
Demand-Driven Type Analysis:

an Introdu
tion

Danny Dub�e Mar
 Feeley

DIRO

Universit�e de Montr�eal

fdube, feeleyg�iro.umontreal.
a

Abstra
t

We propose a new demand-driven approa
h to eÆ
iently

drive a powerful type analysis for a dynami
ally-typed fun
-

tional language. The analyzer has the advantage of being

ontrollable by a bound on the time that it
an put into the

analysis. When given enough time, it
an provide results of

very high quality. The analysis is based on a
exible analysis

framework that allows the abstra
t modeling of the
ompu-

tation to be modi�ed while the analysis is performed. The

approa
h
onsists in generating initial demands from reliable

hints in the program and pro
essing these demands to pur-

posefully guide the modi�
ations of the abstra
t model. Our

proposed approa
h has not been implemented fully, but we

sket
h a prototype implementation of demand-driven anal-

ysis whi
h is based on simple pattern-mat
hing.

1 Introdu
tion

Program analyses are widely used in
ompilation. They

range from
ommon sub-expression dete
tion analysis [2℄ to

pointer analysis [10℄. There are analyses intended more for

low-level languages su
h as C and others more intended for

high-level languages su
h as S
heme. The analyses have a

tenden
y to be
ome more essential and more
omplex as

the languages they are intended for be
ome advan
ed. Two

reasons might help to explain that. First, a higher-level lan-

guage o�ers more general servi
es to the programmer, whi
h

often in
ur a penalty in
ode eÆ
ien
y if a
ompilation is

done without a
ertain e�ort in analysis and optimization.

Se
ond, the properties that must be dis
overed in order to

do a good
ompilation are generally more
omplex. Unfor-

tunately, more
omplex analyses usually imply more
ostly

analyses.

When a
ompiler implementer is fa
ed with the prob-

lem of gathering a
ertain kind of information, he often has

to
hoose among a wide spe
trum of approa
hes, espe
ially

when the problem is
omplex. The tradeo� is normally be-

tween the time (and/or spa
e) taken by the analysis and the

a

ura
y of the information to gather. Most of the time, the

implementer
hooses a
ertain approa
h and glues it to his

ompiler. But on what basis should a parti
ular approa
h

be
hosen?

1.1 Choosing the \best" analysis

The
hoi
e is usually done
onsidering the average needs of

the target users. Most of the time, the
hosen approa
h has a

well-de�ned behavior in terms of its a

ura
y, running time,

and required spa
e. Of
ourse, the
hoi
es made
annot

satisfy every user in every situation: one user may �nd it too

slow; another, too ina

urate. This is the
ase even if several

optimizations levels are implemented in the
ompiler. Let us

sket
h the possibilities that are available to the implementer.

Traditional analyses

Fast analyses are popular. There are many:
ontrol-
ow

analysis [14, 15℄, numeri
 range analysis [8℄, abstra
t refer-

en
e
ounting analysis [11℄, et
.

They manipulate a well-de�ned abstra
tion (or model) of

the program and its
omputations. The size of the model is

in dire
t relation with the size of the program and the time

required to
ompute the analyses is always in O(n

k

) for a k

rarely greater than 3. The amount of resour
es required is

well under
ontrol. And they obtain results that are quite

a

eptable most of the time and provided that the program

ontains typi
al
ode.

Unfortunately, the polynomial time bound often
auses

serious limitations in the
leverness of these analyses. Some-

times, even very ordinary programming styles
an mislead

the analyses and make them produ
e poor results. As an ex-

ample, Jagannathan and Weeks mention in [12℄ that
ontrol-

ow analyses that use
all-strings to disambiguate abstra
t

evaluation environments (su
h as the k-
fa) get
onfused by

the use of the map fun
tion
alled with di�erent argument

types. Su
h an example is showed in Figure 1. The
ode is

straightforward and yet, the k-
fa or a similar analysis will

fail to show that there is no type error, no matter whi
h k

is used. This is be
ause, after k re
ursive
alls of map to

itself, the
all-string is invariably the same. At that point,

all the fun
tions and all the pairs that are passed to map are

merged together, whi
h makes the analysis believe that the

wrong operator may be applied to the wrong list.

In more general terms, we
ould say that the limitations

of the k-
fa
ome primarily from the fa
t that it uses unre-

liable hints to distinguish the abstra
t evaluation environ-

ments; namely, the
all-strings. For example, in S
heme, the

body of a fun
tion has no means of
omputing the synta
ti

position where the
all to the fun
tion o

urred. Neither

does there exist tests to determine where a parti
ular pair

was
reated. On the other hand, there exist type tests and

primitives to inspe
t the
ontents of the obje
ts. In the best

of
ases,
all-strings and
on
rete
omputations are merely

orrelated, whereas types and values are dire
tly involved in

the
omputations. For these reasons, we
onsider
all-strings

to be unreliable hints for an analysis.

Many of the traditional analyses
an be fooled by a pro-

1

(define (map f l)

(if (null? l)

'()

(
ons (f (
ar l))

(map f (
dr l)))))

(map (lambda (n) (- n)) '(1 2 3 ...))

(map (lambda (p) (
ar p)) '((1) (2) ...))

Figure 1: DiÆ
ult
ode for the k-
fa

gramming style that is not
onvoluted. This
an be frustrat-

ing for a user that has a program that he knows is
orre
t

but that is beyond the limited power of the available an-

alyzer. He may be willing to give the analyzer plenty of

resour
es in order to obtain better results but the analyzer

will not take advantage of this to improve the analysis.

More a

urate analyses

To avoid the limitations of the traditional analyses, one
an

instead
hoose an analysis that uses \the Right Hints" in or-

der to distinguish various abstra
t environments. The right

hints
an be the type of the obje
ts that are passed to the

pro
edures, for example. This has a true
orresponden
e

with the
on
rete
omputations that o

ur in the program:

an expression in
aller position should return a fun
tion, the

argument to
ar should be a pair, et
. We will expand on

this later.

While we should expe
t better analysis results from su
h

an analysis, we should expe
t
atastrophi
 time and spa
e

onsumption in
ertain
ases. To see why, it suÆ
es to
on-

sider an expression lo
ated inside a fun
tion of high arity

or inside many nested �-expressions (say, n variables in the

lexi
al environment) and an analysis that distinguishes the

abstra
t evaluation environments based on the type of the

obje
ts bound to the variables (say, k di�erent types). This

analysis immediately exhibits exponential behavior (k

n

dif-

ferent abstra
t environments).

If a user has to use a
ompiler that features su
h a (poten-

tially)
ostly analysis instead of a traditional one, it would

be just as frustrating for the user as in the other
ase. He
an

only
hoose between disabling the analysis, if it is possible,

and waiting for days for a single
ompilation.

Stati
 model

It is
lear that it is diÆ
ult to �nd the \right" balan
e be-

tween speed and a

ura
y when the time
omes to
hoose an

analysis model. Even when the \best"
ompromise has sup-

posedly been
hosen, when a individual program is
ompiled,

it is tempting to believe that another
ompromise would

have been \better". Having said that, we
laim that this

ambiguity
omes from the fa
t that the model is stati
. Of

ourse, it depends on the program, but in a very simple man-

ner and it remains the same during the whole
ompilation

of the program.

Sin
e the analyzer is
ommitted to an abstra
t model, it

ne
essarily exposes itself to be either too simplisti
 or too

heavy for parti
ular programs. It results either in too poor

a

ura
y or in good results that have been obtained with

a vastly too great e�ort. It
an even be both for the same

program when some of its interesting properties are very

easy to dis
over while the others are more
hallenging.

Dynami
ally
hanging model

What we believe to be more appropriate is to have an ab-

stra
t model that
an dynami
ally
hange. That is, it should

adapt to the level of diÆ
ulty of analysis of the parti
ular

program to analyze.

Here is a sket
h of an analysis using a dynami
ally
hang-

ing model. At the start, the strategy is to
hoose an initial

model that is
oarse. Sin
e
oarse analyses do quite well in

the typi
al
ase, a signi�
ant part of the interesting proper-

ties may already be found by this �rst analysis. Then, the

model ought to be re�ned, in order to be better equipped

to atta
k the remaining, more diÆ
ult properties. It may

result in having some more properties to be found. Then

the model is re�ned again. And so on. . .

Of
ourse, this raises many questions: How do we identify

the so-
alled \interesting" properties? What should a re�ne-

ment of the model be? How
an we automati
ally update

an abstra
t model? And more importantly, what should a

\better equipped model" be? Before we start to bring an-

swers to these questions, we must des
ribe our goal in more

detail.

1.2 The obje
tive

We intend to develop an adaptable-power type analysis for a

purely fun
tional, appli
ative, and dynami
ally typed mini-

language. We assume that the entire program is available.

The analysis must have the potential to be very pre
ise.

However, the user should have the
ontrol over the amount

of e�ort that is put into the analysis of his program. This

way, during development, he
an request a fast and
oarse

analysis, and, at the �nal
ompilation, invest an appropriate

amount of time to obtain a high-quality analysis.

1

The analyzer has to be able to deal with a bound on the

amount of work it
an do. When given little time, it must

terminate qui
kly, delivering results that are potentially of

poor quality. When given a lot more time, it must either

terminate prematurely if
ompletely satisfying results are

obtained or, in the usual
ase,
ontinue to improve the qual-

ity of the results until the time is up. We do not want to rely

on programmer annotations. These may be erroneous and,

onsequently,
annot be trusted. To trust any annotation

would
ontradi
t the prin
iple of safety that
omes with a

high-level language.

2

Only a safe analysis should provide

results that are to be used for optimization purpose.

The abstra
t model used by the analyzer must be
ex-

ible. The
ru
ial part of our obje
tive is to �nd an \intel-

ligent" driver that is able to
oordinate the re-analysis and

model-update
y
le to try to obtain the best results within

the time bound that is given. The driver must re�ne the

model when it seems pro�table, but refrain to do so when it

seems useless. Note that, as intelligent as the driver might

be, we do not want to do true AI, not even an expert system.

We want a driver that pro
eeds in a more systemati
 way.

1

What we
onsider as a fast and
oarse analysis is something sim-

ilar to the 0-
fa. A higher-quality analysis would ne
essarily be more

ostly. For very long programs, the
ost may be prohibitive, even for

a fast analysis,
onsidering that 0-
fa has
ubi

omplexity in worst

ase.

2

Moreover, if the program
ontains an expression su
h as (
ar x),

it already means that the programmer believes that x
an only be

bound to pairs.

2

Exp := e

l

e 2 Exp

0

; l 2 Lab

Exp

0

:= #f

x x 2 Var

(e

1

e

2

) e

1

; e

2

2 Exp

(�x. e

1

) x 2 Var; e

1

2 Exp

(if e

1

e

2

e

3

) e

1

; e

2

; e

3

2 Exp

(
ons e

1

e

2

) e

1

; e

2

2 Exp

(
ar e

1

) e

1

2 Exp

(
dr e

1

) e

1

2 Exp

(pair? e

1

) e

1

2 Exp

Lab := Labels

Var := Variables

Figure 2: Language syntax

In order to a
hieve our goal, we use a
exible analy-

sis framework that is presented in Se
tion 2 along with the

mini-language. This framework
an support very powerful

analyses and, so,
an help to prove interesting but diÆ
ult

properties of the program. Se
tion 3 presents an intuitive

introdu
tion to the demand-driven analysis. It is the de-

mands that en
ompass the required \intelligent" driver for

the analyzer. The idea is quite simple: interesting proper-

ties
an be found with the help of hints present in the pro-

gram; these properties are likely to be true and if they are,

then may happen to be provable, mathemati
ally speaking;

it follows that they might be provable inside our framework

and maybe in reasonable time. Se
tion 4 sket
hes a basi

demand-driven analysis implementation. It is based on pat-

terns. Finally, Se
tion 5
on
ludes with a brief mention of

the resear
h that is the
losest to our own and with the next

logi
al steps in our resear
h.

2 Notation and de�nitions

2.1 A small language

The language we use in this paper is presented in Figure 2.

It is a small subset of S
heme with a few modi�
ations. It is

purely fun
tional, appli
ative, dynami
ally typed, and eval-

uation pro
eeds from left to right. The only types available

are the booleans, with #f as the sole element, the pairs and

the pro
edures having one parameter. The modi�
ations

are: all the pair-related primitives are synta
ti
 forms and,

when the pair? expression must evaluate to a true value, its

evaluates to the same pair as its argument. All these details

an be found in the semanti
s of the language in Figure 3.

3

Despite the fa
t that the language is small, it is
omplex

enough to allow the
onstru
tion of programs that are as

diÆ
ult to analyze as one
an desire. A simple �-
al
ulus

provides only one \type": the fun
tions. In the present

ase, the variety of types
ombined to the fa
t that
ertain

expressions require obje
ts of a spe
i�
 type
reates the ne
-

essary
ompli
ations. The
all expression and the
ar and

dr expressions require the �rst sub-expression to be of a

parti
ular type (a simple implementation would perform a

dynami
 type test to guarantee safety).

Throughout the paper, we assume that a program in this

language has no free variables, is �-
onverted

4

, and prop-

erly labeled

5

. To keep things simple, we
onsider that the

3

The \

_

[" sign denotes the disjoint union. That is, A = B

_

[C if

and only if A = B [C and B \ C = ;.

4

All variables in the program have a distin
t name.

5

Ea
h expression in the program has a distin
t label.

Val

"

:= Err

_

[Val

Err := Errors

Val := ValB

_

[ValC

_

[ValP

ValB := f#fg Booleans

ValC := Val! Val

"

Closures

ValP := Val�Val Pairs

Env := Var! Val

E : Exp! Env! Val

"

Evaluation fun
tion

E [[#f℄℄ � = #f

E [[x℄℄ � = � x

E [[(e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �)

(�v

1

: C (E [[e

2

℄℄ �) (A v

1

))

E [[(�x. e

1

)℄℄ � = �v: E [[e

1

℄℄ �[x 7! v℄

E [[(if e

1

e

2

e

3

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v 6= #f ? E [[e

2

℄℄ � : E [[e

3

℄℄ �)

E [[(
ons e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �)

(�v

1

: C (E [[e

2

℄℄ �) (�v

2

: (v

1

; v

2

)))

E [[(
ar e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v = (v

1

; v

2

) ? v

1

: error)

E [[(
dr e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v = (v

1

; v

2

) ? v

2

: error)

E [[(pair? e

1

)℄℄ � = C (E [[e

1

℄℄ �)

(�v: v 2 ValP ? v : #f)

A : Val! Val! Val

"

Apply fun
tion

A f v = f 2 ValC ? f v : error

C : Val

"

! (Val! Val

"

)! Val

"

Che
k fun
tion

C v k = v 2 Err ? v : k v

Figure 3: Language semanti
s

purpose of our type analysis is to
olle
t information that

allows the
ompiler to remove as many dynami
 type tests

as possible.

2.2 A generi
 analysis framework

In the introdu
tion, we insisted on the fa
t that an ana-

lyzer should have the ability to modify the abstra
t model

that it uses to analyze the program. This requires the in-

trodu
tion of a generi
 analysis framework. The framework

by itself is not a
omplete analysis pro
edure; it requires

many parameters to be
ome an instan
iation of an analysis.

The parameters may be assimilated to the model itself. The

framework imposes very few
onstraints on the model.

Instantiation parameters

Figure 4 presents the parameters and a brief des
ription

of ea
h. First, the framework expe
ts sets of abstra
t val-

ues. These are given by three �nite non-empty disjoint sets.

Se
ond, another �nite set provides the
ontours. Note that

no other
onstraint exists on what these sets might be. Fi-

nally, the framework expe
ts abstra
t
omputation fun
tions.

These mimi
 the
on
rete
omputations done by the pro-

gram. There is one for the
reation of
losures, one for the

reation of pairs and one to sele
t
ontours asso
iated with

the abstra
t evaluation environments.

Fun
tion

 re
eives the label l of an expression and the

urrent
ontour k and returns an abstra
t
losure. Fun
tion

p
 re
eives the label l where a pair
ontaining v

1

and v

2

is

reated in
ontour k, and returns an abstra
t pair. Fun
tion

all re
eives a label l where a fun
tion f is applied to value

3

ValB 6= ; Abstra
t booleans

ValC 6= ; Abstra
t
losures

ValP 6= ; Abstra
t pairs

Cont 6= ; Contours

k

0

2 Cont Main
ontour

 : Lab� Cont ! ValC Abstra
t
losure
reation

p
 : Lab�Val �Val � Cont ! ValP

Abstra
t pair
reation

all : Lab�ValC � Val � Cont ! Cont

Contour sele
tion

where Val := ValB

_

[ValC

_

[ValP

Figure 4: Instantiation parameters of the analysis frame-

work

v in
ontour k; it returns the
ontour in whi
h the body

of
 has to be evaluated. These fun
tions must be de�ned

on all their domain and, of
ourse, respe
t their type. On

top of that, one of the
ontours must be identi�ed as the

main
ontour, that is, it is the
ontour in whi
h the top-

level expression e

l

0

of the program is evaluated.

The
ase of the abstra
t booleans deserves a short ex-

planation. It is obvious that the framework does not allow

as mu
h parameterization for the booleans as for the other

types. There
an be more than one abstra
t boolean, of

ourse, but no boolean
reation fun
tion is expe
ted by the

framework. There
ould be, sin
e the #f and pair? expres-

sions
an evaluate to a boolean. However, sin
e there is

only one
on
rete boolean, we did not feel the need to pro-

vide the tools to manipulate distin
t abstra
t booleans. In

fa
t, we do not know if it would be useful at all. However,

support for distin
t boolean manipulation
ould be added

in the framework with little e�ort.

Note that, although the abstra
t evaluation fun
tions

must be de�ned on all their domain, not all input
ombina-

tions make sense. For example, the result of the

 fun
tion

does not make sense when the label that it is passed is not

the label of a �-expression. However, the analysis will never

use this result either, so

an return any element of ValC

without
onsequen
es. This approa
h is simpler than hav-

ing the set of labels partitioned into �-expression labels,
all

labels, et
.

Analysis variables

On
e the parameters are passed to the analysis framework,

a
omplete analyzer is instan
iated. Here we present the

matri
es of abstra
t variables that are used by this analyzer.

Figure 5 brie
y enumerates them.

The � matrix
ontains the abstra
t values to whi
h ea
h

expression evaluates in ea
h
ontour. A parti
ular entry �

l;k

may be empty. It o

urs if the expression e

l

does not get

evaluated in the abstra
t environment represented by the

ontour k. The � matrix
ontains the values bound to ea
h

variable in ea
h
ontour. When the body of the expression

(�

l

x. e

l

0

) is evaluated in a
ontour k, a referen
e to the

variable x refers to the entry �

x;k

. An entry �

x;k

may be

empty, too, for similar reasons as with �

l;k

. An entry

;k

of the matrix

ontains the values that are returned by the

losure
 when its body has been evaluated in the
ontour

k. On
e again, it may be empty. An entry Æ

l;k

is basi
ally

a
ag. It indi
ates whether or not e

l

gets evaluated in the

ontour k. Its
ontents is not important; only the fa
t that

it is empty or not. Non-emptyness of Æ

l;k

implies evaluation.

Value of e

l

in k:

�

l;k

� Val l 2 Lab, k 2 Cont

Contents of x in k:

�

x;k

� Val x 2 Var, k 2 Cont

Return value of
 with its body in k:

;k

� Val
 2 ValC, k 2 Cont

Flag indi
ating evaluation of e

l

in k:

Æ

l;k

� Val l 2 Lab, k 2 Cont

Creation
ir
umstan
es of
:

�

�

�1

(
)
 2 ValC

Creation
ir
umstan
es of p:

�

p

� p

�1

(p) p 2 ValP

Cir
umstan
es leading to k:

�

k

�
all

�1

(k) k 2 Cont

Figure 5: Matri
es
ontaining the results of an analysis

The meaning of the remaining three matri
es is less ob-

vious. They provide a kind of log of the origins of the

abstra
t values. As an example, let us
onsider an ab-

stra
t pair p 2 ValP . p
ould be
reated by any tuple in

p

�1

(p) = f(l; v

1

; v

2

; k) j p
(l; v

1

; v

2

; k) = pg. However, the

log entry �

p

onserves only the tuples that the analyzer has

e�e
tively en
ountered during the (maybe numerous)
re-

ations of p. These logs allow the analyzer to avoid being too

onservative.

The analysis is sound, in the sense that the analyzer

a
ts
onservatively with the abstra
t values. That is, every

on
rete evaluation environment in whi
h an expression e

l

truly evaluates is modeled by abstra
t values in a
ertain

abstra
t
ontour. Every
on
rete value that exists in the

on
rete evaluation is represented by an abstra
t value in

the analysis results. The
on
rete value that is returned by

a
ertain
losure at a
ertain step in the
on
rete evaluation

has an abstra
t
ounter-part that is returned by an abstra
t

losure in a
ertain abstra
t step (the
ontour). And so on.

The soundness property
an be formally proven, but we do

not do so in this paper.

Evaluation and safety
onstraints

Given a program and the instantiation parameters, our fra-

mework performs the analysis of the program using the eval-

uation
onstraints presented in Figure 6. Basi
ally, a set

of
onstraints on the analysis variables is generated for the

program. Any solution to this set of
onstraints provides a

valid analysis result. Naturally, we are always interested in

the least solution to the system of
onstraints. A solution al-

ways exists be
ause, despite the variety of the generated
on-

straints, they
an all be de
omposed into basi

onstraints

of the form: v

1

2 �

i

1;1

;:::;i

1;n

1

^ : : : ^ v

m

2 �

i

m;1

;:::;i

m;n

m

)

v 2 �

j

1

;:::j

k

. So the saturation of all analysis variables gives

a trivial valid solution.

The evaluation
onstraints are quite standard and do not

deserve mu
h more explanation. Ex
ept maybe the mainte-

nan
e of the log matri
es. For example, ea
h time a pair p

is
reated at a
ons expression, the tuple (l; v

1

; v

2

; k) repre-

senting the label of the expression, both values to pa
k in

the pair, and the
urrent
ontour is logged in the variable �

p

.

The logged tuples are later used by various
omputations to

dis
over the origins of the abstra
t values. For example, the

ar expression uses the log �

p

(and not p

�1

(p)) to enu-

merate to values that may be found in the
ar �eld of the

4

Evaluation
onstraints for program e

l

0

are:

[

k2Cont

E [[e

l

0

℄℄ k [fÆ

l

0

;k

0

� ValBg , where

E [[#f

l

℄℄ k =

fÆ

l;k

6= ;) �

l;k

� ValBg

E [[x

l

℄℄ k =

fÆ

l;k

6= ;) �

l;k

� ref(x; l; k)g

E [[(

l

e

l

1

e

l

2

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [E [[e

l

2

℄℄ k [

(

�

x;k

0

3 v;

�

l;k

�

;k

0

;

�

k

0

3 (l;
; v; k)

 2 �

l

1

;k

\ ValC; v 2 �

l

2

;k

;

k

0

=
all(l;
; v; k);

(l

0

; k

00

) 2 �

; e

l

0

= (�

l

0

x. e

l

00

)

)

E [[(�

l

x. e

l

1

)℄℄ k =

�

Æ

l;k

6= ;) �

l;k

3

(l; k) ^ �

(l;k)

3 (l; k)

	

[

fÆ

l

1

;k

� �

x;k

g [E [[e

l

1

℄℄ k [

f

;k

� �

l

1

;k

j
 2 ValC; (l; k

0

) 2 �

g

E [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

fÆ

l

2

;k

� �

l

1

;k

\ (ValC [ValP)g [

fÆ

l

3

;k

� �

l

1

;k

\ ValBg [E [[e

l

2

℄℄ k [

E [[e

l

3

℄℄ k [f�

l;k

� �

l

2

;k

[�

l

3

;k

g

E [[(
ons

l

e

l

1

e

l

2

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [E [[e

l

2

℄℄ k [

�

�

l;k

3 p;

�

p

3 (l; v

1

; v

2

; k)

v

1

2 �

l

1

;k

; v

2

2 �

l

2

;k

;

p = p
(l; v

1

; v

2

; k)

�

E [[(
ar

l

e

l

1

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

�

�

l;k

3 v

1

p 2 �

l

1

;k

\ ValP ; (l; v

1

; v

2

; k

0

) 2 �

p

	

E [[(
dr

l

e

l

1

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

�

�

l;k

3 v

2

p 2 �

l

1

;k

\ ValP ; (l; v

1

; v

2

; k

0

) 2 �

p

	

E [[(pair?

l

e

l

1

)℄℄ k =

fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [f�

l;k

� �

l

1

;k

\ ValPg [

f�

l

1

;k

\ (ValB [ValC) 6= ;) �

l;k

� ValBg

ref(x; l; k) =

8

>

>

>

>

<

>

>

>

>

:

ref(x; l

0

; k); if e

l

0

6= (�

l

0

y. e

l

)

�

x;k

; if e

l

0

= (�

l

0

x. e

l

)

[

k

0

ref(x; l

0

; k

0

); if e

l

0

= (�

l

0

y. e

l

),

(l

00

;
; v; k

00

) 2 �

k

;

(l

0

; k

0

) 2 �

where l

0

= parent(l)

Figure 6: Evaluation
onstraints

Safety
onstraints for program e

l

0

are:

[

k2Cont

S [[e

l

0

℄℄ k, where

S [[#f

l

℄℄ k = ;

S [[x

l

℄℄ k = ;

S [[(

l

e

l

1

e

l

2

)℄℄ k = f�

l

1

;k

� ValCg [S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k

S [[(�

l

x. e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

S [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k = S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k [S [[e

l

3

℄℄ k

S [[(
ons

l

e

l

1

e

l

2

)℄℄ k = S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k

S [[(
ar

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [S [[e

l

1

℄℄ k

S [[(
dr

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [S [[e

l

1

℄℄ k

S [[(pair?

l

e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

Figure 7: Safety
onstraints

pair p. Finally, note that the extra
onstraint Æ

l

0

;k

0

� ValB

is added to ensure that the evaluation of the program gets

started.

The reader may have noted that the evaluation
on-

straints do not take errors into a

ount and manipulate only

the values that are legal. This is be
ause we separate the

evaluation
onstraints from the safety
onstraints. Figure 7

presents the safety
onstraints that are generated for a pro-

gram e

l

0

. These
onstraints are straightforward. The rea-

son we keep these separated is that on
e we add the safety

onstraints to the set of evaluation
onstraints, there may

be no solution to the system. If there is a solution to the

joined sets of
onstraints, that means that the model (the

parameters) provides a proof that the program is type-safe.

The usual way to analyze a program is to solve the

system of evaluation
onstraints, whi
h leaves the analy-

sis results in the analysis variables, then
onfront the re-

sults to the safety
onstraints, and see whi
h
onstraints

are violated. The latter indi
ate where dynami
 type tests

are required. For example, the violation of the
onstraint

�

l

0

;k

6� ValC for a
ertain sub-expression e

l

0

(whose parent

is a
all expression e

l

) and
ontour k, indi
ates that there

must be a dynami
 test at e

l

to ensure that the result of e

l

0

is indeed a
losure

6

.

Power and generi
ity of the framework

The parameterization of the framework allows it to be a very

powerful analysis tool. Here are some of its
hara
teristi
s.

We do not give proofs here, though.

� The parameters representing a model, as little
on-

strained as they might be, are still �nitely representa-

ble. One might ask whether it is possible to automat-

i
ally de
ide whether there exists a model that allows

the analyzer to demonstrate that a program is type-

safe. Unfortunately, this problem is unde
idable; it is

possible to redu
e the termination problem to this one.

� For every program that terminates normally, there ex-

ists a model that demonstrates that it is type-safe. A

6

This explanation assumes that there is only one
all expression e

l

generated by the
ompiler in the exe
utable
ode. This assumption

may be too simplisti
. A good optimizing
ompiler may generate

more than one
all expression instan
e of e

l

, ea
h
orresponding to

a
ontour (or to many). In this
ase, the instan
es asso
iated to

ontours where no violation o

urs do not require a dynami
 type

test. However, the topi
 of produ
ing good exe
utable
ode from

analysis results is beyond the s
ope of this paper.

5

trivial model that does so
onsists in mimi
king the

on
rete evaluation of the program. It introdu
es one

abstra
t value for ea
h
on
rete value. However, it is

generally impossible to know that the program termi-

nates normally, in the �rst pla
e.

� For every program that terminates with an error, all

models lead to a violation
onstraint. This is due to

the soundness of the analysis. Unfortunately, an un-

su

essful model attempt generally does not bring any

information as to whether the program must ne
essar-

ily terminate with an error.

� Among the programs that loop, some have a model

proving they are type-safe, some do not. Note that

they are type-safe. We believe that an important limi-

tation to the power of the framework
on
erns program

onstru
ts where the safety depends on some mathe-

mati
al invariant. Generally, this
annot be des
ribed

by our kind of models.

The liberty in the
hoi
e of the framework parameters

allows this one to simulate many traditional analyses. For

example,
all-string
ontours as in [15℄
an be easily imitated

by a proper de�nition of
all. Basi
 set-based analysis [9℄,

being equivalent to the 0-
fa
an be imitated, too.

The
ontours presented in [13℄ are based on polymorphi

splitting. Values
reated in let-bindings
an be spe
ialized

a

ording to whi
h variable referen
e a

esses the values.

Simply stated, an abstra
t value bound to a variable in a

let-binding mutates di�erently depending on where the ref-

eren
e to the variable is lo
ated. Our framework does not

allow su
h a thing. However, a trivial sour
e-to-sour
e trans-

formation of the program and appropriate model sele
tion

make it possible to obtain a similar analysis.

3 Demand-driven analysis

Here is an informal introdu
tion to demand-driven analysis.

First, we illustrate the approa
h with an example. Then,

an overview of what a
omplete demand-driven approa
h

should in
lude is presented. Next, the diÆ
ulty of dealing

with the
all and
onditional expressions is exposed. Finally,

many
hallenges to make a demand-driven approa
h work

are mentioned.

3.1 An example

To illustrate what demands might be, where they
ome from,

and how they
an be pro
essed, we use a small example.

Suppose that this �-expression appears somewhere in a pro-

gram:

(�

1

x. (if

2

x

3

(
ar

4

(pair?

5

x

6

)) #f

7

))

Suppose also that a preliminary analysis has been done and

that, a

ording to its results, the �-expression eventually

gets evaluated, resulting in a
losure, and that the
losure

is
alled many times with di�erent pairs and with #f.

Note that a na��ve
ompilation of �-expression e

1

would

immediately produ
e good
ode ex
ept for the (only) dy-

nami
 test
oming from the
ar expression. It would be

better if we
ould remove that test. Let us see how this

an be done. We need to prove that e

5

returns nothing else

than pairs. Now, as far as the preliminary analysis of the

program
an tell, e

5

an evaluate to pairs and #f (remember

that, when e evaluates to a pair or to a non-pair, (pair?

e) evaluates to that pair or to #f, respe
tively). So, for the

moment, the dynami
 test must stay there. In order to try

to
hange this, we will emit and pro
ess demands. These,

in turn, may lead to an update of the model su
h that it

will
reate an instan
e of an analysis that
an provide the

desired proof.

Obviously, we need a �rst demand. Why not go for

the simplest solution? That is, make the following request:

\show that e

5

always evaluates to pairs". Or more pre
isely:

\show that e

5

annot evaluate to anything else than pairs".

To show that it does not get evaluated at all would not be

bad, too. Let us
all this demand D

1

.

Now, we have to pro
ess D

1

in some way. Note that D

1

on
erns e

5

, whi
h is a not a simple expression. The value

of e

5

strongly depends on the value of its sub-expression

e

6

. If we
ould rewrite D

1

into another demand related to

the simpler e

6

, we would have made some progress. This

new demand D

2

ould be: \show that e

6

annot evaluate

to anything else than pairs". Clearly, D

2

, if it is positively

answered, would have the same desirable
onsequen
es as

D

1

.

What
an we do to respond to D

2

? Note that the prelim-

inary analysis says that x may be bound to #f (and suppose

that it is truly the
ase). A reasonable approa
h is to pro
ess

D

2

in two steps: �rst, we should separate the
ase where x

is bound to a pair from the
ase where it is not; then, if x

still evaluates to #f in the se
ond
ase, we should request a

demonstration that that evaluation
annot happen. What

it means is that we emit a new demand D

3

and then, if

ne
essary, another new demand D

4

.

Let us �rst take
are of D

3

. In more pre
ise terms, D

3

is: \split the
urrent
ontour in order to separate the
ases

where x is bound to a pair from the
ases where x is bound to

#f". That is perfe
tly possible, as we explain shortly. So let

us
onsider that the previous
ontour k has been e�e
tively

split into k

0

(pair
ase) and k

00

(#f
ase). There is
ertainly

no more problems with the evaluation in
ontour k

0

sin
e x

must be bound to a pair, so e

5

must return a pair, and so e

4

annot go wrong. But what about evaluation in
ontour k

00

?

Sin
e x must be bound to #f in k

00

, the test in e

2

is always

false, the then-bran
h is never exe
uted and,
onsequently

the
ar a

ess is never made. Con
lusion: in every
ase,

there is no need to perform a dynami
 type test in e

4

. The

initial demand has been positively answered. That is, we

have emitted demands, pro
essed them, and they have lead

to an update of the model that was suÆ
ient to demonstrate

that the dynami
 test is unne
essary.

Before we
on
lude this example, we need to explain why

we said that it was easy to separate the
ases where x is

bound to a pair from the
ases where x is bound to some-

thing else. This is be
ause of our abstra
t model. The
all

parameter sele
ts the
ontour in whi
h the body of a
lo-

sure evaluates. Let us refer to the
losure generated by e

1

as
 and to the
ontour in whi
h the body evaluates as k

in the old model. To keep things simple, we suppose that

they are unique. That means that
all(l;
; v; k

�

) = k for

any label l, argument v, and
ontour k

�

. In other words,

when
 is
alled, its body is always evaluated in the
ontour

k. Changing the model to make the required split simply

means de�ning a new modeling fun
tion
all

0

su
h that:

8l 2 Lab; v 2 Val; k

�

2 Cont;

all

0

(l;
; v; k

�

) =

�

k

0

; if v 2 ValP

k

00

; otherwise

6

3.2 Overview

As we mention in the introdu
tion, our demand-driven anal-

ysis should be able to produ
e some results in a short time, if

ne
essary, and be able to improve them
ontinuously if it is

allowed to
ontinue longer. In order to behave this way, the

demand-driven analyzer pro
eeds in two phases: the prelim-

inary analysis, the demand-driven phase; as sket
hed in the

introdu
tion. The preliminary analysis is similar to a tra-

ditional analysis; its purpose is to
olle
t initial information

using a stati
 model. Typi
ally, this information is good

enough to allow the removal of many dynami
 type test but

not all of them. During the demand-driven phase, demands

are generated and pro
essed in order to perform the model-

update/re-analysis phase. This phase
ontinues until all the

demands have been positively answered or, usually, until the

bound on the analysis time is rea
hed.

The
hoi
e of the model in the preliminary analysis is

what we dis
uss �rst. Next, we present a list of demands

that seem vital to guide the demand-driven analysis. Fi-

nally, we present typi
al pro
essing of many kinds of de-

mands.

Initial model and initial demands

The
hoi
e of the initial model must be the result of a
om-

promise between the time spent during the preliminary anal-

ysis and the quality of the preliminary analysis results. A

model that is too
omplex will make the preliminary analysis

ostly, making even the fastest
ompilation with analysis too

long. A model that is too
oarse may render the preliminary

analysis \blind", its results sometimes being overestimated

to the point of being useless, thus leaving the whole task of

real analysis to the demand-driven part, whi
h is ne
essarily

less eÆ
ient.

We believe that having an initial model with one ab-

stra
t pair, one abstra
t
losure per �-expression, and one

ontour (or one
ontour per
losure body) would be of a

reasonable
ost and provide preliminary analysis results of

relatively good quality. Su
h a model instantiates a mono-

variant analysis that is
omparable to the 0-
fa. Sin
e, in

the typi
al
ase, analyses like 0-
fa perform relatively well,

mu
h fewer demands are generated in the demand-driven

part.

Choosing a
oarser model having only a single abstra
t

losure to represent all
on
rete
losures would lead to ex-

essively poor results. Ex
ept in the most trivial of
ases,

the abstra
t
losure would be found to return everything,

leaving all the analysis work to the demand-driven part.

The only advantage of this
hoi
e would be a preliminary

analysis with linear
omplexity.

Choosing a �ner model would in
rease signi�
antly the

preliminary analysis time without any guarantee as to whe-

ther the a priori re�nements would bring any help for the

dynami
 tests that would still remain after a 0-
fa-style anal-

ysis.

On
e the preliminary analysis is done, formulating the

initial demands is trivial. Expressed in terms of analysis

variables, it takes the form of a list of \show �

l;k

� ValC"

and \show �

l

0

;k

0

� ValP" demands.

Typi
al demands

The most natural demand type is like the initial demands.

We shall
all these bound-demands. Sin
e they
an so easily

be reformulated in terms of other, more fundamental de-

mands, bound-demands only involve an � matrix entry and

a simple bound set.

One of these fundamental demand types is the split-

demand. We mentioned that kind of demand in the example

in Se
tion 3.1. It says: \split something a

ording to some-

thing". The thing to split may be an abstra
tion in the

model or an analysis variable. As an example of the �rst

ase, the demand
ould be \split P a

ording to the label

where it is
reated", where P is the unique abstra
t pair.

That would trigger a straightforward update of the fun
tion

p
. As an example for the se
ond
ase, the demand
ould be

\split

;k

a

ording to the membership to the set of pairs".

That means that the return values of
losure
 when its body

is evaluated in
ontour k have to be split into pairs and non-

pairs. The
onsequen
es in
ase of a su

essful response are

that the abstra
t
losure
, the
ontour k, and anything else

if ne
essary will have to be split in su
h a way that for all

0

spe
ializing
 and for all k

0

spe
ializing k,

0

;k

0

will
ontain

either only pairs or no pair at all.

Split-demands dire
tly on the model or on �, �, or

entries are reasonable demands. However, we believe that

split-demands on Æ entries should not exist sin
e they make

no sense. The only interesting
on
ern with Æ entries is

whether they are empty or not. As for the \log" variables, it

may make sense to want to split them, but maybe not to try.

This is be
ause they plainly des
ribe how the abstra
tion

fun
tions have been used during the analysis. They have a

very indire
t (and passive) e�e
t on the abstra
t evaluation

of the program. In order to have an e�e
t on these entries,

a demand would
ertainly have to be reformulated in terms

of demands
on
erning entities on whi
h it is
lear that we

an have an e�e
t.

A third type of demand
onsists in requesting a demon-

stration that some expression
annot get evaluated in some

ontour. We shall
all these never-demands and obviously

they
an be formulated formally by \show Æ

l;k

= ;". Su
h

demands typi
ally arise when a
ertain evaluation ne
essar-

ily leads to an error. To make a variation on the example of

Se
tion 3.1, if the sub-expression e

5

of the expression (
ar

4

e

5

) in the non-pair
ontour k

00

would have still returned

some values, it would have been ne
essary to emit a never-

demand on Æ

5;k

00

. Obviously, a split is not ne
essary sin
e

there are no good
ases (pairs) to separate from the bad

ases (non-pairs).

We tou
h a
ru
ial issue, here: good
ases and bad
ases.

When there are only good
ases, everything is �ne, nothing

has to be done. When there are only bad
ases, we have

to emit a never-demand but at least everything is
lear.

When there are good and bad
ases together, normally split-

demands have to emitted before emitting never-demands.

Otherwise, if we are asking a demonstration that su
h an

evaluation
annot o

ur, we may ask the impossible sin
e

the good
ases may re
e
t a
tual
on
rete evaluations in

the program. This prin
iple must be kept in mind when we

propose pro
essing te
hniques for the demands.

A fourth type of demand that seems vital is the no-
all-

demand. A no-
all-demand basi
ally means: \show that

losure

annot be
alled on argument v in
all site l when

the
ontour is k". It typi
ally may be emitted due to the

pro
essing of a never-demand. To
ontinue with our varia-

tion on the example, a never-demand on Æ

5;k

00

may eventu-

ally require that we show that the
losure
 is never
alled

with a non-pair argument. This translates into one or more

no-
all-demands.

Although an implementation of demand-driven analysis

may formulate other types of demands, the ones that we just

7

presented here form a
ore that must be present in one way

or another in order to be able to perform demand-driven

type analysis on a language su
h as ours.

Pro
essing the demands

Demands originally express the need to demonstrate a \de-

sirable" property. A demonstration takes the form of a

model instantiating a parti
ular analysis that brings the

proof that the property is indeed true. If we want to go

from the original demands to the appropriate model, these

demands have to be pro
essed in some way. Note that we

have already impli
itly des
ribed many
ases of demand pro-

essing.

In general, pro
essing a demand leads to immediate su
-

ess, to immediate failure, or to emission of new, modi�ed

demands. Immediate su

ess o

urs when, for example, the

demand is \split �

l;k

a

ording to its type" and the expres-

sion e

l

is #f

l

. In this
ase, the model trivially
onforms to

the demand: k itself is the only
ontour that is ne
essary

in order to have that no two obje
ts of di�erent type result

from the evaluation of e

l

in the same
ontour k

0

, for any k

0

spe
ializing k.

Immediate failure, in our parti
ular
ase, is most un
om-

mon. One spe
i�
 demand, however,
an lead to immediate

failure: \show Æ

l

0

;k

0

= ;". That is, trying to show that the

whole program does not get evaluated.

Most of the time, as was illustrated in the example of

Se
tion 3.1, pro
essing a demand leads to the
reation of

new demands.

Even though parti
ular demand-driven analyses may dif-

fer in the way their set of demands are pro
essed, here we

present pro
essing s
hemas that, almost
ertainly, have to

be similar in all
ases.

� Original bound-demands, \show �

l;k

� hseti", express

properties that, if they are not trivially satis�ed nor

trivially
ontradi
ted, may �rst be re-expressed as a

split-demand and, upon su

ess of this �rst sub-de-

mand, a never-demand ought to be emitted for ea
h

k

i

spe
ializing k su
h that �

l;k

i

6� hseti. Note that the

split is intended to \separate the good
ases from the

bad ones". If the bound-demand property is trivially

respe
ted, immediate su

ess o

urs. If it is trivially

ontradi
ted, a single new demand is emitted: \show

Æ

l;k

= ;".

� Split-demands on � entries result in an update of the

model and in immediate su

ess. Sin
e only the

and
all fun
tions determine whi
h
ontour is sele
ted

depending, in parti
ular, on the arguments to the
lo-

sures, a model update is the only way to respond to

su
h demands. Of
ourse, any split-demand dire
tly

on
erning the model
auses an update of the model

and an immediate su

ess.

� A split-demand on a

;k

analysis variable
an trivially

be reformulated in terms of a new split-demand on the

�

l;k

variable
orresponding the result of the body e

l

of

the
losure
.

� A split-demand on an �

l;k

variable where e

l

is #f

l

, x

l

,

(
ons

l

e

l

0

e

l

00

), (
ar

l

e

l

0

), (
dr

l

e

l

0

), or (pair?

l

e

l

0

)

an normally be pro
essed in a straightforward fash-

ion. It be
omes, in the �rst
ase, an immediate su

ess,

sin
e it is
lear that the sole #f value always falls into a

single \split
ategory" a

ording to the split
riterion.

In the se
ond
ase, it
an trivially be reformulated as a

split-demand on �

x;k

. In the third
ase, depending on

the split
riterion, the split may already be done (with

a split-on-type
riterion, for example) or it may eas-

ily be reformulated in terms of split-demands on the

sub-expressions. The remaining
ases are similar plus,

maybe, a dire
t split-demand on the model to spe
ial-

ize abstra
t pairs. To make a simplisti
 observation,

we would say that split-demands on � entries have a

tenden
y to propagate from an expression towards its

sub-expressions.

� A never-demand on a Æ

l;k

variable is pro
essed a
-

ounting for the parent expression e

l

0

of e

l

. Most of the

time, the demand is reformulated into a never-demand

on Æ

l

0

;k

. However, if e

l

is the
onsequent bran
h or

the alternate bran
h of an if expression, the demand

must be reformulated into a bound-demand onto the

test sub-expression. The bound is the set of true val-

ues (ValC [ValP) or false values (ValB), respe
tively.

Finally, if e

l

0

is a �-expression, the evaluation is the

result of a
all, and it is generally not a simple matter

to pro
ess su
h a demand. On
e again, to be simplis-

ti
, we
ould say that never-demands have a tenden
y

to propagate from an expression towards its parent ex-

pression.

3.3 DiÆ
ult
ases

In the pre
eding paragraphs, we presented some more or

less pre
ise des
riptions of what the pro
essing of various

demands should be. However, we avoided
ertain demands

deliberately be
ause they are
learly diÆ
ult to pro
ess. The

existen
e of diÆ
ult
ases has to be expe
ted sin
e stati
ally

proving interesting properties about a program is un
om-

putable in general, and this un
omputability is not going to

disappear simply be
ause we are trying to make the analyzer

smarter by using a demand-driven approa
h. The diÆ
ul-

ties
ome mainly from the
onditional expression and, to a

greater extent, from the
all expression. We illustrate the

potential problems with two examples.

Let us suppose that we have the following expression:

(if

l

e

l

1

e

l

2

e

l

3

). We must pro
ess a split-demand on �

l;k

a

ording to the type of the result. Let us suppose, also,

that the analysis results under the
urrent model indi
ate

that e

l

2

may evaluate to obje
ts of all types, that e

l

3

may

evaluate only to pairs, and that e

l

1

may evaluate to both

true and false values. How
an we pro
ess this demand?

Note that e

l

evaluates to a set of values that is the union

of the results of both its bran
hes. Sin
e e

l

3

already has

a pair-only result, we
ould emit a bound-demand on e

l

2

to request a demonstration that in fa
t it evaluates only

to pairs. Alternatively, we
ould emit a bound-demand on

e

l

1

to request a demonstration that it evaluates only to #f.

Whi
h strategy is the best?

Obviously, the example shows that the diÆ
ulty
omes

from the fa
t that there are more than one possible dire
-

tion to
ontinue pro
essing. Moreover, note that neither of

the two proposed demands is adequate be
ause they may

involve properties that
atly
ontradi
t what the
on
rete

omputations are. In su
h
ases, there would be no hope of

ever responding su

essfully to the demands.

The pro
essing of demands
on
erning
alls is even more

diÆ
ult. Let us
onsider the following expression: (

l

e

l

1

e

l

2

).

Suppose that the demand is the same as in the if example.

Also, suppose that the
urrent analysis results tell us that:

e

l

1

evaluates to two
losures

1

and

2

, e

l

2

evaluates to ob-

je
ts of more than one type, the
losure

1

returns obje
ts

8

of only one type, and

2

returns obje
ts of di�erent types.

How should we pro
eed?

The \poly-type" results of e

l

may be explained by the

fa
t that:

2

returns obje
ts of the same type as those that

it re
eives, so we should split the value of e

l

2

; the
on
rete

losure
orresponding to

2

returns \mono-type" results, but

its poor modeling suggests the
ontrary, so we should split

its return value; or no
on
rete
losure
orresponding to

2

is ever present at e

l

1

during the
on
rete evaluation, so we

should split the value of e

l

1

, and demand that the
ase where

e

l

1

evaluates to

2

be proved impossible.

Clearly, pro
essing in su
h a
ase is far from obvious sin
e

the appropriate demands may
on
ern e

l

1

, e

l

2

, the
losures

that are invoked, or a
ombination of the three.

3.4 Challenges

On top of the natural diÆ
ulty that
omes with the pro-

essing of the demands, there are several others that make

things more
omplex.

As we mentioned above, the pro
essing of a demand and

its sub-demands may last forever. This may happen in par-

ti
ular be
ause the property that must be demonstrated

is not based on legitimate reasons (su
h as in the
ondi-

tional expression example) or simply be
ause it is beyond

the power of the framework to support the ne
essary proof.

Clearly, there must be a me
hanism that ensures that the

analyzer does not get stu
k in su
h pro
essing.

Sin
e the attempt to prove a property may last forever

and there are generally more than one property to prove, the

original demands
annot be pro
essed one after the other.

The amount of time available to the analysis may be ex-

hausted by one of the �rst demands, possibly leaving unan-

swered many \easy" demands that would have been su
-

essfully pro
essed in little time. So the pro
essing of the

demands must be made using some kind of
on
urren
y.

Note that using a bound on the time available to the an-

alyzer is
learly a ne
essity but it is also one of its feature.

Although unusual in the �eld of program analysis, this
on-

ept is fairly natural when we think about it. In a way, it

orresponds more to the human notion of work than to the

algorithmi

omplexity notion of work. While the ideal pa-

rameter to an analyzer would be the quality of the results, a

bound on the available time is probably the
losest realisti

equivalent.

The pro
essing of an original demand naturally leads to a

tree of sub-demands. Of
ourse, these sub-demands
annot

all be pro
essed at the same time. Some have to be put into

a waiting queue until it is their turn. However, during the

time that a demand is in the queue, the model may have

been re�ned due to the pro
essing of other demands. In

su
h a
ase, an \old" demand may refer to abstra
tions that

have been broken down into more spe
ialized abstra
tions.

Consequently, there must be a me
hanism to keep demands

up to date.

Finally, an important question relates to the
on
ur-

rent demand pro
essing: should the various pro
essing trees

share the abstra
t model? Remark that they do not have

to. Ea
h original demand
an be responded independently.

This is be
ause that what matters is whi
h of the original

demands are su

essfully answered. Two distin
t dynami

tests may both be omitted from a program, even if ea
h has

been showed redundant using a distin
t model.

The advantage of sharing the model is that a su

essful

demonstration of property A may have un
overed many in-

variants of the program that would make the demonstration

of property B easier. The in
onvenien
e is that if all up-

dates o

ur in the same model then almost every demand

that goes in the waiting list has to be spe
ialized to follow

the numerous �ner abstra
tions introdu
ed by the updates,

resulting in a proliferation of demands.

A
ompromise that may be interesting
onsists in shar-

ing ea
h model with the one used to su

essfully answer a

demand. What is interesting with su
h a model is that it

an be redu
ed prior to the sharing with the other mod-

els. The idea is the following: during the pro
essing of a

tree of demands, all kinds of updates are performed on the

model; eventually, one last update
auses the model to pro-

vide a proof for the original demand; however, only some of

the re�nements to the model are really ne
essary to provide

the proof; undoing the unne
essary re�nements produ
es a

model that is as small as possible.

4 A basi
 analysis

We present a prototype of a demand-driven analysis that is

based on patterns. We brie
y des
ribe this pattern-based

modeling and some of the
hoi
es that we have made
on-

erning the various problems that must be addressed.

4.1 Abstra
t model

The modeling of the abstra
tions is made using pattern

mat
hing. A pattern list must be exhaustive and, asso
i-

ated with ea
h pattern, there is a parti
ular abstra
tion in-

stead of
ode to exe
ute. For example, a very simple pattern

mat
her des
ribing the abstra
t pairs might look like:

(#f; Val)) P

1

(�

8

; Val)) P

2

((Val;Val); Val)) P

3

Obviously, it represents three abstra
t pairs, ea
h being spe-

ialized with the type of the obje
t that it
ontains in the

ar �eld.

One important
hara
teristi
 of our pattern mat
hing is

that it does not require that a modeling of pairs, for example,

has to be the Cartesian produ
t of all the spe
ializations

found in the
ar with those found in the
dr. This is
ru
ial

for the patterns representing
ontours sin
e these are kinds

of \lists" that
an be as long as the lexi
al environment in

the program.

4.2 Demands

Figure 8 presents the syntax of the demands and that of the

patterns they in
lude. The set of demands
orresponds ba-

si
ally to what we des
ribe in Se
tion 3 ex
ept for split-
all ,

whi
h is an auxiliary demand used in the pro
essing of split-

demands on
all expressions, and monitor-
all , whi
h is an-

other auxiliary demand that tries to prove that
alls of
er-

tain
losures on
ertain arguments
annot o

ur in
ertain

ontours.

The syntax of the patterns is des
ribed by hpati, whi
h

represents the splitting patterns, by hsPati, whi
h are the

stati
 patterns, by h
tPati, whi
h are splitting
ontour pat-

terns, and by hsCtPati, whi
h are stati

ontour patterns. A

splitting pattern
ontains one and only one splitting point,

indi
ated by ?. When abstra
tions are split a

ording to

a pattern, only those that mat
h the pattern are modi�ed,

and the modi�
ation
onsists in adding an \extra-level" of

inspe
tion at the splitting point. Stati
 patterns are used

to help des
ribing the abstra
tions that are to be modi�ed.

9

hdemandi := show �

l;k

� hboundi

split �

l;k

hpati

split �

x;k

l hpati

split

;k

hpati

split ValP hpati

show Æ

l;k

= ;

split-
all l hsCtPati hpati

monitor-
all l hsCtPati

hboundi := ValB j ValC j ValP j ValTrues

hpati := ? j �

?

j �

l

h
tPati

(hpati; hsPati) j (hsPati; hpati)

hsPati := Val j #f j �

8

j �

l

hsCtPati

(hsPati; hsPati)

h
tPati := (hsPati

�

hpati hsPati

�

)

hsCtPati := (hsPati

�

)

Figure 8: Demand syntax

The
ontours used at an expression e

l

are an abstra
t model

of the lexi
al environment. So
ontour patterns are lists of

patterns that are as long as the lexi
al environment is at the

points of the program where they are used.

4.3 Ba
k to the example

If we return to the example of Se
tion 3.1, a pattern-based

demand-driven analysis pro
eeds like this. The original de-

mand is:

show �

5;k

� ValP

where k represents (Val : : : Val). That demand is �rst

reformulated into a split-demand a

ording to the type:

split �

5;k

?

Pro
essing this demand is trivial and it produ
es another

split-demand. It
on
erns the sub-expression:

split �

6;k

?

This one be
omes a split-demand on the variable:

split �

x;k

6 ?

The label 6 is present in order to unambiguously indi
ate

whi
h program point requires an update. This is be
ause k

may be used in more than one fun
tion body. This demand

�nally
auses an update in the model of the
all fun
tion

in su
h a way that a
all to the
losure
an result in the

ontour

(#f Val : : : Val);

(�

8

Val : : : Val); or

((Val;Val) Val : : : Val):

The rest of the explanations are similar.

4.4 The diÆ
ult
ases

In Se
tion 3, we showed that the diÆ
ult
ases are the
on-

ditional expressions and the
all expressions. Also, we list

many other diÆ
ulties. We present some
hoi
es that we

made in our pattern-based analysis.

A split-demand on the evaluation results of a
onditional

expression are dealt with in this way: split-demands with the

same pattern are sent to both bran
hes and another split-

demand with the ? pattern is sent to the test. With lu
k,

all three sub-demands su

eed, and the split-demand on the

onditional is a su

ess sin
e ea
h new
ontour ne
essarily

leads to mono-type evaluation results of the
onditional.

A split-demand on a
all expression pro
eeds by: split-

ting the return value of ea
h
losure (that may be involved

there) a

ording to the same pattern; this pro
essing in-

dire
tly
reates an \asso
iation" between the output and

the input of the
losures; a split-
all auxiliary demand then

omputes an \easiest" way to distinguish
all situations that

lead to di�erent split
ategories; it �nally emits a sequen
e

of demands on the sub-expressions of the
all expressions

that, if su

essfully answered, would
omplete the split of

the
all expression.

These pro
essing strategies are generally too aggressive

in their generated sub-demands and a major diÆ
ulty is

to deal with those that do not su

eed. We have in
luded

a time-out feature to the pro
essing of sub-demands that

allows their parent to turn to a \ba
kup plan" when the

time-out is rea
hed. The ba
kup plans often resort to sub-

demands that are often less legitimate than the ones that

have expired and, so, maybe even more sus
eptible to be

impossible to a
knowledge or at least more diÆ
ult. But, as

the name of these plans says, this is the last re
ourse.

4.5 Pros and
ons

The pattern-based demand-driven analysis has the advan-

tage of being of manageable
omplexity. That is why we

have
hosen it as a �rst attempt of demand-driven analysis.

However, it has some weaknesses that may
onsiderably re-

du
e the power of the whole analysis. Its weaknesses
ome

dire
tly from its
on
ept: patterns. Patterns
an only dis-

tinguish obje
t stru
tures on the surfa
e or not very deep.

They are fundamentally in
apable of distinguishing stru
-

tures that start to di�er at deep levels, su
h as, for example,

lists of booleans ending with a boolean and lists of booleans

ending with a fun
tion:

(#f; (#f; : : : (#f;#f) : : :))

(#f; (#f; : : : (#f; �

8

) : : :))

However, we
annot say that the pattern-based is just

good enough to \show in greater detail that we still know

nothing". If the program manipulates data stru
tures that

an be distinguished by looking only a few levels deep, then

our analysis has the
apability to �nd the
hara
teristi
s

of these data stru
tures. Figure 9 shows su
h an example.

Suppose that the program manipulates only lists of booleans

and lists of fun
tions. Then a simple split of the abstra
t

pairs may lead to a perfe
t des
ription of the lists. This is

due to the log analysis variables, whi
h re
ord the
ir
um-

stan
es that prevail when abstra
t obje
ts are
reated. The

�gure shows two models, the
oarse and the �ner, and the

information that is
onsigned in the logs.

5 Con
lusion

5.1 Related work

As far as we know, there is no work with the same goal.

The most
losely related resear
h is the work of Duester-

wald et al. [7℄, Agrawal [1℄, and Heintze and Tardieu [10℄.

In [7℄, a framework to obtain a demand-driven analysis from

a
ertain
lass of inter-pro
edural data-
ow problems is de-

s
ribed. However, as the authors of [10℄ mention, this
lass

10

Model Observed results

(Val;Val)

P

analysis

)

�

#f

f 2 ValC

;

#f

P

�

P

+

split ValP (?;Val)

(#f ; Val)

P

1

(�

?

; Val)

P

2

((Val;Val) ; Val)

P

3

analysis

)

�

#f ;

#f

P

1

�

P

1

�

f 2 ValC ;

#f

P

2

�

P

2

(; ; ;)

P

3

Figure 9: A simple split may un
over more
omplex stru
-

tures

is restri
ted and does not even in
lude the problem that

they address: a
ow-insensitive,
ontext-insensitive pointer

analysis; whi
h is still elementary. In [1℄, a demand-driven

data-
ow analysis that does not require prior
all graph in-

formation to be present is des
ribed.

What these proposals have in
ommon with ours is the

fa
t that demands are generated for some reasons and then

propagated. That is all. Their goal is simply to take a

well-known, traditional analysis and adapt it so that only a

subset of the
omputations need to be performed in order to

provide answers to
ertain requests. Only a few, when not

only one, very simple demand types exist.

5.2 Future work

Investigation in this resear
h should
onsider alternatives to

patterns for abstra
t modeling and formulating demands.

First, we should
onsider distinguishing pairs by their
re-

ation expression and
ontour rather than by their dire
t
on-

tents. We believe that this modeling may be more powerful

than the pattern-based modeling. However, it is not
lear

how to express demands in this representation. Se
ond, a

representation using regular trees (see [4, 3, 5, 6℄) system-

ati
ally may prove to be very powerful. This representation

ould be used to express demands, too. It may be far from

eÆ
ient, though. Third, we should explore an approa
h to

systemati
ally
ompute demands that is reminis
ent of logi

programming. The idea is to give a demand-driven analy-

sis interpretation to the expressions. This interpretation is

a fun
tion transforming demands (in the sense of bound-

demands) to environment demands. The advantage of this

approa
h seems to be the fa
t that it is systemati
 but it

is not
lear if it
an be more powerful than pattern-based

analysis.

The biggest problem with our approa
h is the pro
ess-

ing of demands related to
onditional and
all expressions.

Additional informations about fa
ts that are known with

ertainty, might help to better de
ide what sub-demands to

emit. For example, it
ould indi
ate that
ertain demands

have to fail be
ause a
ounter-example has been found. The

ertain fa
ts would have to be dis
overed by an auxiliary

analysis. The latter would
on
entrate on trying to prove

fa
ts that would help the most the demand-driven analyzer.

In a more
omplex appli
ation than our type analysis for

a mini-language, original demands
ould
ome from a wider

variety of hints. In
onsequen
e, it may be ne
essary to as-

sign a reliability degree to the demands. For example, if we

extend our problem to in
lude dete
tion of inlining oppor-

tunities, then it would be \desirable" to prove that a
ertain

all expression
an only invoke one parti
ular
losure. Sin
e

su
h a demand originates from a desire on our part and is

not ba
ked by any more solid eviden
e, then it should re
eive

a lower reliability degree.

Another dire
tion
onsists in extending the s
ope of the

analysis to be able to deal with a language
loser to S
heme,

that is, in
luding more algebrai
 types, higher- and variable-

arity fun
tions,
ontinuations, I/O, and side-e�e
ts. Ex
ept

for
ontinuations, we do not expe
t any serious problems.

Dealing with
ontinuations probably requires that we intro-

du
e a new type of abstra
t obje
ts sin
e ordinary fun
tions

annot mimi
 their behavior. Otherwise, a
onversion to

CPS may be required. Separate
ompilation of programs

is not a standard part of S
heme, but it is
ommon pra
-

ti
e. Unfortunately, we do not see how our demand-driven

approa
h
ould be adapted to deal with it. Not only does

our analysis has to propagate abstra
t obje
ts everywhere in

the program, it also has to propagate demands everywhere

(from
allee to
aller, for example, whi
h may
ome from

di�erent modules).

Finally, other analyses than type analysis should be
on-

sidered in order to verify how well our demand-driven ap-

proa
h applies outside of type analysis. One su
h analysis

is range analysis for numeri
al values. A part of the goal of

this analysis
onsists in removing bound
he
ks in indexable

data stru
ture a

esses and removing veri�
ations before di-

visions and other unsafe numeri
al operations. Sin
e these

operations relate to safety issues, they
an be seen as good

hints from whi
h we
an generate initial demands.

5.3 Contributions

In this paper, we presented a proposal of how to perform a

high-quality type analysis while trying to have a moderate

time and spa
e
omplexity. It is based on a demand-driven

analysis that uses a very powerful analysis framework. The

exibility of the framework
omes from the fa
t that the

abstra
t model of the obje
ts
an be
hanged dynami
ally.

With appropriate models, the framework
an emulate the

behavior of many traditional type analyses. Although the

way to generate initial demands from hints present in the

program is similar to what is done in other resear
h, the

purpose of the demands is radi
ally di�erent. Their gen-

eration and pro
essing guides the su

essive updates of the

analysis model that is used in the
exible framework, mak-

ing su

essive analysis instan
es that are better equipped

to analyze the program at hand. We also give a sket
h of

our implementation of a pattern-mat
hing demand-driven

analysis.

Referen
es

[1℄ G. Agrawal. Simultaneous demand-driven data-
ow

and
all graph analysis. In Pro
eedings of International

Conferen
e on Software Maintainan
e, pages 453{462,

sep 1999.

[2℄ A. V. Aho, R. Sethi, and J. D. Ullman. Compil-

ers: Prin
iples, Te
hniques and Tools. Addison-Wesley,

1986.

[3℄ A. Aiken and B. Murphy. Implementing regular tree

expressions. In Fun
tional Programming and Computer

Ar
hite
ture, pages 427{447, aug 1991.

[4℄ A. Aiken and B. Murphy. Stati
 type inferen
e in a

dynami
ally typed language. In ACM, editor, POPL

11

'91. Pro
eedings of the eighteenth annual ACM sympo-

sium on Prin
iples of programming languages, January

21{23, 1991, Orlando, FL, pages 279{290, 1991.

[5℄ A. Aiken and E. L. Wimmers. Type in
lusion
on-

straints and type inferen
e. In Pro
eedings of the

Conferen
e on Fun
tional Programming Languages and

Computer Ar
hite
ture, pages 31{41, jun 1993.

[6℄ B. Cour
elle. Fundamental properties of in�nite trees.

Theoreti
al Computer S
ien
e, 25(2):95{169, mar 1983.

[7℄ E. Duesterwald, R. Gupta, and M. L. So�a. Demand-

driven
omputation of interpro
edural data
ow. In

Symposium of Prin
iples of Programming Languages,

pages 37{48, jan 1995.

[8℄ R. Gupta. Optimizing array bound
he
ks using
ow

analysis. ACM Letters on Programming Languages and

Systems, 2:135{150, 1993.

[9℄ N. Heintze. Set based analysis of ML programs

(extended abstra
t). Te
hni
al Report CS-93-193,

Carnegie Mellon University, S
hool of Computer S
i-

en
e, jul 1993.

[10℄ N. Heintze and O. Tardieu. Demand-driven pointer

analysis. In Pro
eedings of SIGPLAN 2001 Conferen
e

on Programming Languages Design and Implementa-

tion, ACM SIGPLAN Noti
es. ACM Press, jun 2001.

[11℄ P. Hudak. A semanti
 model of referen
e
ounting and

its abstra
tion (detailed summary). In Pro
eedings of

the 1986 ACM Conferen
e on Lisp and Fun
tional Pro-

gramming, pages 351{363, 1986.

[12℄ S. Jagannathan and S. Weeks. A uni�ed treatment of

ow analysis in higher-order languages. In 22nd ACM

Symposium on Prin
iples of Programming Languages,

pages 392{401, jan 1995.

[13℄ S. Jagannathan and A. Wright. E�e
tive
ow analysis

for avoiding run-time
he
ks. Le
ture Notes in Com-

puter S
ien
e, 854:207{224, 1995.

[14℄ O. Shivers. Control
ow analysis in S
heme. In Pro
eed-

ings of the SIGPLAN '88 Conferen
e on Programming

Language Design and Implementation, pages 164{174,

jun 1988.

[15℄ O. Shivers. The semanti
s of S
heme
ontrol-
ow analy-

sis. In Pro
eedings of the Symposium on Partial Evalua-

tion and Semanti
s-based Program Manipulation, pages

190{198, jun 1991.

12

