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Abstrat

We propose a new demand-driven approah to eÆiently

drive a powerful type analysis for a dynamially-typed fun-

tional language. The analyzer has the advantage of being

ontrollable by a bound on the time that it an put into the

analysis. When given enough time, it an provide results of

very high quality. The analysis is based on a exible analysis

framework that allows the abstrat modeling of the ompu-

tation to be modi�ed while the analysis is performed. The

approah onsists in generating initial demands from reliable

hints in the program and proessing these demands to pur-

posefully guide the modi�ations of the abstrat model. Our

proposed approah has not been implemented fully, but we

sketh a prototype implementation of demand-driven anal-

ysis whih is based on simple pattern-mathing.

1 Introdution

Program analyses are widely used in ompilation. They

range from ommon sub-expression detetion analysis [2℄ to

pointer analysis [10℄. There are analyses intended more for

low-level languages suh as C and others more intended for

high-level languages suh as Sheme. The analyses have a

tendeny to beome more essential and more omplex as

the languages they are intended for beome advaned. Two

reasons might help to explain that. First, a higher-level lan-

guage o�ers more general servies to the programmer, whih

often inur a penalty in ode eÆieny if a ompilation is

done without a ertain e�ort in analysis and optimization.

Seond, the properties that must be disovered in order to

do a good ompilation are generally more omplex. Unfor-

tunately, more omplex analyses usually imply more ostly

analyses.

When a ompiler implementer is faed with the prob-

lem of gathering a ertain kind of information, he often has

to hoose among a wide spetrum of approahes, espeially

when the problem is omplex. The tradeo� is normally be-

tween the time (and/or spae) taken by the analysis and the

auray of the information to gather. Most of the time, the

implementer hooses a ertain approah and glues it to his

ompiler. But on what basis should a partiular approah

be hosen?

1.1 Choosing the \best" analysis

The hoie is usually done onsidering the average needs of

the target users. Most of the time, the hosen approah has a

well-de�ned behavior in terms of its auray, running time,

and required spae. Of ourse, the hoies made annot

satisfy every user in every situation: one user may �nd it too

slow; another, too inaurate. This is the ase even if several

optimizations levels are implemented in the ompiler. Let us

sketh the possibilities that are available to the implementer.

Traditional analyses

Fast analyses are popular. There are many: ontrol-ow

analysis [14, 15℄, numeri range analysis [8℄, abstrat refer-

ene ounting analysis [11℄, et.

They manipulate a well-de�ned abstration (or model) of

the program and its omputations. The size of the model is

in diret relation with the size of the program and the time

required to ompute the analyses is always in O(n

k

) for a k

rarely greater than 3. The amount of resoures required is

well under ontrol. And they obtain results that are quite

aeptable most of the time and provided that the program

ontains typial ode.

Unfortunately, the polynomial time bound often auses

serious limitations in the leverness of these analyses. Some-

times, even very ordinary programming styles an mislead

the analyses and make them produe poor results. As an ex-

ample, Jagannathan and Weeks mention in [12℄ that ontrol-

ow analyses that use all-strings to disambiguate abstrat

evaluation environments (suh as the k-fa) get onfused by

the use of the map funtion alled with di�erent argument

types. Suh an example is showed in Figure 1. The ode is

straightforward and yet, the k-fa or a similar analysis will

fail to show that there is no type error, no matter whih k

is used. This is beause, after k reursive alls of map to

itself, the all-string is invariably the same. At that point,

all the funtions and all the pairs that are passed to map are

merged together, whih makes the analysis believe that the

wrong operator may be applied to the wrong list.

In more general terms, we ould say that the limitations

of the k-fa ome primarily from the fat that it uses unre-

liable hints to distinguish the abstrat evaluation environ-

ments; namely, the all-strings. For example, in Sheme, the

body of a funtion has no means of omputing the syntati

position where the all to the funtion ourred. Neither

does there exist tests to determine where a partiular pair

was reated. On the other hand, there exist type tests and

primitives to inspet the ontents of the objets. In the best

of ases, all-strings and onrete omputations are merely

orrelated, whereas types and values are diretly involved in

the omputations. For these reasons, we onsider all-strings

to be unreliable hints for an analysis.

Many of the traditional analyses an be fooled by a pro-

1



(define (map f l)

(if (null? l)

'()

(ons (f (ar l))

(map f (dr l)))))

(map (lambda (n) (- n)) '(1 2 3 ...))

(map (lambda (p) (ar p)) '((1) (2) ...))

Figure 1: DiÆult ode for the k-fa

gramming style that is not onvoluted. This an be frustrat-

ing for a user that has a program that he knows is orret

but that is beyond the limited power of the available an-

alyzer. He may be willing to give the analyzer plenty of

resoures in order to obtain better results but the analyzer

will not take advantage of this to improve the analysis.

More aurate analyses

To avoid the limitations of the traditional analyses, one an

instead hoose an analysis that uses \the Right Hints" in or-

der to distinguish various abstrat environments. The right

hints an be the type of the objets that are passed to the

proedures, for example. This has a true orrespondene

with the onrete omputations that our in the program:

an expression in aller position should return a funtion, the

argument to ar should be a pair, et. We will expand on

this later.

While we should expet better analysis results from suh

an analysis, we should expet atastrophi time and spae

onsumption in ertain ases. To see why, it suÆes to on-

sider an expression loated inside a funtion of high arity

or inside many nested �-expressions (say, n variables in the

lexial environment) and an analysis that distinguishes the

abstrat evaluation environments based on the type of the

objets bound to the variables (say, k di�erent types). This

analysis immediately exhibits exponential behavior (k

n

dif-

ferent abstrat environments).

If a user has to use a ompiler that features suh a (poten-

tially) ostly analysis instead of a traditional one, it would

be just as frustrating for the user as in the other ase. He an

only hoose between disabling the analysis, if it is possible,

and waiting for days for a single ompilation.

Stati model

It is lear that it is diÆult to �nd the \right" balane be-

tween speed and auray when the time omes to hoose an

analysis model. Even when the \best" ompromise has sup-

posedly been hosen, when a individual program is ompiled,

it is tempting to believe that another ompromise would

have been \better". Having said that, we laim that this

ambiguity omes from the fat that the model is stati. Of

ourse, it depends on the program, but in a very simple man-

ner and it remains the same during the whole ompilation

of the program.

Sine the analyzer is ommitted to an abstrat model, it

neessarily exposes itself to be either too simplisti or too

heavy for partiular programs. It results either in too poor

auray or in good results that have been obtained with

a vastly too great e�ort. It an even be both for the same

program when some of its interesting properties are very

easy to disover while the others are more hallenging.

Dynamially hanging model

What we believe to be more appropriate is to have an ab-

strat model that an dynamially hange. That is, it should

adapt to the level of diÆulty of analysis of the partiular

program to analyze.

Here is a sketh of an analysis using a dynamially hang-

ing model. At the start, the strategy is to hoose an initial

model that is oarse. Sine oarse analyses do quite well in

the typial ase, a signi�ant part of the interesting proper-

ties may already be found by this �rst analysis. Then, the

model ought to be re�ned, in order to be better equipped

to attak the remaining, more diÆult properties. It may

result in having some more properties to be found. Then

the model is re�ned again. And so on. . .

Of ourse, this raises many questions: How do we identify

the so-alled \interesting" properties? What should a re�ne-

ment of the model be? How an we automatially update

an abstrat model? And more importantly, what should a

\better equipped model" be? Before we start to bring an-

swers to these questions, we must desribe our goal in more

detail.

1.2 The objetive

We intend to develop an adaptable-power type analysis for a

purely funtional, appliative, and dynamially typed mini-

language. We assume that the entire program is available.

The analysis must have the potential to be very preise.

However, the user should have the ontrol over the amount

of e�ort that is put into the analysis of his program. This

way, during development, he an request a fast and oarse

analysis, and, at the �nal ompilation, invest an appropriate

amount of time to obtain a high-quality analysis.

1

The analyzer has to be able to deal with a bound on the

amount of work it an do. When given little time, it must

terminate quikly, delivering results that are potentially of

poor quality. When given a lot more time, it must either

terminate prematurely if ompletely satisfying results are

obtained or, in the usual ase, ontinue to improve the qual-

ity of the results until the time is up. We do not want to rely

on programmer annotations. These may be erroneous and,

onsequently, annot be trusted. To trust any annotation

would ontradit the priniple of safety that omes with a

high-level language.

2

Only a safe analysis should provide

results that are to be used for optimization purpose.

The abstrat model used by the analyzer must be ex-

ible. The ruial part of our objetive is to �nd an \intel-

ligent" driver that is able to oordinate the re-analysis and

model-update yle to try to obtain the best results within

the time bound that is given. The driver must re�ne the

model when it seems pro�table, but refrain to do so when it

seems useless. Note that, as intelligent as the driver might

be, we do not want to do true AI, not even an expert system.

We want a driver that proeeds in a more systemati way.

1

What we onsider as a fast and oarse analysis is something sim-

ilar to the 0-fa. A higher-quality analysis would neessarily be more

ostly. For very long programs, the ost may be prohibitive, even for

a fast analysis, onsidering that 0-fa has ubi omplexity in worst

ase.

2

Moreover, if the program ontains an expression suh as (ar x),

it already means that the programmer believes that x an only be

bound to pairs.
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Exp := e

l

e 2 Exp

0

; l 2 Lab

Exp

0

:= #f

x x 2 Var

(e

1

e

2

) e

1

; e

2

2 Exp

(�x. e

1

) x 2 Var; e

1

2 Exp

(if e

1

e

2

e

3

) e

1

; e

2

; e

3

2 Exp

(ons e

1

e

2

) e

1

; e

2

2 Exp

(ar e

1

) e

1

2 Exp

(dr e

1

) e

1

2 Exp

(pair? e

1

) e

1

2 Exp

Lab := Labels

Var := Variables

Figure 2: Language syntax

In order to ahieve our goal, we use a exible analy-

sis framework that is presented in Setion 2 along with the

mini-language. This framework an support very powerful

analyses and, so, an help to prove interesting but diÆult

properties of the program. Setion 3 presents an intuitive

introdution to the demand-driven analysis. It is the de-

mands that enompass the required \intelligent" driver for

the analyzer. The idea is quite simple: interesting proper-

ties an be found with the help of hints present in the pro-

gram; these properties are likely to be true and if they are,

then may happen to be provable, mathematially speaking;

it follows that they might be provable inside our framework

and maybe in reasonable time. Setion 4 skethes a basi

demand-driven analysis implementation. It is based on pat-

terns. Finally, Setion 5 onludes with a brief mention of

the researh that is the losest to our own and with the next

logial steps in our researh.

2 Notation and de�nitions

2.1 A small language

The language we use in this paper is presented in Figure 2.

It is a small subset of Sheme with a few modi�ations. It is

purely funtional, appliative, dynamially typed, and eval-

uation proeeds from left to right. The only types available

are the booleans, with #f as the sole element, the pairs and

the proedures having one parameter. The modi�ations

are: all the pair-related primitives are syntati forms and,

when the pair? expression must evaluate to a true value, its

evaluates to the same pair as its argument. All these details

an be found in the semantis of the language in Figure 3.

3

Despite the fat that the language is small, it is omplex

enough to allow the onstrution of programs that are as

diÆult to analyze as one an desire. A simple �-alulus

provides only one \type": the funtions. In the present

ase, the variety of types ombined to the fat that ertain

expressions require objets of a spei� type reates the ne-

essary ompliations. The all expression and the ar and

dr expressions require the �rst sub-expression to be of a

partiular type (a simple implementation would perform a

dynami type test to guarantee safety).

Throughout the paper, we assume that a program in this

language has no free variables, is �-onverted

4

, and prop-

erly labeled

5

. To keep things simple, we onsider that the

3

The \

_

[" sign denotes the disjoint union. That is, A = B

_

[ C if

and only if A = B [ C and B \ C = ;.

4

All variables in the program have a distint name.

5

Eah expression in the program has a distint label.

Val

"

:= Err

_

[ Val

Err := Errors

Val := ValB

_

[ ValC

_

[ ValP

ValB := f#fg Booleans

ValC := Val! Val

"

Closures

ValP := Val�Val Pairs

Env := Var! Val

E : Exp! Env! Val

"

Evaluation funtion

E [[#f℄℄ � = #f

E [[x℄℄ � = � x

E [[(e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �)

(�v

1

: C (E [[e

2

℄℄ �) (A v

1

))

E [[(�x. e

1

)℄℄ � = �v: E [[e

1

℄℄ �[x 7! v℄

E [[(if e

1

e

2

e

3

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v 6= #f ? E [[e

2

℄℄ � : E [[e

3

℄℄ �)

E [[(ons e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �)

(�v

1

: C (E [[e

2

℄℄ �) (�v

2

: (v

1

; v

2

)))

E [[(ar e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v = (v

1

; v

2

) ? v

1

: error)

E [[(dr e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v = (v

1

; v

2

) ? v

2

: error)

E [[(pair? e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v 2 ValP ? v : #f)

A : Val! Val! Val

"

Apply funtion

A f v = f 2 ValC ? f v : error

C : Val

"

! (Val! Val

"

)! Val

"

Chek funtion

C v k = v 2 Err ? v : k v

Figure 3: Language semantis

purpose of our type analysis is to ollet information that

allows the ompiler to remove as many dynami type tests

as possible.

2.2 A generi analysis framework

In the introdution, we insisted on the fat that an ana-

lyzer should have the ability to modify the abstrat model

that it uses to analyze the program. This requires the in-

trodution of a generi analysis framework. The framework

by itself is not a omplete analysis proedure; it requires

many parameters to beome an instaniation of an analysis.

The parameters may be assimilated to the model itself. The

framework imposes very few onstraints on the model.

Instantiation parameters

Figure 4 presents the parameters and a brief desription

of eah. First, the framework expets sets of abstrat val-

ues. These are given by three �nite non-empty disjoint sets.

Seond, another �nite set provides the ontours. Note that

no other onstraint exists on what these sets might be. Fi-

nally, the framework expets abstrat omputation funtions.

These mimi the onrete omputations done by the pro-

gram. There is one for the reation of losures, one for the

reation of pairs and one to selet ontours assoiated with

the abstrat evaluation environments.

Funtion  reeives the label l of an expression and the

urrent ontour k and returns an abstrat losure. Funtion

p reeives the label l where a pair ontaining v

1

and v

2

is

reated in ontour k, and returns an abstrat pair. Funtion

all reeives a label l where a funtion f is applied to value
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ValB 6= ; Abstrat booleans

ValC 6= ; Abstrat losures

ValP 6= ; Abstrat pairs

Cont 6= ; Contours

k

0

2 Cont Main ontour

 : Lab� Cont ! ValC Abstrat losure reation

p : Lab�Val �Val � Cont ! ValP

Abstrat pair reation

all : Lab�ValC � Val � Cont ! Cont

Contour seletion

where Val := ValB

_

[ ValC

_

[ ValP

Figure 4: Instantiation parameters of the analysis frame-

work

v in ontour k; it returns the ontour in whih the body

of  has to be evaluated. These funtions must be de�ned

on all their domain and, of ourse, respet their type. On

top of that, one of the ontours must be identi�ed as the

main ontour, that is, it is the ontour in whih the top-

level expression e

l

0

of the program is evaluated.

The ase of the abstrat booleans deserves a short ex-

planation. It is obvious that the framework does not allow

as muh parameterization for the booleans as for the other

types. There an be more than one abstrat boolean, of

ourse, but no boolean reation funtion is expeted by the

framework. There ould be, sine the #f and pair? expres-

sions an evaluate to a boolean. However, sine there is

only one onrete boolean, we did not feel the need to pro-

vide the tools to manipulate distint abstrat booleans. In

fat, we do not know if it would be useful at all. However,

support for distint boolean manipulation ould be added

in the framework with little e�ort.

Note that, although the abstrat evaluation funtions

must be de�ned on all their domain, not all input ombina-

tions make sense. For example, the result of the  funtion

does not make sense when the label that it is passed is not

the label of a �-expression. However, the analysis will never

use this result either, so  an return any element of ValC

without onsequenes. This approah is simpler than hav-

ing the set of labels partitioned into �-expression labels, all

labels, et.

Analysis variables

One the parameters are passed to the analysis framework,

a omplete analyzer is instaniated. Here we present the

matries of abstrat variables that are used by this analyzer.

Figure 5 briey enumerates them.

The � matrix ontains the abstrat values to whih eah

expression evaluates in eah ontour. A partiular entry �

l;k

may be empty. It ours if the expression e

l

does not get

evaluated in the abstrat environment represented by the

ontour k. The � matrix ontains the values bound to eah

variable in eah ontour. When the body of the expression

(�

l

x. e

l

0

) is evaluated in a ontour k, a referene to the

variable x refers to the entry �

x;k

. An entry �

x;k

may be

empty, too, for similar reasons as with �

l;k

. An entry 

;k

of the matrix  ontains the values that are returned by the

losure  when its body has been evaluated in the ontour

k. One again, it may be empty. An entry Æ

l;k

is basially

a ag. It indiates whether or not e

l

gets evaluated in the

ontour k. Its ontents is not important; only the fat that

it is empty or not. Non-emptyness of Æ

l;k

implies evaluation.

Value of e

l

in k:

�

l;k

� Val l 2 Lab, k 2 Cont

Contents of x in k:

�

x;k

� Val x 2 Var, k 2 Cont

Return value of  with its body in k:



;k

� Val  2 ValC, k 2 Cont

Flag indiating evaluation of e

l

in k:

Æ

l;k

� Val l 2 Lab, k 2 Cont

Creation irumstanes of :

�



� 

�1

()  2 ValC

Creation irumstanes of p:

�

p

� p

�1

(p) p 2 ValP

Cirumstanes leading to k:

�

k

� all

�1

(k) k 2 Cont

Figure 5: Matries ontaining the results of an analysis

The meaning of the remaining three matries is less ob-

vious. They provide a kind of log of the origins of the

abstrat values. As an example, let us onsider an ab-

strat pair p 2 ValP . p ould be reated by any tuple in

p

�1

(p) = f(l; v

1

; v

2

; k) j p(l; v

1

; v

2

; k) = pg. However, the

log entry �

p

onserves only the tuples that the analyzer has

e�etively enountered during the (maybe numerous) re-

ations of p. These logs allow the analyzer to avoid being too

onservative.

The analysis is sound, in the sense that the analyzer

ats onservatively with the abstrat values. That is, every

onrete evaluation environment in whih an expression e

l

truly evaluates is modeled by abstrat values in a ertain

abstrat ontour. Every onrete value that exists in the

onrete evaluation is represented by an abstrat value in

the analysis results. The onrete value that is returned by

a ertain losure at a ertain step in the onrete evaluation

has an abstrat ounter-part that is returned by an abstrat

losure in a ertain abstrat step (the ontour). And so on.

The soundness property an be formally proven, but we do

not do so in this paper.

Evaluation and safety onstraints

Given a program and the instantiation parameters, our fra-

mework performs the analysis of the program using the eval-

uation onstraints presented in Figure 6. Basially, a set

of onstraints on the analysis variables is generated for the

program. Any solution to this set of onstraints provides a

valid analysis result. Naturally, we are always interested in

the least solution to the system of onstraints. A solution al-

ways exists beause, despite the variety of the generated on-

straints, they an all be deomposed into basi onstraints

of the form: v

1

2 �

i

1;1

;:::;i

1;n

1

^ : : : ^ v

m

2 �

i

m;1

;:::;i

m;n

m

)

v 2 �

j

1

;:::j

k

. So the saturation of all analysis variables gives

a trivial valid solution.

The evaluation onstraints are quite standard and do not

deserve muh more explanation. Exept maybe the mainte-

nane of the log matries. For example, eah time a pair p

is reated at a ons expression, the tuple (l; v

1

; v

2

; k) repre-

senting the label of the expression, both values to pak in

the pair, and the urrent ontour is logged in the variable �

p

.

The logged tuples are later used by various omputations to

disover the origins of the abstrat values. For example, the

ar expression uses the log �

p

(and not p

�1

(p)) to enu-

merate to values that may be found in the ar �eld of the
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Evaluation onstraints for program e

l

0

are:

[

k2Cont

E [[e

l

0

℄℄ k [ fÆ

l

0

;k

0

� ValBg , where

E [[#f

l

℄℄ k =

fÆ

l;k

6= ; ) �

l;k

� ValBg

E [[x

l

℄℄ k =

fÆ

l;k

6= ; ) �

l;k

� ref(x; l; k)g

E [[(

l

e

l

1

e

l

2

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [ E [[e

l

2

℄℄ k [

(

�

x;k

0

3 v;

�

l;k

� 

;k

0

;

�

k

0

3 (l; ; v; k)

 2 �

l

1

;k

\ ValC; v 2 �

l

2

;k

;

k

0

= all(l; ; v; k);

(l

0

; k

00

) 2 �



; e

l

0

= (�

l

0

x. e

l

00

)

)

E [[(�

l

x. e

l

1

)℄℄ k =

�

Æ

l;k

6= ; ) �

l;k

3 (l; k) ^ �

(l;k)

3 (l; k)

	

[

fÆ

l

1

;k

� �

x;k

g [ E [[e

l

1

℄℄ k [

f

;k

� �

l

1

;k

j  2 ValC; (l; k

0

) 2 �



g

E [[(if

l

e

l

1
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where l

0

= parent(l)

Figure 6: Evaluation onstraints
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Figure 7: Safety onstraints

pair p. Finally, note that the extra onstraint Æ

l

0

;k

0

� ValB

is added to ensure that the evaluation of the program gets

started.

The reader may have noted that the evaluation on-

straints do not take errors into aount and manipulate only

the values that are legal. This is beause we separate the

evaluation onstraints from the safety onstraints. Figure 7

presents the safety onstraints that are generated for a pro-

gram e

l

0

. These onstraints are straightforward. The rea-

son we keep these separated is that one we add the safety

onstraints to the set of evaluation onstraints, there may

be no solution to the system. If there is a solution to the

joined sets of onstraints, that means that the model (the

parameters) provides a proof that the program is type-safe.

The usual way to analyze a program is to solve the

system of evaluation onstraints, whih leaves the analy-

sis results in the analysis variables, then onfront the re-

sults to the safety onstraints, and see whih onstraints

are violated. The latter indiate where dynami type tests

are required. For example, the violation of the onstraint

�

l

0

;k

6� ValC for a ertain sub-expression e

l

0

(whose parent

is a all expression e

l

) and ontour k, indiates that there

must be a dynami test at e

l

to ensure that the result of e

l

0

is indeed a losure

6

.

Power and generiity of the framework

The parameterization of the framework allows it to be a very

powerful analysis tool. Here are some of its harateristis.

We do not give proofs here, though.

� The parameters representing a model, as little on-

strained as they might be, are still �nitely representa-

ble. One might ask whether it is possible to automat-

ially deide whether there exists a model that allows

the analyzer to demonstrate that a program is type-

safe. Unfortunately, this problem is undeidable; it is

possible to redue the termination problem to this one.

� For every program that terminates normally, there ex-

ists a model that demonstrates that it is type-safe. A

6

This explanation assumes that there is only one all expression e

l

generated by the ompiler in the exeutable ode. This assumption

may be too simplisti. A good optimizing ompiler may generate

more than one all expression instane of e

l

, eah orresponding to

a ontour (or to many). In this ase, the instanes assoiated to

ontours where no violation ours do not require a dynami type

test. However, the topi of produing good exeutable ode from

analysis results is beyond the sope of this paper.
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trivial model that does so onsists in mimiking the

onrete evaluation of the program. It introdues one

abstrat value for eah onrete value. However, it is

generally impossible to know that the program termi-

nates normally, in the �rst plae.

� For every program that terminates with an error, all

models lead to a violation onstraint. This is due to

the soundness of the analysis. Unfortunately, an un-

suessful model attempt generally does not bring any

information as to whether the program must neessar-

ily terminate with an error.

� Among the programs that loop, some have a model

proving they are type-safe, some do not. Note that

they are type-safe. We believe that an important limi-

tation to the power of the framework onerns program

onstruts where the safety depends on some mathe-

matial invariant. Generally, this annot be desribed

by our kind of models.

The liberty in the hoie of the framework parameters

allows this one to simulate many traditional analyses. For

example, all-string ontours as in [15℄ an be easily imitated

by a proper de�nition of all. Basi set-based analysis [9℄,

being equivalent to the 0-fa an be imitated, too.

The ontours presented in [13℄ are based on polymorphi

splitting. Values reated in let-bindings an be speialized

aording to whih variable referene aesses the values.

Simply stated, an abstrat value bound to a variable in a

let-binding mutates di�erently depending on where the ref-

erene to the variable is loated. Our framework does not

allow suh a thing. However, a trivial soure-to-soure trans-

formation of the program and appropriate model seletion

make it possible to obtain a similar analysis.

3 Demand-driven analysis

Here is an informal introdution to demand-driven analysis.

First, we illustrate the approah with an example. Then,

an overview of what a omplete demand-driven approah

should inlude is presented. Next, the diÆulty of dealing

with the all and onditional expressions is exposed. Finally,

many hallenges to make a demand-driven approah work

are mentioned.

3.1 An example

To illustrate what demands might be, where they ome from,

and how they an be proessed, we use a small example.

Suppose that this �-expression appears somewhere in a pro-

gram:

(�

1

x. (if

2

x

3

(ar

4

(pair?

5

x

6

)) #f

7

))

Suppose also that a preliminary analysis has been done and

that, aording to its results, the �-expression eventually

gets evaluated, resulting in a losure, and that the losure

is alled many times with di�erent pairs and with #f.

Note that a na��ve ompilation of �-expression e

1

would

immediately produe good ode exept for the (only) dy-

nami test oming from the ar expression. It would be

better if we ould remove that test. Let us see how this

an be done. We need to prove that e

5

returns nothing else

than pairs. Now, as far as the preliminary analysis of the

program an tell, e

5

an evaluate to pairs and #f (remember

that, when e evaluates to a pair or to a non-pair, (pair?

e) evaluates to that pair or to #f, respetively). So, for the

moment, the dynami test must stay there. In order to try

to hange this, we will emit and proess demands. These,

in turn, may lead to an update of the model suh that it

will reate an instane of an analysis that an provide the

desired proof.

Obviously, we need a �rst demand. Why not go for

the simplest solution? That is, make the following request:

\show that e

5

always evaluates to pairs". Or more preisely:

\show that e

5

annot evaluate to anything else than pairs".

To show that it does not get evaluated at all would not be

bad, too. Let us all this demand D

1

.

Now, we have to proess D

1

in some way. Note that D

1

onerns e

5

, whih is a not a simple expression. The value

of e

5

strongly depends on the value of its sub-expression

e

6

. If we ould rewrite D

1

into another demand related to

the simpler e

6

, we would have made some progress. This

new demand D

2

ould be: \show that e

6

annot evaluate

to anything else than pairs". Clearly, D

2

, if it is positively

answered, would have the same desirable onsequenes as

D

1

.

What an we do to respond to D

2

? Note that the prelim-

inary analysis says that x may be bound to #f (and suppose

that it is truly the ase). A reasonable approah is to proess

D

2

in two steps: �rst, we should separate the ase where x

is bound to a pair from the ase where it is not; then, if x

still evaluates to #f in the seond ase, we should request a

demonstration that that evaluation annot happen. What

it means is that we emit a new demand D

3

and then, if

neessary, another new demand D

4

.

Let us �rst take are of D

3

. In more preise terms, D

3

is: \split the urrent ontour in order to separate the ases

where x is bound to a pair from the ases where x is bound to

#f". That is perfetly possible, as we explain shortly. So let

us onsider that the previous ontour k has been e�etively

split into k

0

(pair ase) and k

00

(#f ase). There is ertainly

no more problems with the evaluation in ontour k

0

sine x

must be bound to a pair, so e

5

must return a pair, and so e

4

annot go wrong. But what about evaluation in ontour k

00

?

Sine x must be bound to #f in k

00

, the test in e

2

is always

false, the then-branh is never exeuted and, onsequently

the ar aess is never made. Conlusion: in every ase,

there is no need to perform a dynami type test in e

4

. The

initial demand has been positively answered. That is, we

have emitted demands, proessed them, and they have lead

to an update of the model that was suÆient to demonstrate

that the dynami test is unneessary.

Before we onlude this example, we need to explain why

we said that it was easy to separate the ases where x is

bound to a pair from the ases where x is bound to some-

thing else. This is beause of our abstrat model. The all

parameter selets the ontour in whih the body of a lo-

sure evaluates. Let us refer to the losure generated by e

1

as  and to the ontour in whih the body evaluates as k

in the old model. To keep things simple, we suppose that

they are unique. That means that all(l; ; v; k

�

) = k for

any label l, argument v, and ontour k

�

. In other words,

when  is alled, its body is always evaluated in the ontour

k. Changing the model to make the required split simply

means de�ning a new modeling funtion all

0

suh that:

8l 2 Lab; v 2 Val; k

�

2 Cont;

all

0

(l; ; v; k

�

) =

�

k

0

; if v 2 ValP

k

00

; otherwise
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3.2 Overview

As we mention in the introdution, our demand-driven anal-

ysis should be able to produe some results in a short time, if

neessary, and be able to improve them ontinuously if it is

allowed to ontinue longer. In order to behave this way, the

demand-driven analyzer proeeds in two phases: the prelim-

inary analysis, the demand-driven phase; as skethed in the

introdution. The preliminary analysis is similar to a tra-

ditional analysis; its purpose is to ollet initial information

using a stati model. Typially, this information is good

enough to allow the removal of many dynami type test but

not all of them. During the demand-driven phase, demands

are generated and proessed in order to perform the model-

update/re-analysis phase. This phase ontinues until all the

demands have been positively answered or, usually, until the

bound on the analysis time is reahed.

The hoie of the model in the preliminary analysis is

what we disuss �rst. Next, we present a list of demands

that seem vital to guide the demand-driven analysis. Fi-

nally, we present typial proessing of many kinds of de-

mands.

Initial model and initial demands

The hoie of the initial model must be the result of a om-

promise between the time spent during the preliminary anal-

ysis and the quality of the preliminary analysis results. A

model that is too omplex will make the preliminary analysis

ostly, making even the fastest ompilation with analysis too

long. A model that is too oarse may render the preliminary

analysis \blind", its results sometimes being overestimated

to the point of being useless, thus leaving the whole task of

real analysis to the demand-driven part, whih is neessarily

less eÆient.

We believe that having an initial model with one ab-

strat pair, one abstrat losure per �-expression, and one

ontour (or one ontour per losure body) would be of a

reasonable ost and provide preliminary analysis results of

relatively good quality. Suh a model instantiates a mono-

variant analysis that is omparable to the 0-fa. Sine, in

the typial ase, analyses like 0-fa perform relatively well,

muh fewer demands are generated in the demand-driven

part.

Choosing a oarser model having only a single abstrat

losure to represent all onrete losures would lead to ex-

essively poor results. Exept in the most trivial of ases,

the abstrat losure would be found to return everything,

leaving all the analysis work to the demand-driven part.

The only advantage of this hoie would be a preliminary

analysis with linear omplexity.

Choosing a �ner model would inrease signi�antly the

preliminary analysis time without any guarantee as to whe-

ther the a priori re�nements would bring any help for the

dynami tests that would still remain after a 0-fa-style anal-

ysis.

One the preliminary analysis is done, formulating the

initial demands is trivial. Expressed in terms of analysis

variables, it takes the form of a list of \show �

l;k

� ValC"

and \show �

l

0

;k

0

� ValP" demands.

Typial demands

The most natural demand type is like the initial demands.

We shall all these bound-demands. Sine they an so easily

be reformulated in terms of other, more fundamental de-

mands, bound-demands only involve an � matrix entry and

a simple bound set.

One of these fundamental demand types is the split-

demand. We mentioned that kind of demand in the example

in Setion 3.1. It says: \split something aording to some-

thing". The thing to split may be an abstration in the

model or an analysis variable. As an example of the �rst

ase, the demand ould be \split P aording to the label

where it is reated", where P is the unique abstrat pair.

That would trigger a straightforward update of the funtion

p. As an example for the seond ase, the demand ould be

\split 

;k

aording to the membership to the set of pairs".

That means that the return values of losure  when its body

is evaluated in ontour k have to be split into pairs and non-

pairs. The onsequenes in ase of a suessful response are

that the abstrat losure , the ontour k, and anything else

if neessary will have to be split in suh a way that for all 

0

speializing  and for all k

0

speializing k, 



0

;k

0

will ontain

either only pairs or no pair at all.

Split-demands diretly on the model or on �, �, or 

entries are reasonable demands. However, we believe that

split-demands on Æ entries should not exist sine they make

no sense. The only interesting onern with Æ entries is

whether they are empty or not. As for the \log" variables, it

may make sense to want to split them, but maybe not to try.

This is beause they plainly desribe how the abstration

funtions have been used during the analysis. They have a

very indiret (and passive) e�et on the abstrat evaluation

of the program. In order to have an e�et on these entries,

a demand would ertainly have to be reformulated in terms

of demands onerning entities on whih it is lear that we

an have an e�et.

A third type of demand onsists in requesting a demon-

stration that some expression annot get evaluated in some

ontour. We shall all these never-demands and obviously

they an be formulated formally by \show Æ

l;k

= ;". Suh

demands typially arise when a ertain evaluation neessar-

ily leads to an error. To make a variation on the example of

Setion 3.1, if the sub-expression e

5

of the expression (ar

4

e

5

) in the non-pair ontour k

00

would have still returned

some values, it would have been neessary to emit a never-

demand on Æ

5;k

00

. Obviously, a split is not neessary sine

there are no good ases (pairs) to separate from the bad

ases (non-pairs).

We touh a ruial issue, here: good ases and bad ases.

When there are only good ases, everything is �ne, nothing

has to be done. When there are only bad ases, we have

to emit a never-demand but at least everything is lear.

When there are good and bad ases together, normally split-

demands have to emitted before emitting never-demands.

Otherwise, if we are asking a demonstration that suh an

evaluation annot our, we may ask the impossible sine

the good ases may reet atual onrete evaluations in

the program. This priniple must be kept in mind when we

propose proessing tehniques for the demands.

A fourth type of demand that seems vital is the no-all-

demand. A no-all-demand basially means: \show that

losure  annot be alled on argument v in all site l when

the ontour is k". It typially may be emitted due to the

proessing of a never-demand. To ontinue with our varia-

tion on the example, a never-demand on Æ

5;k

00

may eventu-

ally require that we show that the losure  is never alled

with a non-pair argument. This translates into one or more

no-all-demands.

Although an implementation of demand-driven analysis

may formulate other types of demands, the ones that we just

7



presented here form a ore that must be present in one way

or another in order to be able to perform demand-driven

type analysis on a language suh as ours.

Proessing the demands

Demands originally express the need to demonstrate a \de-

sirable" property. A demonstration takes the form of a

model instantiating a partiular analysis that brings the

proof that the property is indeed true. If we want to go

from the original demands to the appropriate model, these

demands have to be proessed in some way. Note that we

have already impliitly desribed many ases of demand pro-

essing.

In general, proessing a demand leads to immediate su-

ess, to immediate failure, or to emission of new, modi�ed

demands. Immediate suess ours when, for example, the

demand is \split �

l;k

aording to its type" and the expres-

sion e

l

is #f

l

. In this ase, the model trivially onforms to

the demand: k itself is the only ontour that is neessary

in order to have that no two objets of di�erent type result

from the evaluation of e

l

in the same ontour k

0

, for any k

0

speializing k.

Immediate failure, in our partiular ase, is most unom-

mon. One spei� demand, however, an lead to immediate

failure: \show Æ

l

0

;k

0

= ;". That is, trying to show that the

whole program does not get evaluated.

Most of the time, as was illustrated in the example of

Setion 3.1, proessing a demand leads to the reation of

new demands.

Even though partiular demand-driven analyses may dif-

fer in the way their set of demands are proessed, here we

present proessing shemas that, almost ertainly, have to

be similar in all ases.

� Original bound-demands, \show �

l;k

� hseti", express

properties that, if they are not trivially satis�ed nor

trivially ontradited, may �rst be re-expressed as a

split-demand and, upon suess of this �rst sub-de-

mand, a never-demand ought to be emitted for eah

k

i

speializing k suh that �

l;k

i

6� hseti. Note that the

split is intended to \separate the good ases from the

bad ones". If the bound-demand property is trivially

respeted, immediate suess ours. If it is trivially

ontradited, a single new demand is emitted: \show

Æ

l;k

= ;".

� Split-demands on � entries result in an update of the

model and in immediate suess. Sine only the 

and all funtions determine whih ontour is seleted

depending, in partiular, on the arguments to the lo-

sures, a model update is the only way to respond to

suh demands. Of ourse, any split-demand diretly

onerning the model auses an update of the model

and an immediate suess.

� A split-demand on a 

;k

analysis variable an trivially

be reformulated in terms of a new split-demand on the

�

l;k

variable orresponding the result of the body e

l

of

the losure .

� A split-demand on an �

l;k

variable where e

l

is #f

l

, x

l

,

(ons

l

e

l

0

e

l

00

), (ar

l

e

l

0

), (dr

l

e

l

0

), or (pair?

l

e

l

0

)

an normally be proessed in a straightforward fash-

ion. It beomes, in the �rst ase, an immediate suess,

sine it is lear that the sole #f value always falls into a

single \split ategory" aording to the split riterion.

In the seond ase, it an trivially be reformulated as a

split-demand on �

x;k

. In the third ase, depending on

the split riterion, the split may already be done (with

a split-on-type riterion, for example) or it may eas-

ily be reformulated in terms of split-demands on the

sub-expressions. The remaining ases are similar plus,

maybe, a diret split-demand on the model to speial-

ize abstrat pairs. To make a simplisti observation,

we would say that split-demands on � entries have a

tendeny to propagate from an expression towards its

sub-expressions.

� A never-demand on a Æ

l;k

variable is proessed a-

ounting for the parent expression e

l

0

of e

l

. Most of the

time, the demand is reformulated into a never-demand

on Æ

l

0

;k

. However, if e

l

is the onsequent branh or

the alternate branh of an if expression, the demand

must be reformulated into a bound-demand onto the

test sub-expression. The bound is the set of true val-

ues (ValC [ ValP) or false values (ValB), respetively.

Finally, if e

l

0

is a �-expression, the evaluation is the

result of a all, and it is generally not a simple matter

to proess suh a demand. One again, to be simplis-

ti, we ould say that never-demands have a tendeny

to propagate from an expression towards its parent ex-

pression.

3.3 DiÆult ases

In the preeding paragraphs, we presented some more or

less preise desriptions of what the proessing of various

demands should be. However, we avoided ertain demands

deliberately beause they are learly diÆult to proess. The

existene of diÆult ases has to be expeted sine statially

proving interesting properties about a program is unom-

putable in general, and this unomputability is not going to

disappear simply beause we are trying to make the analyzer

smarter by using a demand-driven approah. The diÆul-

ties ome mainly from the onditional expression and, to a

greater extent, from the all expression. We illustrate the

potential problems with two examples.

Let us suppose that we have the following expression:

(if

l

e

l

1

e

l

2

e

l

3

). We must proess a split-demand on �

l;k

aording to the type of the result. Let us suppose, also,

that the analysis results under the urrent model indiate

that e

l

2

may evaluate to objets of all types, that e

l

3

may

evaluate only to pairs, and that e

l

1

may evaluate to both

true and false values. How an we proess this demand?

Note that e

l

evaluates to a set of values that is the union

of the results of both its branhes. Sine e

l

3

already has

a pair-only result, we ould emit a bound-demand on e

l

2

to request a demonstration that in fat it evaluates only

to pairs. Alternatively, we ould emit a bound-demand on

e

l

1

to request a demonstration that it evaluates only to #f.

Whih strategy is the best?

Obviously, the example shows that the diÆulty omes

from the fat that there are more than one possible dire-

tion to ontinue proessing. Moreover, note that neither of

the two proposed demands is adequate beause they may

involve properties that atly ontradit what the onrete

omputations are. In suh ases, there would be no hope of

ever responding suessfully to the demands.

The proessing of demands onerning alls is even more

diÆult. Let us onsider the following expression: (

l

e

l

1

e

l

2

).

Suppose that the demand is the same as in the if example.

Also, suppose that the urrent analysis results tell us that:

e

l

1

evaluates to two losures 

1

and 

2

, e

l

2

evaluates to ob-

jets of more than one type, the losure 

1

returns objets

8



of only one type, and 

2

returns objets of di�erent types.

How should we proeed?

The \poly-type" results of e

l

may be explained by the

fat that: 

2

returns objets of the same type as those that

it reeives, so we should split the value of e

l

2

; the onrete

losure orresponding to 

2

returns \mono-type" results, but

its poor modeling suggests the ontrary, so we should split

its return value; or no onrete losure orresponding to 

2

is ever present at e

l

1

during the onrete evaluation, so we

should split the value of e

l

1

, and demand that the ase where

e

l

1

evaluates to 

2

be proved impossible.

Clearly, proessing in suh a ase is far from obvious sine

the appropriate demands may onern e

l

1

, e

l

2

, the losures

that are invoked, or a ombination of the three.

3.4 Challenges

On top of the natural diÆulty that omes with the pro-

essing of the demands, there are several others that make

things more omplex.

As we mentioned above, the proessing of a demand and

its sub-demands may last forever. This may happen in par-

tiular beause the property that must be demonstrated

is not based on legitimate reasons (suh as in the ondi-

tional expression example) or simply beause it is beyond

the power of the framework to support the neessary proof.

Clearly, there must be a mehanism that ensures that the

analyzer does not get stuk in suh proessing.

Sine the attempt to prove a property may last forever

and there are generally more than one property to prove, the

original demands annot be proessed one after the other.

The amount of time available to the analysis may be ex-

hausted by one of the �rst demands, possibly leaving unan-

swered many \easy" demands that would have been su-

essfully proessed in little time. So the proessing of the

demands must be made using some kind of onurreny.

Note that using a bound on the time available to the an-

alyzer is learly a neessity but it is also one of its feature.

Although unusual in the �eld of program analysis, this on-

ept is fairly natural when we think about it. In a way, it

orresponds more to the human notion of work than to the

algorithmi omplexity notion of work. While the ideal pa-

rameter to an analyzer would be the quality of the results, a

bound on the available time is probably the losest realisti

equivalent.

The proessing of an original demand naturally leads to a

tree of sub-demands. Of ourse, these sub-demands annot

all be proessed at the same time. Some have to be put into

a waiting queue until it is their turn. However, during the

time that a demand is in the queue, the model may have

been re�ned due to the proessing of other demands. In

suh a ase, an \old" demand may refer to abstrations that

have been broken down into more speialized abstrations.

Consequently, there must be a mehanism to keep demands

up to date.

Finally, an important question relates to the onur-

rent demand proessing: should the various proessing trees

share the abstrat model? Remark that they do not have

to. Eah original demand an be responded independently.

This is beause that what matters is whih of the original

demands are suessfully answered. Two distint dynami

tests may both be omitted from a program, even if eah has

been showed redundant using a distint model.

The advantage of sharing the model is that a suessful

demonstration of property A may have unovered many in-

variants of the program that would make the demonstration

of property B easier. The inonveniene is that if all up-

dates our in the same model then almost every demand

that goes in the waiting list has to be speialized to follow

the numerous �ner abstrations introdued by the updates,

resulting in a proliferation of demands.

A ompromise that may be interesting onsists in shar-

ing eah model with the one used to suessfully answer a

demand. What is interesting with suh a model is that it

an be redued prior to the sharing with the other mod-

els. The idea is the following: during the proessing of a

tree of demands, all kinds of updates are performed on the

model; eventually, one last update auses the model to pro-

vide a proof for the original demand; however, only some of

the re�nements to the model are really neessary to provide

the proof; undoing the unneessary re�nements produes a

model that is as small as possible.

4 A basi analysis

We present a prototype of a demand-driven analysis that is

based on patterns. We briey desribe this pattern-based

modeling and some of the hoies that we have made on-

erning the various problems that must be addressed.

4.1 Abstrat model

The modeling of the abstrations is made using pattern

mathing. A pattern list must be exhaustive and, assoi-

ated with eah pattern, there is a partiular abstration in-

stead of ode to exeute. For example, a very simple pattern

mather desribing the abstrat pairs might look like:

( #f; Val) ) P

1

( �

8

; Val) ) P

2

( (Val;Val); Val) ) P

3

Obviously, it represents three abstrat pairs, eah being spe-

ialized with the type of the objet that it ontains in the

ar �eld.

One important harateristi of our pattern mathing is

that it does not require that a modeling of pairs, for example,

has to be the Cartesian produt of all the speializations

found in the ar with those found in the dr. This is ruial

for the patterns representing ontours sine these are kinds

of \lists" that an be as long as the lexial environment in

the program.

4.2 Demands

Figure 8 presents the syntax of the demands and that of the

patterns they inlude. The set of demands orresponds ba-

sially to what we desribe in Setion 3 exept for split-all ,

whih is an auxiliary demand used in the proessing of split-

demands on all expressions, and monitor-all , whih is an-

other auxiliary demand that tries to prove that alls of er-

tain losures on ertain arguments annot our in ertain

ontours.

The syntax of the patterns is desribed by hpati, whih

represents the splitting patterns, by hsPati, whih are the

stati patterns, by htPati, whih are splitting ontour pat-

terns, and by hsCtPati, whih are stati ontour patterns. A

splitting pattern ontains one and only one splitting point,

indiated by ?. When abstrations are split aording to

a pattern, only those that math the pattern are modi�ed,

and the modi�ation onsists in adding an \extra-level" of

inspetion at the splitting point. Stati patterns are used

to help desribing the abstrations that are to be modi�ed.
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hdemandi := show �

l;k

� hboundi

split �

l;k

hpati

split �

x;k

l hpati

split 

;k

hpati

split ValP hpati

show Æ

l;k

= ;

split-all l hsCtPati hpati

monitor-all l hsCtPati

hboundi := ValB j ValC j ValP j ValTrues

hpati := ? j �

?

j �

l

htPati

(hpati; hsPati) j (hsPati; hpati)

hsPati := Val j #f j �

8

j �

l

hsCtPati

(hsPati; hsPati)

htPati := (hsPati

�

hpati hsPati

�

)

hsCtPati := (hsPati

�

)

Figure 8: Demand syntax

The ontours used at an expression e

l

are an abstrat model

of the lexial environment. So ontour patterns are lists of

patterns that are as long as the lexial environment is at the

points of the program where they are used.

4.3 Bak to the example

If we return to the example of Setion 3.1, a pattern-based

demand-driven analysis proeeds like this. The original de-

mand is:

show �

5;k

� ValP

where k represents (Val : : : Val). That demand is �rst

reformulated into a split-demand aording to the type:

split �

5;k

?

Proessing this demand is trivial and it produes another

split-demand. It onerns the sub-expression:

split �

6;k

?

This one beomes a split-demand on the variable:

split �

x;k

6 ?

The label 6 is present in order to unambiguously indiate

whih program point requires an update. This is beause k

may be used in more than one funtion body. This demand

�nally auses an update in the model of the all funtion

in suh a way that a all to the losure an result in the

ontour

( #f Val : : : Val);

( �

8

Val : : : Val); or

( (Val;Val) Val : : : Val):

The rest of the explanations are similar.

4.4 The diÆult ases

In Setion 3, we showed that the diÆult ases are the on-

ditional expressions and the all expressions. Also, we list

many other diÆulties. We present some hoies that we

made in our pattern-based analysis.

A split-demand on the evaluation results of a onditional

expression are dealt with in this way: split-demands with the

same pattern are sent to both branhes and another split-

demand with the ? pattern is sent to the test. With luk,

all three sub-demands sueed, and the split-demand on the

onditional is a suess sine eah new ontour neessarily

leads to mono-type evaluation results of the onditional.

A split-demand on a all expression proeeds by: split-

ting the return value of eah losure (that may be involved

there) aording to the same pattern; this proessing in-

diretly reates an \assoiation" between the output and

the input of the losures; a split-all auxiliary demand then

omputes an \easiest" way to distinguish all situations that

lead to di�erent split ategories; it �nally emits a sequene

of demands on the sub-expressions of the all expressions

that, if suessfully answered, would omplete the split of

the all expression.

These proessing strategies are generally too aggressive

in their generated sub-demands and a major diÆulty is

to deal with those that do not sueed. We have inluded

a time-out feature to the proessing of sub-demands that

allows their parent to turn to a \bakup plan" when the

time-out is reahed. The bakup plans often resort to sub-

demands that are often less legitimate than the ones that

have expired and, so, maybe even more suseptible to be

impossible to aknowledge or at least more diÆult. But, as

the name of these plans says, this is the last reourse.

4.5 Pros and ons

The pattern-based demand-driven analysis has the advan-

tage of being of manageable omplexity. That is why we

have hosen it as a �rst attempt of demand-driven analysis.

However, it has some weaknesses that may onsiderably re-

due the power of the whole analysis. Its weaknesses ome

diretly from its onept: patterns. Patterns an only dis-

tinguish objet strutures on the surfae or not very deep.

They are fundamentally inapable of distinguishing stru-

tures that start to di�er at deep levels, suh as, for example,

lists of booleans ending with a boolean and lists of booleans

ending with a funtion:

(#f; (#f; : : : (#f;#f) : : :))

(#f; (#f; : : : (#f; �

8

) : : :))

However, we annot say that the pattern-based is just

good enough to \show in greater detail that we still know

nothing". If the program manipulates data strutures that

an be distinguished by looking only a few levels deep, then

our analysis has the apability to �nd the harateristis

of these data strutures. Figure 9 shows suh an example.

Suppose that the program manipulates only lists of booleans

and lists of funtions. Then a simple split of the abstrat

pairs may lead to a perfet desription of the lists. This is

due to the log analysis variables, whih reord the irum-

stanes that prevail when abstrat objets are reated. The

�gure shows two models, the oarse and the �ner, and the

information that is onsigned in the logs.

5 Conlusion

5.1 Related work

As far as we know, there is no work with the same goal.

The most losely related researh is the work of Duester-

wald et al. [7℄, Agrawal [1℄, and Heintze and Tardieu [10℄.

In [7℄, a framework to obtain a demand-driven analysis from

a ertain lass of inter-proedural data-ow problems is de-

sribed. However, as the authors of [10℄ mention, this lass
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Model Observed results

(Val;Val)

P

analysis

)

�

#f

f 2 ValC

;

#f

P

�

P

+

split ValP (?;Val)

( #f ; Val )

P

1

( �

?

; Val )

P

2

( (Val;Val) ; Val )

P

3

analysis

)

�

#f ;

#f

P

1

�

P

1

�

f 2 ValC ;

#f

P

2

�

P

2

( ; ; ; )

P

3

Figure 9: A simple split may unover more omplex stru-

tures

is restrited and does not even inlude the problem that

they address: a ow-insensitive, ontext-insensitive pointer

analysis; whih is still elementary. In [1℄, a demand-driven

data-ow analysis that does not require prior all graph in-

formation to be present is desribed.

What these proposals have in ommon with ours is the

fat that demands are generated for some reasons and then

propagated. That is all. Their goal is simply to take a

well-known, traditional analysis and adapt it so that only a

subset of the omputations need to be performed in order to

provide answers to ertain requests. Only a few, when not

only one, very simple demand types exist.

5.2 Future work

Investigation in this researh should onsider alternatives to

patterns for abstrat modeling and formulating demands.

First, we should onsider distinguishing pairs by their re-

ation expression and ontour rather than by their diret on-

tents. We believe that this modeling may be more powerful

than the pattern-based modeling. However, it is not lear

how to express demands in this representation. Seond, a

representation using regular trees (see [4, 3, 5, 6℄) system-

atially may prove to be very powerful. This representation

ould be used to express demands, too. It may be far from

eÆient, though. Third, we should explore an approah to

systematially ompute demands that is reminisent of logi

programming. The idea is to give a demand-driven analy-

sis interpretation to the expressions. This interpretation is

a funtion transforming demands (in the sense of bound-

demands) to environment demands. The advantage of this

approah seems to be the fat that it is systemati but it

is not lear if it an be more powerful than pattern-based

analysis.

The biggest problem with our approah is the proess-

ing of demands related to onditional and all expressions.

Additional informations about fats that are known with

ertainty, might help to better deide what sub-demands to

emit. For example, it ould indiate that ertain demands

have to fail beause a ounter-example has been found. The

ertain fats would have to be disovered by an auxiliary

analysis. The latter would onentrate on trying to prove

fats that would help the most the demand-driven analyzer.

In a more omplex appliation than our type analysis for

a mini-language, original demands ould ome from a wider

variety of hints. In onsequene, it may be neessary to as-

sign a reliability degree to the demands. For example, if we

extend our problem to inlude detetion of inlining oppor-

tunities, then it would be \desirable" to prove that a ertain

all expression an only invoke one partiular losure. Sine

suh a demand originates from a desire on our part and is

not baked by any more solid evidene, then it should reeive

a lower reliability degree.

Another diretion onsists in extending the sope of the

analysis to be able to deal with a language loser to Sheme,

that is, inluding more algebrai types, higher- and variable-

arity funtions, ontinuations, I/O, and side-e�ets. Exept

for ontinuations, we do not expet any serious problems.

Dealing with ontinuations probably requires that we intro-

due a new type of abstrat objets sine ordinary funtions

annot mimi their behavior. Otherwise, a onversion to

CPS may be required. Separate ompilation of programs

is not a standard part of Sheme, but it is ommon pra-

tie. Unfortunately, we do not see how our demand-driven

approah ould be adapted to deal with it. Not only does

our analysis has to propagate abstrat objets everywhere in

the program, it also has to propagate demands everywhere

(from allee to aller, for example, whih may ome from

di�erent modules).

Finally, other analyses than type analysis should be on-

sidered in order to verify how well our demand-driven ap-

proah applies outside of type analysis. One suh analysis

is range analysis for numerial values. A part of the goal of

this analysis onsists in removing bound heks in indexable

data struture aesses and removing veri�ations before di-

visions and other unsafe numerial operations. Sine these

operations relate to safety issues, they an be seen as good

hints from whih we an generate initial demands.

5.3 Contributions

In this paper, we presented a proposal of how to perform a

high-quality type analysis while trying to have a moderate

time and spae omplexity. It is based on a demand-driven

analysis that uses a very powerful analysis framework. The

exibility of the framework omes from the fat that the

abstrat model of the objets an be hanged dynamially.

With appropriate models, the framework an emulate the

behavior of many traditional type analyses. Although the

way to generate initial demands from hints present in the

program is similar to what is done in other researh, the

purpose of the demands is radially di�erent. Their gen-

eration and proessing guides the suessive updates of the

analysis model that is used in the exible framework, mak-

ing suessive analysis instanes that are better equipped

to analyze the program at hand. We also give a sketh of

our implementation of a pattern-mathing demand-driven

analysis.
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