes of type 2, is provided
under the results of Genetic 2 (between parentheses). As expected,
Genetic-2 provides much better solutions than the random search!
Also, the random search is more computationally expensive, because
each new chromosome must be evaluated, as opposed to the genetic
search, where a fraction of the chromosomes are copied unchanged
from one generation to the next.

Tables 2a, 2b and 2¢ show similar results for a single genetic
search aimed at finding the eight best parameter settings over all
problems. In this case, each chromosome was evaluated by
computing the average solution over all 56 test problems. It took 3
hours and 51 minutes on a SPARC10 workstation to run Genetic-8 in
this case. The genetic search found the following parameter settings:

(oe1,p,M,init) = (066,118,238,F),(111,126,215,F),(127,119,223,F)

(127,127,127,F),(091,047,190,F),(126,122,175,F)
(032,098,252,D),(001,119,150,D).

R1 Number of | Distance Waiting Route
12 problems Routes Time Time
Solomon 13.6 1436.7 258.8 2695.5
Genetic-8 13.4 1406.8 273.3 2680.1

R2 Number of | Distance Waiting Route
11 problems Routes Time Time
Solomon 3.3 1402.4 175.6 2578.1
Genetic-8 3.2 1373.3 155.7 2529.0

Table 2a. Random Problems

17

18

C1 Number of | Distance Waiting Route
9 problems Routes Time Time
Solomon 10.0 951.9 152.3 10104.2
Genetic-8 10.0 926.8 153.5 10080.3
C2 Number of | Distance Waiting Route
8 problems Routes Time Time
Solomon 3.1 692.7 228.6 9921.4
Genetic-8 3.1 692.5 96.7 9789.3
Table 2b. Clustered Problems
RC1 Number of | Distance Waiting Route
8 problems Routes Time Time
Solomon 13.5 1596.5 178.5 2775.0
Genetic-8 13.3 1600.6 161.5 2762.1
RC2 Number of | Distance Waiting Route
8 problems Routes Time Time
Solomon 3.9 1682.1 273.2 2955.4
Genetic-8 3.6 1611.8 204.7 2816.5
Table 2¢. Mixed Problems

As we can see, the results are better on each set of problems.
Apart from reducing route time, these parameter values also save
many routes. Hence, the fine tuning of Solomon's heuristic via a
genetic search proved to be very beneficial.

Section 6. Conclusion

This paper has shown that it is possible to greatly improve the
results of Solomon's heuristic, via a careful search in the parameter
space. By specializing the genetic search to each problem set, it was
also possible to improve Solomon's results with only three different

parameter settings (or less), as opposed to the eight different
parameter settings suggested in [Solomon 87].

Acknowledgments. Financial support for this work was provided by the
Natural Sciences and Engineering Research Council of Canada (NSERC) and by
the Fonds pour la Formation de Chercheurs et l'Aide A la Recherche of the
Quebec government (FCAR).

References

[Bagley 67] J.D. Bagley, "The Behavior of Adaptive Systems which
employ Genetic and Correlation Algorithms”, Doctoral Dissertation,
University of Michigan, Dissertation Abstracts International 28(12),
5106B.

[Baker 87] J.E. Baker, "Reducing Bias and Inefficiency in the Selection
Algorithm", in Proceedings of the Second Int. Conf. on Genetic
Algorithms, pp. 14-21.

[Clarke and Wright 64] G. Clarke G. and W. Wright, "Scheduling of
Vehicles from a Central Depot to a Number of Delivery Points”,
Operations Research 12, pp. 568-581.

[Desrochers et al. 88] M. Desrochers, J.K. Lenstra, M.W.P. Savelsbergh
and F. Soumis, "Vehicle Routing with Time Windows: Optimization
and Approximation”, in Vehicle Routing: Methods and Studies, B.L.
Golden and A.A. Assad (Eds), North-Holland, pp. 65-84.

[Desrochers et al. 92] M. Desrochers, J. Desrosiers and M.M. Solomon,
"A New Optimization Algorithm for the Vehicle Routing Problem with
Time Windows", Operations Research 40, pp. 342-354.

[Fogel et al. 66], L.J. Fogel, AJ. Owens, M.J. Walsh, Artificial
Intelligence through Simulated Evolution, Wiley.

[Goldberg 89] D.E. Goldberg, ic Algorithms in earch
QOptimization _and Machine Learning, Addison-Wesley.
[Holland 75] J. H. Holland, A ion in Natural and Artificial

Systems, The University of Michigan Press, Ann Arbor. Reprinted by
MIT Press (1992).

[Or 76] I. Or, "Traveling Salesman-type Combinatorial Problems and
their relation to the Logistics of Blood Banking", Ph.D. Thesis, Dept. of
Industrial Engineering and Management Sciences, Northwestern
University.

19

[Potvin and Rousseau 90] J.Y. Potvin and J.M. Rousseau, "A New
Exchange Heuristic for Routing Problems with Time Windows",
Technical Report #729, Centre de Recherche sur les Transports,
Université de Montréal.

[Potvin and Rousseau 93] J.Y. Potvin and J.M. Rousseau, "A Parallel
Route Building Algorithm for the Vehicle Routing and Scheduling
Problem with Time Windows", European Journal of Operational
Research 66, pp. 331-340.

[Savelsbergh 90] M.W.P. Savelsbergh (1990), "An Efficient
Implementation of Local Search Algorithms for Constrained Routing
Problems”, European Journal of Operational Research 47, pp. 75-85.

[Solomon 87] M.M. Solomon, "Algorithms for the Vehicle Routing and
Scheduling Problems with Time Window Constraints", Operations
Research 35, pp. 254-265.

[Solomon and Desrosiers 88] M.M. Solomon and J. Desrosiers, "Time
Window Constrained Routing and Scheduling Problems”,
Transportation Science 22, pp. 1-13.

[Solomon et al. 88] M.M. Solomon, E.K. Baker and J.R. Schaffer,
"Vehicle Routing and Scheduling Problems with Time Window
Constraints; Efficient Implementations of Solution Improvement
Procedures”, in Yehicl ing: Meth n jes, B.L. Golden and
A.A. Assad (Eds), North-Holland, pp. 85-105.

[Whitley 89] D. Whitley, "The Genitor Algorithm and Selection
Pressure: Why Rank-Based Allocation of Reproductive Trials is Best”,
in Proceedings of the Third Int. Conf. on Genetic Algorithms
(ICGA'89), pp. 116-121.

