
FACULTÉ DES SCIENCES ET DE GÉNIE

Département d’Informatique

Cité universitaire

Québec, Canada G1K 7P4

CONTROL-FLOW ANALYSIS REQUIRES

THE REFLEXIVE TRANSITIVE

CLOSURE OF A GRAPH

Or Does It?

PAR

DANNY DUBÉ

RAPPORT DE RECHERCHE

DIUL-RR-0402

DÉPARTEMENT D’INFORMATIQUE

FACULTÉ DES SCIENCES ET DE GÉNIE

Pavillon Adrien-Pouliot

Université Laval

Sainte-Foy, Québec, Canada

G1K 7P4

AVRIL 2004

Copyright c© Danny Dubé
Département d’informatique et de génie
logiciel
Université Laval
Sainte-Foy (QC) G1K 7P4
Canada
http://www.ift.ulaval.ca/

— Tous droits réservés —

Control-Flow Analysis Requires

the Reflexive Transitive Closure of a Graph

Or Does It?

Danny Dubé ?

Université Laval
Danny.Dube@ift.ulaval.ca

Abstract. This article present a novel analysis technique that produces
results strictly identical to those produced by Shivers’s Standard Control-
Flow Analysis. The analysis uses constraints between infinite binary trees
of sets. An efficient variant of tree based analysis, namely graph based
analysis, is also presented. Although graph based analysis uses a com-
pletely different algorithm than S-CFA, it produces the same results
as S-CFA and has the same complexity. The presented techniques may
eventually lead to variants that provide partial analysis results in less
than cubic time or allow a compiler to perform separate compilation and
whole-program control-flow analysis.

1 Introduction

Optimizing compilers for functional programming languages face the problem
of having to perform mutually dependent data-flow and control-flow analyses.
Indeed, traditional data-flow analysis requires the prior execution of a control-
flow analysis in order to know which paths are taken at execution time. However,
in functional languages, functions are ordinary data and one cannot compute the
flow of control without first determining where the functions propagate.

Fortunately, control-flow analyses adapted to functional languages have been
proposed. The most widely known is the one from Shivers [1]. We will refer to
it as the Standard Control-Flow Analysis (S-CFA). It produces relatively good
analysis results on typical programs and its cost is moderate: it has cubic time
complexity and quadratic space complexity. Compilers for functional languages
that include a sophisticated control-flow analysis often use S-CFA or a derivative.

S-CFA is often criticized, perhaps with good reasons. By definition, S-CFA
has to be applied to a complete program at once. Despite its relative cheapness,
it is usually considered too expensive to be applied to very large programs. More-
over, these programs are often distributed in many modules. Consequently, one
has to decide whether to abandon separate compilation or to use an alternative,
less precise analysis.

In this paper, we present a novel analysis that, while it does not solve these
problems in the immediate, may lead to techniques that would be more practical.

? This work is funded by NSERC and Université Laval.

The technique is based on the use of infinite binary trees whose nodes are sets of
labels and the use of constraints between these trees. While the heart of the usual
implementation of S-CFA is an algorithm called reflexive transitive closure of a
graph, our analysis generates a fixed graph (represented by sets and constraints)
for a given program and analysis results are obtained by finding the minimal
solution of the system of constraints.

Our tree based analysis has many interesting properties. In particular, there
is the fact that the constraints are established in a compositional way. Also, it
leads naturally to an efficient variant. We refer to the variant as the graph based
analysis. Its complexity is the same as that of S-CFA.

The article is organized as follows. First, we come back to the definition
of S-CFA. Next, we present our infinite tree based analysis. Then, the efficient
variant is derived. Finally, we briefly mention related work and give directions
for future work.

2 Reminder of Standard-CFA

The language that we consider is the pure λ-calculus. Here is the syntax of
programs. Programs are simple λ-terms decorated with labels. A λ-term or ex-
pression e is one of:

xl | (λlx. e′) | (le
′ e′′)

where l is a label, x is a variable, and e′, e′′ are labeled λ-terms. The cases
represent a reference to a variable x, a λ-expression with formal parameter x
and body e′, and an application where the function produced by e′ is applied
to the value (another function, naturally) produced by e′′. Labels are added to
expressions for analysis purpose. In this presentation, we assume that programs
do not reuse the same variables and labels twice. We use integers as labels.

The Standard Control-Flow Analysis is a well-known analysis for functional
languages introduced by Shivers [1]. It is intended to conservatively determine
at compile-time where the different functions may appear. Many different for-
mulations of S-CFA have been presented and we introduce our own here. It is
relatively similar to that used by Heintze and McAllester [2].

Our version of S-CFA takes the form of logical rules that control the propa-
gation of λ-expressions in the program that we intend to analyze. The results of
the analysis are “collected” in sets that indicate the value of expressions and the
contents of variables. That is, the set Sl contains the λ-expressions to which ex-
pression el may evaluate and the set Sx contains the λ-expressions that variable
x may contain.

The analysis works by adding entries in two relations. The first relation
indicates whether a particular λ-expression (λl′y. el′′) may reach a particu-
lar program point α, which is a label l or a variable ‘x’, and is denoted by
(λl′y. el′′) ∈ Sα. The second relation indicates whether all λ-expressions that
flow to a program point α also have to flow to another program point β and is
denoted Sα −→ Sβ.

For el = xl:
Sx −→ Sl

(ref)

For el = (λlx. el′):
(λlx. el′) ∈ Sl

(λ)

For el = (lel′ el′′):
(λl′′′x. el(4)) ∈ Sl′

Sl′′ −→ Sx

(call-1)

(λl′′′x. el(4)) ∈ Sl′

Sl(4) −→ Sl

(call-2)

For any program points α, β:
(λlx. el′) ∈ Sα Sα −→ Sβ

(λlx. el′) ∈ Sβ

(prop)

Fig. 1. Rules for S-CFA

The rules that define S-CFA are presented in Figure 1.1 Corresponding to
a given program E, a set of rules come to existence. The analysis proceeds by
starting with empty ‘∈’ and ‘−→’ relations and then by deriving all the assertions
that can be possibly obtained using the rules. When no new assertions can
be obtained anymore, the analysis terminates. The results of the analysis are
expressed by the ‘∈’ relation. Since both relations start out empty and that only
rule-generated assertions can be added to these relations, we obtain the smallest
solution for the analysis.

Although if, strictly speaking, this formulation of the analysis does nothing
else than manipulating assertions, it offers a set-theoretic point of view of the
results. That is, even if Sα is only a name that appears in the generated asser-
tions, we can refer to it as a genuine set. It is reputed to contain all λ-expressions
(λlx. el′) such that assertion (λlx. el′) ∈ Sα is generated by the rules.

Performing S-CFA using these rules or any equivalent formulation leads to
important difficulties. Indeed, because of the (call-n) and (prop) rules, the ‘−→’
and ‘∈’ relations are built incrementally, based on each other, and the ‘∈’ relation
may ultimately relate any λ-expression to any program point. These character-
istics of the analysis force S-CFA to be performed on whole programs at once
and makes this process equivalent to a dynamic reflexive transitive closure on
a graph, which has cubic complexity (see [2]). Whole-program processing and
cubic complexity limit the usefulness of S-CFA. In the next section, we gradu-
ally elaborate another method for obtaining the same results as those of S-CFA
without requiring a dynamic closure on a graph.

3 Towards a Closureless Analysis

Here, using a rather informal approach, we derive a completely different way
to compute the same results as those of S-CFA using infinite trees of sets. The

1 We write l(4) instead of l′′′′ to avoid clutter when there are too many prime signs.

(6• •)

(λ7y. •)

�

�
	e8

(37• •)

z38 x39

...

�
�

��

Z
Z

ZZ

�
�
�

�
�

�

S
S
S

x z

x y z

x y z

x z

z x

res

res

res

res

res res

.................................
..
.......
..

.................................
..
.......
..

...

...
.

...
.
.........

...
.

..
..

..
..

..
..

...
.

...
..
.........

.......

.......

.......

..............

.........

............
............
...........
............
............
............
............
............
...........
............
............
...............
.........

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
............
.........

............
.............

............
.............

............
.............

.............
............

.............
............

.............
..........................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
...............
.........

.........
........
.........
.........
.........
.........

........
.........
.........
.........
.........

...................

Fig. 2. Computing S-CFA using inherited and synthesized attributes

definitive formulation of infinite tree based analysis is presented in the next
section with all necessary details.

3.1 A Compositional Static Analysis

Before we present the way our analysis gathers its results, we first state a prin-
ciple that the gathering process should obey. The principle is that of compo-
sitionality. We want the analysis to be able to produce analysis results for an
expression as a function of the analysis results for its sub-expressions only. For
example, the results for an application (lel′ el′′) should be a function of the
results for expression ‘el′ ’ and those for expression ‘el′′ ’.

Even if this principle looks nice as it is stated, it is too simplistic as in both
dynamic interpretation and static interpretation, the value (or analysis results)
of an expression depends on the value (or static contents, respectively) of its
free variables. So the right principle that should be obeyed is that the analysis
should produce the analysis results for an expression by using only the analysis
results for its sub-expressions and the contents of its free variables. In turn, the
analysis results for the sub-expressions are computed by using the contents of
their free variables.

The principle of compositionality may be best explained using terminology
from the field of attributed grammars. From the point of view of a particular ex-
pression in the program, the contents of its free variables can be seen as inherited
attributes and the analysis results for the expression can be seen as a synthesized
attribute. For example, the illustration in Figure 2 shows the flow of information
in a fragment of some program’s abstract syntax tree (AST). Here, expression
e6 is the sub-expression of another, surrounding expression and expression e8 is
some arbitrary expression. For the sake of the example, let us suppose that the
free variables of e8 are ‘x’, ‘y’, and ‘z’ (denoted as FV(e8) = {x, y, z}). The free
variables for the other expressions in Figure 2 can easily be identified. For each
individual expression, its inherited attributes are enumerated on its left as the
names of its free variables and its synthesized attribute (the analysis results)
is depicted on its right as ‘res ’. The contents of the variables flow downwards

to all expressions that depend on them. Note that the contents of a particular
variable either comes from the parent expression or appears as a new variable
because of the presence of a formal parameter (variable ‘y’ in e7, for instance).
The contents of the ‘res ’ attributes are computed using the ‘res ’ attributes of
the sub-expressions and the inherited attributes. This is especially clear in the
case of references to variables (expressions e38 and e39, for instance).

Until now, we have remained vague about the actual contents of the attributes
and the way the synthesized attributes of sub-expressions are combined in order
to produce the synthesized attribute of an expression. We next describe the
contents of the attributes and give a sketch of the way their contents flow in
order to compute the equivalent of S-CFA.

3.2 Trees of Sets

Now, we have to determine what the contents of the attributes should be. A
temptingly simple answer prescribes each attribute to be a set containing labels
of λ-expressions. That is, an inherited attribute ought to contain the labels of
the λ-expressions that the corresponding variable may contain and a synthesized
attribute ought to contain the labels of the λ-expressions that the corresponding
expression may evaluate to.2

While the contents of an attribute include at least such a set, it is easy to
realize that more data are required. In order to do so, let us consider the following
code fragment:

. . . (lel′ el′′) . . .

Let us suppose that the ‘res ’ attributes for el′ and el′′ are already computed.
It means that we can determine the sets of λ-expressions that flow to el′ and
el′′ . Now, how can the ‘res ’ attribute for el be computed? In other words, how
can we determine the set of λ-expressions that el may evaluate to? Maybe that,
by inspection of the sub-expressions and free variables of el, it is possible to
compute the ‘res ’ attribute for el. Even if it could be done, we prefer to take
another approach. We decree that the ‘res ’ attribute of el′ includes another
set which contains the labels of the λ-expressions that may be returned by the
functions to which el′ may evaluate. Using this additional set, it is trivial to
determine which λ-expressions el may evaluate to. Note that the additional set
can be seen as describing the range of the functions to which el′ evaluates.

While reading the reasoning about the previous code fragment, one may have
asked himself where the informations in the ‘res ’ attribute for el′′ are used. This
attribute describes the arguments that are passed to the functions produced by
el′ and, certainly, it should not be forgotten. It is especially clear if our code
fragment is:

. . . (l(λl′x. xl′′′) el′′) . . .

2 More precisely, the labels are those of the λ-expressions that generated the functions
to which the variables may be bound or to which the expressions may evaluate.
However, for the sake of brevity, we will keep this slight imprecision.

as the informations in the ‘res ’ attribute for el′′ directly flow into the ‘res ’
attributes for el′′′ and el. Consequently, there must be a third set in the ‘res ’
attribute for el′ that contains the labels of the λ-expressions that may be passed
to the functions to which el′ may evaluate. This new set can be seen as describing
the domain of the functions to which el′ evaluates.

Now, before the explanations become too verbose, we will give names to our
sets instead of referring to them as the original, the second, and the third sets.
First, we will refer to the ‘res ’ attribute for some expression el as Tl. The set
containing the labels of the λ-expressions to which el evaluates is denoted by
set(Tl). Also, for now, we will refer to the set of labels of the λ-expressions that
are returned by and passed to the functions to which el evaluates as rg(Tl) and
dom(Tl), respectively. Similarly, the inherited attribute ‘x’ of some expression el

will be denoted by Tx,l. An inherited attribute also comprises the same three
sets that we will denote as set(Tx,l), rg(Tx,l), and dom(Tx,l).

We have argued that there should be three sets in each attribute. However, it
is not clear that these are sufficient. In fact, it is relatively easy to see that more
sets are required. For instance, in order to properly analyze this code fragment:

. . . (l(l′el′′ el′′′) el(4)) . . .

there must be some way to compute the set of λ-expressions to which el may eval-
uate, that is, set(Tl). Naturally, set(Tl) contains the labels of the λ-expressions
that are returned by the functions to which el′ evaluates. That is, set(Tl) =
rg(Tl′). But how can the set rg(Tl′) be computed? Clearly, there should be
a way to obtain it from Tl′′ . The sets set(Tl′′), rg(Tl′′), and dom(Tl′′) are of
no help since what we are really interested in are the λ-expressions returned
by the λ-expressions in rg(Tl′′). By doing a slight abuse of notation, it is the
set rg(rg(Tl′′)) that would be necessary to compute set(Tl) and rg(Tl′). Using
similar arguments, we could show that the sets dom(rg(Tl′′)), rg(dom(Tl′′)), and
dom(dom(Tl′′)) are necessary also.

In fact, the analysis of arbitrary code fragments may require the existence
of the set f1(. . . fn(Tl) . . .), for any n with fi being one of ‘rg’ and ‘dom’, for
1 ≤ i ≤ n. This means that any attribute has to comprise an infinite number of
sets. These sets are organized in a binary tree fashion. Figure 3 illustrates the
shape of such an infinite binary tree of sets.

An infinite tree of sets t is made of three components: a set of labels at the
root, an infinite tree of sets for the range, and an infinite tree of sets for the
domain. We can now get rid of the abuse of notation that we had to make
previously and give appropriate names to trees and sets. The three compo-
nents of an infinite tree of sets t are referred to as set(t), rg(t), and dom(t),
respectively. Only the first component turns out to be a set of labels. Conse-
quently, the sets comprised in a tree t are referred to as set(t), set(dom(t)),
set(rg(t)), set(dom(dom(t))), set(rg(dom(t))), set(dom(rg(t))), set(rg(rg(t))),
set(dom(dom(dom(t)))), set(rg(dom(dom(t)))), set(dom(rg(dom(t)))), . . .

{. . .}

{. . .} {. . .}

{. . .} {. . .} {. . .} {. . .}

J

JJ

J

JJ

J

JJ

J

JJ

J

JJ

J

JJ

J

JJ

J

JJ

PPPPPPP

�������

Z
Z

Z

�
�

�

Z
Z

Z

�
�

�

@@ �� @@ �� @@ �� @@ ��

dom rg

dom rg dom rg

dom rg dom rg dom rg dom rg

Fig. 3. Infinite tree of sets

3.3 Separating the Sets

Up to this point, we have considered Tl, the analysis results for an expression el

(the old ‘res ’ attribute), as being synthesized and, Tx,l, the contents of variable
‘x’ at expression el, as being inherited. We are about to see that, while this is
true for the trees themselves, it is not necessarily the case for all the sets they
comprise.

Let us consider Tl, which corresponds to expression el. This tree is synthesized
as it represents the analysis results for el. But what about its sets? The set
set(Tl) is certainly synthesized since it contains the labels of the λ-expressions
to which el may evaluate. It makes sense to say that el produces set(Tl) or
that it decides which labels go into set(Tl). By a similar reasoning, the set
set(rg(Tl)) is also synthesized because el decides which functions it evaluates
to and these functions decide which functions they return when called. So el is
indirectly responsible for the contents of set(rg(Tl)).

Now, let us see whether the same reasoning could be used for the set
set(dom(Tl)). As for set(rg(Tl)), the beginning of the reasoning holds since el

decides which functions it evaluates to. However, these functions cannot decide
which functions they are passed. It is the context surrounding el that decides
whether the functions in set(Tl) are called and with which arguments. For this
reason, we say that the set set(dom(Tl)) is not synthesized but inherited.

For example, let us examine T6 in the following code fragment:

. . . (5(λ6x. (λ7y. e8)) (λ13z. e14)) . . .

Clearly, e6 decides of the contents of set(T6) and indeed the latter is {6}. Also,
it decides of the contents of set(rg(T6)) and the latter is {7}. That is, even
if it is only indirectly, e6 still is responsible for the contents of set(rg(T6)) as
the contents is directly determined by one of its own sub-expressions, namely
e7. On the other hand, e6 does not decide of the contents of set(dom(T6)), not
even indirectly. In our code fragment, it is the application e5 that feeds the

functions produced by e13 (only {13} in this case) as arguments to e6. So the
set set(dom(T6)) has contents {13} but it is not by a decision by e6.

What happens with the sets two levels up in the tree Tl? The set
set(rg(rg(Tl))) is indirectly produced by el as it contains the labels of the
functions that are returned by the functions that are themselves returned by
the functions to which el evaluates. So set(rg(rg(Tl))) in synthesized. The sets
set(dom(rg(Tl))) and set(rg(dom(Tl))) are considered to be inherited as their
contents is provided by the context surrounding el. Indeed, the context decides
what is passed to the functions in set(rg(Tl)) and the functions in set(dom(Tl))
decide by themselves what they may return. Curiously, the set set(dom(dom(Tl)))
turns out to be synthesized. This may seem counter-intuitive at first since do-
main branches intervene. However, one has to realize that while the functions in
set(dom(Tl)) have not been chosen by el, it is el (or one of its sub-expressions)
that may call these functions and pass them arguments. These arguments are
exactly the functions found in set(dom(dom(Tl))). The arguments are chosen by
el, directly or indirectly, and consequently set(dom(dom(Tl))) is considered to be
synthesized.

We could make similar reasonings for every set in Tl. Moreover, we could
do the same for an inherited tree such as Tx,l, the contents of variable ‘x’ at
expression el. However, the “synthesizedness” and “inheritedness” of the sets
are best summarized using the following rules. If an infinite binary tree of sets
t is synthesized, its root set, set(t), is synthesized, its range sub-tree, rg(t), is
synthesized, and its domain sub-tree, dom(t), is inherited. Vice versa, if a tree t is
inherited, its root set is inherited, its range sub-tree is inherited, and its domain
sub-tree is synthesized. The reader has certainly recognized the principles of
covariance and contravariance here. A set s is in a covariant position in a tree t

if we have to traverse an even number of “dom” branches when going from the
root of t to s. A set s is in a contravariant position in a tree t if we have to
traverse an odd number of “dom” branches when going from the root of t to s.
The sets of t that are in covariant position flow in the same direction (synthesized
or inherited) as t and the sets of t that are in contravariant position flow in the
opposite direction.

From this point, we are going to separate the infinite binary trees in two
parts: the covariant part and the contravariant part. Each part is a partial infinite
binary tree that contains only the sets that are in covariant or in contravariant
position, respectively. We will refer to the two parts of a tree simply as the
covariant tree and the contravariant tree. This separation will help to make the
presentation in the next section simpler. From now on, every attribute comprises
a covariant tree and a contravariant tree. That is, the analysis results for an
expression el will be expressed using T +

l and T−

l . Naturally, T+
l and all the sets

it comprises are synthesized. T−

l and all the sets it comprises are inherited. The
contents of a variable ‘x’ at some expression el will be expressed using T +

x,l (the

inherited part) and T−

x,l (the synthesized part).

3.4 Dropping Trees for the Environment

Using the infinite binary trees, we are now almost ready to present the formu-
lation of the control-flow analysis based on infinite trees. We only need to make
a little modification to our organization of trees. The modification concerns the
trees that represent the contents of the free variables, that is, environment trees.

In our attribute-inspired presentation, we associate to each expression el of
the program a synthesized attribute for its result and an inherited attribute for
each of its free variables. However, it is clear that the contents of the variables
does not change as they flow downwards to the expressions that use them. At
least, the covariant part of the contents (T +

x,l) certainly does not change.3 Any-
way, environment trees are intended for connecting formal parameters to refer-
ences to variables. These connections are prescribed by the program’s syntax
tree and there are only a finite number of them.

In order to simplify the presentation of the new analysis and to reduce the
number of trees that are required by the analysis, the trees for the free variables
will be dropped except for those that are directly associated to the formal pa-
rameters of the program. A consequence of this decision is that the number of
trees required by the analysis is proportional to the size of the program. Indeed,
there are now two trees per expression for the corresponding result (T +

l and T−

l)
and two additional trees per λ-expression for the formal parameter (T +

x and T−

x).
There is no need for the additional l subscript in the name of the environment
trees anymore as the name of the variables uniquely identifies the trees.4

4 Infinite Tree Based Analysis

Now that the infinite binary trees of sets of labels are defined, the static control-
flow analysis based on them can be presented. We briefly come back to the infinite
trees and give a few definitions, then we describe the constraints that specify
the analysis, and explain how these constraints may be solved. The section ends
with the statement of a few important properties of infinite tree based analysis.

4.1 Defining the Trees

The analysis works with two kinds of trees: result trees and environment trees.
The result trees correspond intuitively to the result of the static evaluation
of expressions. The environment trees correspond intuitively to the value of the
formal parameters. For each expression el of the program, there are the covariant
result tree T+

l , which is synthesized, and the contravariant result tree T−

l , which
is inherited. For each formal parameter ‘x’, there are the covariant environment
tree T+

x , which is inherited, and the contravariant environment tree T−

x , which

3 We will see in the next section that the contravariant part may change as it flows
upwards.

4 Remember that we assume that the program uses a different variable name for each
variable.

is synthesized. These four kinds of trees are referred to as the main trees as they
are not part of “bigger” trees themselves. We denote these trees using a capital
“T ”. When referring to a main tree or a sub-tree without distinction, we use t

instead. Also, we use T σ
α when referring to the main tree for some program point

α; that is, T σ
α is either a result tree (α = l) or an environment tree (α = x) and

σ is one of ‘+’ and ‘−’.
Apart from their intended meaning, result trees and environment trees are

similar. It is between covariant trees and contravariant trees that there is a
real difference. A covariant tree t is made of three components: a set of labels,
set(t), a covariant sub-tree for the range, rg(t), and a contravariant sub-tree
for the domain, dom(t). A contravariant tree t is made of only two components:
a contravariant sub-tree for the range, rg(t), and a covariant sub-tree for the
domain, dom(t). Strictly speaking, there exist only the sets of labels. The trees
are simply a useful concept that helps us refer to a whole collection of sets at once.
Since the trees are not data structures, there are no construction or elimination
operations that allow us to “build” and “deconstruct” the trees. Nonetheless, we
use the notations tr+(t1, s, t2) and tr−(t1, t2) as shorthands to mention many
trees and/or sets at once. These notations help to keep the constraints concise.

Infinite tree based analysis use constraints and each of these is a contain-
ment constraint between trees that is denoted using ‘v’. This inclusion con-
straint requires the contents of each set in the first tree to be contained into
the corresponding set in the second tree. A containment constraint can only
be put between two covariant trees or between two contravariant trees. Even
if the two kinds of constraints are not defined exactly the same way, we use
the same symbol (v) for both kinds. The trees under constraint indicate which
kind of constraint is being used. As the trees themselves do not really exist,
strictly speaking, the constraints between trees do not either. The containment
constraint between two covariant trees t+1 and t+2 can be seen as a shorthand for
three other containment constraints:

t+1 v t+2 means
dom(t+1) v dom(t+2)
set(t+1) ⊆ set(t+2)
rg(t+1) v rg(t+2)

The second of the three constraints is a containment constraint between sets of
labels. On the other hand, the first and third constraints are themselves con-
straints between trees and, as such, they are shorthands. Note that the first
constraint is set between contravariant trees while the third is set between co-
variant trees. Similarly, the containment constraint between two contravariant
trees t−1 and t−2 can be seen as a shorthand for two other containment constraints:

t−1 v t−2 means
dom(t−1) v dom(t−2)
rg(t−1) v rg(t−2)

The expansion for this kind of constraint does not (directly) mention a constraint
between sets as there are no sets at the roots of t−1 and t−2 . Given these two
equivalences, it is clear that containment constraints between trees are only a
notational convenience.

For el = xl: T+
x v T+

l

T−

l v T−

x

For el = (λlx. el′): tr
+(T−

x , {l}, T+

l′
) v T+

l

T−

l v tr
−(T+

x , T−

l′
)

For el = (lel′ el′′): dom(T+

l′
) v T−

l′′

rg(T+

l′
) v T+

l

tr
−(T+

l′′
, T−

l) v T−

l′

Fig. 4. Constraints generated by the infinite tree based analysis

An important remark has to be made about the containment constraints. The
constraints, between either trees or sets, must be considered as formal assertions
and not as containment relations. This means that we are not interested in
checking whether two sets s1 and s2 are in the relation ‘⊆’ or not. In fact, there
is no relation involved, except if we say otherwise. What we are interested in, is
to determine whether the constraints emitted by the analysis state, directly or
indirectly, that s2 has to contain all the labels contained in s1. The difference
is subtle but it is important for the validity of the proofs of correctness of the
analysis.

Among the constraints that are emitted directly by the analysis, there are
some that mention the fictitious tree constructors. The meaning of these con-
straints becomes clear when we replace the shorthand notations by their equiv-
alents. For example, a constraint of the form:

tr+(t−1 , s, t+2) v t+ simply means:
t−1 v dom(t+)
s ⊆ set(t+)

t+2 v rg(t+)

The constraints that are emitted by the analysis are highly regular and, once
fully expanded into constraints between sets, they are of one of only two forms.
The first form is set between two sets located somewhere in the trees. That is, it
looks like set(dom(rg(. . . Tα . . .))) ⊆ set(rg(. . . Tβ . . .)). The second form is set
between a literal set of labels and a set located in a tree. That is, it looks like
{l, . . .} ⊆ set(Tα). In fact, the way the analysis is defined guarantees that only
literal singletons may appear in the constraints.

4.2 Generating the Constraints

The constraints that are generated for the analysis of a program E are relatively
straightforward. For each expression el in E, a few constraints are emitted. The
constraints for el depend only on the kind of el. Figure 4 presents the constraints
that are generated for each kind of expression.

Let us explain briefly the meaning of the generated constraints. For a ref-
erence to a variable xl, the constraints simply connect the expression el with
the formal parameter ‘x’. The first constraint expresses the fact that the formal
parameter provides the (covariant) contents of the variable. The second con-
straint ensures that the contribution by the context surrounding the expression
propagates to the formal parameter. Note that, in general, a single formal pa-
rameter may collect the contributions from more than one references to it. The
constraints for the reference to a variable are very simple as they can be seen as
two connections between the ends of giant cables. Moreover, the “type” of the
cables (i.e. covariant vs. contravariant) ensures that no incorrect connection can
be made.

The constraints for the λ-expression (λlx. el′) are not as simple. The con-
straints make the connection between the exterior, the context surrounding el,
and the interior, sub-expression el′ and formal parameter ‘x’. The first constraint
summarizes in one tree what is synthesized by el using what is synthesized by
el′ and ‘x’. Of course, the root set of T +

l is the singleton as all the functions that
may result from the evaluation of el must have label l. The range of T +

l is the
same tree as the covariant tree for the result of el. It makes sense as “what the
functions produced by el will return” is “what is produced by el′”. The domain
of T+

l indicates what will happen to the eventual arguments of the functions
produced by el. The second constraint splits “what happens to el” into the part
that “happens to the body” and the part that “make the contents of the formal
parameter”. For instance, if some function with label l′′ is passed to el (that is,
l′′ ∈ set(dom(Tl))), then this function flows down in ‘x’ (that is, l′′ ∈ set(Tx)).

Finally, the constraints for the application (lel′ el′′), although they are three,
are relatively intuitive. The second one expresses the fact that the result when
evaluating el is the range of the result when evaluating el′ . The first one extracts
a description of “what happens to the arguments” and propagates this to the
argument expression. The third constraint both takes care of passing the argu-
ment’s value to the callee and propagating “what happens to el” to the range of
el′ .

Note how the connections between the trees propagate almost losslessly all
the information produced by the sub-expressions or the context. There are two
exceptions however. First, in an application (lel′ el′′), the root set of the result
for the evaluation of el′ (set(T+

l′)) is not channeled anywhere. This may seem
odd at first as this set contains valuable information, that is, the labels of the
functions that are invoked. However, from the point of view of the analysis,
an application is the final destination of the functions that get invoked. The
application “consumes” the functions that it invokes. Only the arguments to the
functions and the returned values flow through the application. The second place
where information gets lost is at the root expression of program E, that is, at
E itself. Indeed, the evaluation results for E (T +

1 , if we suppose that E = e1)
do not appear in the left member of any constraint. That makes sense however
as T+

1 represent the result of the whole program’s evaluation and this result
falls out of the reach of the program itself. A final remark concerns the first

Program:
E = (1(λ2x. (3x4 x5)) (λ6y. (7y8 y9)))

Constraints:

dom(T+
2) v T−

6

rg(T+
2) v T+

1

tr−(T+
6 , T−

1) v T−

2

tr
+(T−

x , {2}, T+
3) v T+

2

T−

2 v tr
−(T+

x , T−

3)
dom(T+

4) v T−

5

rg(T+
4) v T+

3

tr
−(T+

5 , T−

3) v T−

4

T+
x v T+

4

T−

4 v T−

x

T+
x v T+

5

T−

5 v T−

x

tr+(T−

y , {6}, T+
7) v T+

6

T−

6 v tr−(T+
y , T−

7)
dom(T+

8) v T−

9

rg(T+
8) v T+

7

tr
−(T+

9 , T−

7) v T−

8

T+
y v T+

8

T−

8 v T−

y

T+
y v T+

9

T−

9 v T−

y

Fig. 5. An example of infinite tree based analysis

constraint generated for λ-expressions. This is the only constraint that denotes
a constraint between a literal set and a set located in a tree. All the other (set-to-
set) constraints are established between sets located in trees. These literal-to-tree
constraints are the ones that forces labels to flow in the system of constraints.
Otherwise, the minimal solution of the constraints would simply let every set be
empty.

4.3 An example

Figure 5 presents an example of tree based analysis. A small program and the
constraints generated for its analysis are given. The program consists in an infi-
nite loop. The effect is that λ-expression e6 is the sole value that is non-trivially
manipulated by the program. If we were to minimally solve the constraints, we
would find that 2 ∈ set(T +

2), which is obvious, and that label 6 flows to the
following sets:

set(dom(2n+2)(T+
2)) set(dom(2n+1)(T−

2))
set(dom(2n)(T+

x)) set(dom(2n+1)(T−

x))
set(dom(2n)(T+

4)) set(dom(2n+1)(T−

4))
set(dom(2n)(T+

5)) set(dom(2n+1)(T−

5))
set(dom(2n)(T+

6)) set(dom(2n+1)(T−

6))
set(dom(2n)(T+

y)) set(dom(2n+1)(T−

y))

set(dom(2n)(T+
8)) set(dom(2n+1)(T−

8))
set(dom(2n)(T+

9)) set(dom(2n+1)(T−

9))

where n ∈ IN and dom(i)(·) denotes i consecutive accesses to the ‘dom’ branch
of a tree. All other sets are left empty. We skip the reasoning that leads to
this solution. Note that the part of the results in which an optimizing compiler

would probably be interested are the root set of each covariant main tree. Indeed,
expressions e1, e3, and e7 do not evaluate to any function as they represent an
infinite computation. As expected, the function labeled with 2 reaches e2 and
the function labeled with 6 reaches e4, e5, e6, e8, and e9 and in variables ‘x’ and
‘y’.

4.4 Solving the Constraints

Once the constraints for a program have been generated, the remaining step
consists in computing the minimal solution for these constraints. However, sim-
ply “computing the minimal solution” does not qualify as an algorithm since an
infinite number of sets are involved. A question that naturally arises is whether
it is possible to solve the constraints and, if so, how. We will only say that the
answer is affirmative. The reason is that trees that contain the minimal solution
in their sets happen to be regular. In the following exposition of the properties of
tree based analysis, a short explanation outlines the reasoning behind that. We
do not elaborate more on the resolution of the constraints as it does not form
an algorithm whose efficiency compares favorably with that of S-CFA. Section 5
presents a derivative of infinite tree based analysis that is efficient. Still, from a
theoretical point of view, it is important to know that it is possible to obtain a
finite description of the minimal solution.

4.5 Properties

The most important property of our infinite tree based analysis is that it pro-
duces analysis results that are similar to those of S-CFA. Although it is clear
that the intent in the design of tree based analysis is to perform a control-flow
analysis, it is not that easy to convince oneself that it does produce the same re-
sults. Indeed, S-CFA uses a constructive process to compute its results while tree
based analysis generates a fixed set of constraints whose minimal solution con-
tains the appropriate results. The equivalence of the results of the two analyses
is established by the following theorems.

Theorem 1. Infinite tree based analysis causes the propagation of at least the
same labels as S-CFA. Formally,

(λlx. el′) ∈ Sα =⇒ l ∈ set(T+
α) (in any solution of the constraints)

Proof. We only give a sketch of the proof here. The idea consists in sorting
the assertions produced by S-CFA in topological order. Indeed, the conditions-
conclusion organization of the rules imposes a partial order on the assertions.
These can be topologically sorted based on that partial order. It is then simple
to prove by induction that, each time a new assertion is derived, these exists a
corresponding chain of constraints in tree based analysis. That is, for each new
assertion, we show that:

(λlx. el′) ∈ Sα =⇒ T+
l v . . . v T+

α

Sα −→ Sβ =⇒ T+
α v . . . v T+

β

ut

The reversed proposition is as simple to state but it is a little bit harder to
prove.

Theorem 2. S-CFA causes the propagation of at least the same labels as infinite
tree based analysis. Formally,

l ∈ set(T+
α) (in the minimal solution of the constraints) =⇒ (λlx. el′) ∈ Sα

Proof. Here is a sketch of the proof. Once again, the trick is to obtain a con-
venient ordering. Let us explain what the trick is. For any label l that has to
appear in the root set set(T +

α) of some main tree in the minimal solution of the
constraints, there exist chains of set-to-set constraints like this one:

{l} ⊆ . . . ⊆ set(T +
α)

Consequently, there exists a chain of minimal length among these. An ordering
of the pairs (l, set(T +

α)) is made according to the length of the corresponding
minimal chain lengths. Using this ordering, there remains to prove by induction
on this ordering that for any propagated label in tree based analysis, the corre-
sponding λ-expression has to go through the same propagation. In fact, the pairs
that we sort are pairs of covariant main trees (T +

α , T+
β) for which T+

α v . . . v T+
β .

For each such pair, we have to show that:

T+
α v . . . v T+

β =⇒ Sα −→ Sβ

ut

We now state rigorously the property of the infinite trees with the minimal
solution in their sets being regular. We give only hints on how this result can
be obtained. The statement uses finite state automata to express the property.
These automata consume an access path and output a set of labels when the
input is exhausted. An access path is a sequence of ‘dom’ and ‘rg’ tokens. Of
course, the set of labels is a subset of the set of the program’s labels. We denote
by At(P) the set of labels returned by automaton At for tree t when presented the
access path P . For example, if we are interested in set set(dom(dom(rg(T +

5)))),
then we can obtain it by computing AT

+
5

(dom · dom · rg).

Theorem 3. Let E be a program for which tree based analysis has been per-
formed and whose constraints have been solved minimally. Then, corresponding
to each covariant or contravariant main tree T σ

α , there exists a finite state au-
tomaton, AT σ

α
, that computes the contents of each set in T σ

α given its access path.
That is, for each bi being either ‘dom’ or ‘rg’, we have that:

AT σ
α
(b1 · . . . · bn) = set(b1(. . . bn(T σ

α) . . .))

provided that the access path is legal for T σ
α (i.e. that it contains a valid number

of accesses to the ‘dom’ branch).

Proof. First note that the problem of creating the desired finite state automata
reduces to the sub-problem of creating automata that track the propagation
of one arbitrary label l. The original problem is then solved by solving a sub-
problem for each λ-expression of the program and collecting the results together.
Next, the solution of the sub-problem for label l consists essentially in computing
the languages Lσ

α that contain the access paths of the sets to which l must
propagate. We simply state without proof that these languages are regular. So
a solution for a sub-problem consists in creating ordinary (i.e. accept vs. reject
input) finite state automata for these languages. ut

5 Graph Based Analysis

Infinite tree based analysis, as simple and elegant as it can be, does not provide
an efficient algorithm. However, solving the constraints as they stand may seem
overkill as an optimizing compiler does not need to know the contents of all the
sets in the infinite trees but only the root sets of the main trees. This section
presents a lighter approach that seeks to compute only the root sets.

The lighter approach is based on graphs but, at the same time, its presen-
tation is relatively similar to that of S-CFA. That is, the approach consists in
building a graph where each vertex corresponds to a main tree of tree based
analysis and where arcs are added according to a set of rules until no arcs can
be added anymore. There are two vertices S+

α and S−

α per program point α.
Alternatively, graph based analysis can be approached from the point of view of
a ‘−→’ relation to which we add entries. In fact, graph based analysis uses many
kinds of arcs.

The following subsections introduce the different kinds of arcs, the rules that
allow the introduction of new arcs, and a few properties of graph based analysis.

5.1 Defining the Arcs

Graph based analysis uses five kinds of arcs. One of the kinds of arcs simply
represents ordinary propagation of labels but the other kinds denote special
forms of propagation where labels may flow from a non-root set in a tree to a
non-root set in another tree.

The five kinds of arcs are described in Figure 6. The three columns indicate
to what each end of the arcs connects and how the arcs are denoted. The first
kind of arc denote the ordinary propagation of labels while the other four kinds
denote the special kinds of propagations. The signs on top of the arrows try to
be meaningful visual indicators of the way labels propagate. For example, arrow

‘
↑dom
−→’ indicates that labels propagate from the tree on its left up to the domain
branch of the tree on its right.

5.2 Computing the Reflexive Transitive Closure

Graph based analysis essentially consists in the reflexive transitive closure of a
directed graph. Rules are used to introduce arcs in the graph. The closure is

Notation: From: To:
p −→ q vertex p vertex q

p
↑dom
−→ q vertex p domain of vertex q

p
↓dom
−→ q domain of vertex p vertex q

p
↑rg
−→ q vertex p range of vertex q

p
↓rg
−→ q range of vertex p vertex q

Fig. 6. Kinds of arcs in graph based analysis

For any vertex p:
p −→ p

(refl)

For a tree based constraint

. . . of the form T σ
α v T σ

β :
Sσ

α −→ Sσ
β

(cnstr-1)

. . . of the form T σ
α v dom(T σ

β):
Sσ

α
↑dom
−→ Sσ

β

(cnstr-2)

. . . of the form dom(T σ
α) v T σ

β :
Sσ

α
↓dom
−→ Sσ

β

(cnstr-3)

. . . of the form T σ
α v rg(T σ

β):
Sσ

α

↑rg
−→ Sσ

β

(cnstr-4)

. . . of the form rg(T σ
α) v T σ

β :
Sσ

α
↓rg
−→ Sσ

β

(cnstr-5)

Fig. 7. Rules for the static phase of graph based analysis

done in two phases. The first phase introduces arcs that mimic the constraints
of tree based analysis and also takes care of the reflexive part of the closure. The
rules that govern the first phase are given in Figure 7. We will also refer to the
first phase as the static phase as it only uses rules that can fire once. The second
phase takes care of the transitive part of the closure and mimics the resolution
process of tree based analysis. The rules that govern the second phase are given
in Figure 8. We will also refer to the second phase as the dynamic phase.

The meaning of the rules for the static phase is immediate. The meaning
of the rules for the dynamic phase is quite simple too. For instance, rule (arg)
simply says that labels that are pushed up in the domain sub-tree propagate to
a root set where they are pulled down from the domain sub-tree.

Graph based analysis proceeds first by triggering the rules of the static phase
and then by triggering the rules of the dynamic phase until no new arcs can be
added anymore. Once the dynamic phase has completed, analysis results are
available under the form of ordinary arcs S+

l −→ S+
α that connect the vertex

corresponding to a λ-expression el to the vertex of some program point α. From

p
↑dom
−→ q q −→ r r

↓dom
−→ s

p −→ s
(arg)

p
↑rg
−→ q q −→ r r

↓rg
−→ s

p −→ s
(ret)

p −→ q q −→ r

p −→ r
(trans)

Fig. 8. Rules for the dynamic phase of graph based analysis

the analysis results, one can easily recover either the set of program points to
which a particular λ-expression flows or the set of λ-expressions that flow to a
particular program point.

5.3 Properties

Graph based analysis produces the same analysis results as infinite tree based
analysis and S-CFA. This is no surprise as graph based analysis mimics tree
based analysis with fidelity. An interesting property of graph based analysis is
its cubic complexity. This is the same worst-case complexity as that of S-CFA.
This is quite fascinating as the two techniques are designed from very different
principles at the start.

The cubic complexity of graph based analysis is caused by rule (trans). The
two statements used as conditions in the rule mention three variables that range
over the vertices of the graph. As a consequence, the rule may be triggered up to
O(n3) times, where n is the size of the program. Ironically, rules (arg) and (ret)
which use three statements as conditions can only be triggered up to O(n2)
times. This is caused by the relative rareness of special arcs. Indeed, given a

vertex p and one of the four special kinds of arcs ‘
lbranch
−→ ’, there is at most one

vertex q such that p
lbranch
−→ q.

6 Related Work

Infinite tree based analysis and its efficient graph based variant presented in
this paper have been inspired by the work of Heintze and McAllester [2] and,
especially, the work of Mossin [3]. In both of the latter, the presented techniques
are linear complexity analyses that produce analysis results under an implicit
form. Individual requests for explicit results such as “the set of expressions to
which a particular λ-expression propagates” and “the set of λ-expressions that
reach a particular expression” can be answered in linear time. Consequently,
the user has the option of obtaining explicit answers for a bounded number of
requests in O(n) time or obtaining complete explicit analysis results in O(n2)
time, where n is the size of the program. This is asymptotically faster than
S-CFA. However, these techniques can only be applied to well-typed programs

for which the type of each expression has size smaller than a fixed bound. The
applicability of the techniques is limited by this restriction.

Techniques intended to perform separate analysis of programs by abstract
interpretation are presented in [4]. The techniques can apply to an analysis such
as S-CFA. However, they cause a degradation of the quality of the analysis
results, they cause an increase of the analysis times, they are not applicable in
general, or they require annotations from the programmer.

7 Future Work

The faster analysis techniques by Heintze, McAllester, and Mossin are interesting
and we intend to investigate the possibility of developing a similar implicit-form
analysis from which individual requests can be answered and with complexity less
than cubic. Our graph based analysis allows the creation of a kind of implicit
form for the analysis results (first phase in linear time) but any subsequent
request for explicit results may trigger cubic time computations. However, the
author has not yet convinced himself that there is no way to reformulate the
analysis so that partial explicit results could be obtained in less than cubic time.

Also, since one of the main principles that lead to tree based analysis is com-
positionality, we intend to see whether our techniques could be used to conciliate
whole program control-flow analysis and separate compilation. Indeed, the cu-
bic complexity of S-CFA has made whole-program analysis prohibitive for large,
modular programs. However, since our tree based analysis sets its constraints
in a compositional fashion, it has the potential to allow for the partial analy-
sis of a module by keeping the behavior of the rest of the program abstract.
The inherited trees that should be provided to the module by the rest of the
program may simply be considered as unknowns. The results of such a partial
analysis would be a function taking the module’s inherited trees and returning
the module’s synthesized trees. Hopefully, using this function at link time would
be cheaper than completely re-analyzing the module. Similarly, the partial anal-
ysis of a program with one or many modules missing (holes, so to speak) might
be possible.

Finally, we expect tree based analysis to be relatively adaptable to a richer
set of data structures and expressions. Here, we only considered the λ-calculus
in which the only possible values are functions. Handling lists and algebraic data
structures should be possible while still obtaining results of S-CFA-like quality.
We also expect expressions found in typical functional programming languages
to be quite easy to handle too.

8 Conclusion

This article present a novel analysis technique that produces results strictly
identical to those produced by the Standard Control-Flow Analysis. The analy-
sis uses constraints between infinite binary trees of sets. The analysis results are
obtained by finding the minimal solution to these constraints. To the opposite

of what is done by S-CFA, the list of constraints for a given program is fixed
and can be established in a straightforward manner. We demonstrate that tree
based analysis produces the same results as S-CFA and that, although the anal-
ysis results are computed using an infinite number of sets, these have a regular
structure.

An efficient variant of tree based analysis, namely graph based analysis, is
also presented. This variant mimics just the part of the resolution process that
is needed to obtain the same results as S-CFA. Although graph based analysis
uses a completely different algorithm than S-CFA, it has the same complexity
as S-CFA, that is, cubic complexity.

The techniques presented in this article are interesting from a theoretical
point of view but do not bring improvements in practice. However, there is
potential to develop variants that provide partial analysis results in less than
cubic time. Also, extensions of the techniques could allow a compiler to perform
separate compilation and whole program control-flow analysis at an affordable
cost.

References

1. Shivers, O.: Control flow analysis in Scheme. In: Proceedings of the SIGPLAN ’88
Conference on Programming Language Design and Implementation. (1988) 164–174

2. Heintze, N., McAllester, D.: Control-flow analysis for ML in linear time. In:
1997 ACM Conference on Programming Language Design and Implementation. Vol-
ume 32 of ACM SIGPLAN Notices., New York, ACM Press (1997) 261–272

3. Mossin, C.: Higher-order value flow graphs. In: Ninth International Symposium
on Programming Languages, Implementations, Logics, and Programs (PLILP),
Southampton, UK, Springer-Verlag (1997) 159–174

4. Cousot, P., Cousot, R.: Compositional separate modular static analysis of programs
by abstract interpretation. In: Proceedings of the Second International Conference
on Advances in Infrastructure for E-Business, E-Science and E-Education on the
Internet, Scuola Superiore G. Reiss Romoli (2001)

