
Conservative Groupoids Recognize Only Regular
Languages

Danny Dubé1, Mario Latendresse2, and Pascal Tesson3

1 Université Laval, danny.dube@ift.ulaval.ca
2 SRI International, latendre@iro.umontreal.ca
3 Université Laval, pascal.tesson@ift.ulaval.ca

Abstract. The notion of recognition of a language by a finite semigroup
can be generalized to recognition by finite groupoids, i.e. sets equipped
with a binary operation ‘ · ’ which is not necessarily associative. It is well
known that L can be recognized by a groupoid iff L is context-free. But
it is also known that some subclasses of groupoids can only recognize
regular languages. For example, loops recognize exactly the regular open
languages and Beaudry et al. described the largest class of groupoids
known to recognize only regular languages.

A groupoid H is said to be conservative if a · b is in {a, b} for all a, b
in H. The main result of this paper is that conservative groupoids can
only recognize regular languages. This class is incomparable with the one
of Beaudry et al. so we are exhibiting a new sense in which a groupoid
can be too weak to have context-free capabilities.

1 Introduction

A semigroup S is a set with a binary associative operation ‘ · ’. It is a monoid if it
also has an identity element. The algebraic point of view on automata, which is
central to some of the most important results in the study of regular languages,
relies on viewing a finite semigroup as a language recognizer. This enables one
to classify a regular language according to the semigroups or monoids able to
recognize it. There are various ways in which to formalize this idea but the
following one will be useful in our context: a language L ⊆ Σ∗ is recognized by
a finite monoid M if there is a homomorphism φ from the free monoid Σ∗ to
the free monoid M∗ and a set F ⊆M such that w ∈ L iff φ(w) is a sequence of
elements whose product lies in F . Since the operation of M is associative, this
product is well defined. This framework underlies algebraic characterizations of
many important classes of regular languages (see [7] for a survey).

These ideas have been extended to non-associative binary algebras, i.e. group-
oids. If a groupoid is non-associative, a string of groupoid elements does not
have a well-defined product so the above notion of language recognition must
be tweaked. A language L is said to be recognized by a finite groupoid H if
there is a homomorphism φ from the free monoid Σ∗ to the free monoid H∗

and a set F ⊆ H such that w ∈ L iff the sequence of groupoid elements φ(w)

can be bracketed so that the resulting product lies in F . It can be shown that a
language can be recognized by a finite groupoid iff it is context-free.

However, certain groupoids are too weak to recognize non-regular languages.
The first non-trivial example was provided by Caussinus and Lemieux who
showed that loops (groupoids with an identity element and left/right inverses)
can only recognize regular languages. Beaudry et al. later showed that the lan-
guages recognized by loops are precisely the regular open languages [4]. Along
the same lines, Beaudry showed in [3] that if H is a groupoid whose multipli-
cation monoid M(H) is in the variety DA then it can only recognize regular
languages. (M(H) is the transformation monoid generated by the rows of the
multiplication table of H.) Finally, Beaudry et al. proved that this still holds if
the multiplication monoid lies in the larger variety DO [5].

A groupoid H is said to be conservative if for all x, y ∈ H we have x ·
y = x or x · y = y. The simplest example of a non-associative, conservative
groupoid is the one defined by the Rock-Paper-Scissors game. In this game, two
players simultaneously make a sign with their fingers chosen among Rock, Paper,
and Scissors. Rock beats Scissors, Scissors beats Paper, Paper beats Rock, and
identical signs result in a tie. The associated groupoid has three elements R,P, S
and the multiplication is given by R·R = R·S = S ·R = R; P ·P = P ·R = R·P =
P ; and S ·S = S ·P = P ·S = S. Note that H is indeed conservative and also non-
associative since (R ·P) · S = S 6= R = R · (P · S). The main result of our paper
is that conservative groupoids recognize only regular languages. Our results are
incomparable to those of Beaudry et al. Indeed a straightforward calculation
shows that the multiplication monoid of the Rock-Paper-Scissors groupoid does
not belong to the variety DO nor to the larger variety DS.

1.1 Conservative Groupoids and Tournaments

It is convenient to think of conservative groupoids as defining a generalization
of the Rock-Paper-Scissors game. For any conservative groupoid H, we define
the game in which players 1 and 2 each choose an element of H (say a and b
respectively) and player 1 wins iff a · b = a. In fact, it is helpful to think of this
game as a competition between elements of H.

Consider now a sequence w ∈ H∗ of elements of the groupoid. A bracketing
of this sequence can be viewed as specifying a tournament structure involving
the symbols of w, i.e. a specific way to determine a winner among the elements
of w. For instance, if w = abcd, then (a · b) · (c · d) is the tournament that first
pits a against b and c again d and then has the two winners of that first round
competing. Similarly in the tournament ((a · b) · c) · d we first have a facing b
with the winner then facing c and the winner of that facing d. Note that this
analogy makes sense because H is conservative and the “winner” of any such
tournament (i.e. the value of the product given this bracketing) is indeed one of
the participants (in the above example, one of a, b, c, or d). We intend to study
languages Λ(x) = {w ∈ H∗ | w can be bracketed to give x} and we accordingly
think of them as Λ(x) = {w ∈ H∗ | an organizer can rig a tournament structure
for w to ensure that x wins }.

Let us define the contest trees. We denote the set of all contest trees by T . It
is the smallest set such that the leaf tree a is in T , for any a in the alphabet Σ,
and the tree t1⊗t2 is also in T , for any two trees t1 and t2 in T . Let T : Σ+ → 2T

be the function that computes the set of possible contest trees in a given contest.

T (a) = {a}
T (w) = {t1 ⊗ t2 | u, v ∈ Σ+, u v = w, t1 ∈ T (u), t2 ∈ T (v)}, if |w| > 1

Note that, when performing the left-to-right traversal of a tree in T (w), the leaves
that we successively reach are the symbols that form w. Next, function W : T →
Σ computes the winner of a contest tree.

W (a) = a

W (t1 ⊗ t2) = W (t1) ·W (t2)

Note that the winner of a contest tree is unique. Next, we define the set of possible
winners in a given contest w by overloading function W with an additional
definition of type Σ+ → 2Σ . We define W (w) as {W (t) | t ∈ T (w)}. Finally, for
a ∈ Σ, we denote by Λ(a) the language of the words for which we can arrange a
contest in which a is the winner. We can give a more formal, alternative definition
of Λ(a) as {w ∈ Σ+ | a ∈W (w)}.

Variable t denotes contest trees. Variables A and B are used to denote the
non-terminals of context-free grammars. Variable r denotes regular expressions.
The language generated by A (resp. r) is denoted by L(A) (resp. L(r)). We
denote the empty string by ε.

The paper is organized as follows. In Section 2, we show that commutative
conservative groupoids recognize only regular languages. This is extended to the
general case in Section 3. In Section 4, we give a partial algebraic characterization
of the languages recognized by conservative groupoids.

2 Commutative Case

Let us consider an RPS-like game in which the operator is defined everywhere,
conservative, and commutative.

Theorem 1. Given an arbitrary symbol a in Σ, the language Λ(a) is regular.

The demonstration proceeds in two steps. In the first step, we build a context-
free grammar G that generates Λ(a). In the second step, we show that G can be
rewritten into a regular expression.

2.1 Building the Grammar

Let us first define the auxiliary function f : Σ → 2Σ that, given a symbol b,
returns the symbols that are favorable to b; i.e. the symbols that b defeats.
Formally: f(b) = {c ∈ Σ | b · c = b}.

We build the grammarG = (N,Σ,Aa, R) whereN is the set of non-terminals,
Σ is the set of terminals, Aa is the start non-terminal, and R is the set of
productions, where:

N = {Aa} ∪ {Bσ | ∅ 6= σ ⊆ Σ} and

R = {Aa → Bσ aBσ | σ = f(a)}
∪ {Bσ → Bσ′ bBσ′ | σ ⊆ Σ, b ∈ σ, σ′ = σ ∪ f(b)}
∪ {Bσ → ε | ∅ 6= σ ⊆ Σ}.

We claim that G is built in such a way that all the words generated by Aa
allow a to be the winner if we arrange the contest properly. We also claim that
those generated by Bσ are either empty or allow the contest to be arranged
so that the winner is in σ. We intend to demonstrate that the non-terminals
generate words with such properties but, also, that they generate all such words.

2.2 Correctness of the Grammar

Lemma 1. For all non-empty subsets σ of symbols, L(Bσ) ⊆
⋃
b∈σ Λ(b) ∪ {ε}.

Proof. We proceed by induction on the length of the words generated by the
family of the B non-terminals. Base case. Let us consider a word w of length 0.
This means that w must be ε. Then the inclusion is trivially respected, for every
∅ 6= σ ⊆ Σ. Induction hypothesis (IH). Let us suppose that, for all ∅ 6= σ ⊆ Σ
and for all w ∈ Σ∗ such that |w| ≤ n, we have that, whenever w ∈ L(Bσ), then
w ∈

⋃
b∈σ Λ(b) ∪ {ε}. Induction step. Let us consider a word w of length n + 1

and ∅ 6= σ ⊆ Σ such that w ∈ L(Bσ). Since w is non-empty, we must show
that it is in

⋃
b∈σ Λ(b). We will do so by constructing a contest tree for w whose

winner is in σ. Let us choose a derivation tree for w. Given that w 6= ε, let
Bσ → Bσ′ bBσ′ be the production that is used at the root of the derivation
tree, where σ′ = σ ∪ f(b). This implies that there exist u, v ∈ Σ∗ such that
w = u b v, where u, v ∈ L(Bσ′). Since both u and v are of length at most n, then
the IH applies to each. So, if u 6= ε, then there exists a contest tree tu ∈ T (u)
such that W (tu) ∈ σ′. Similarly, if v 6= ε, then there exists tv ∈ T (v) such that
W (tv) ∈ σ′. There are three cases to consider for u (and similarly for v): u = ε,
W (tu) ∈ σ′ − σ, and W (tu) ∈ σ. Hence, we would have a total of nine cases
to analyze. In each case, we would have to show that we can build a contest
tree tw ∈ T (w) such that W (tw) ∈ σ. For the sake of conciseness, we only
examine the case where u 6= ε 6= v, W (tu) ∈ σ′− σ, and W (tv) ∈ σ. In this case,
we select tw = (tu ⊗ b)⊗ tv and we have that:

W (tw)
= W ((tu ⊗ b)⊗ tv)
= W (tu ⊗ b) ·W (tv) by def. of W
= (W (tu) ·W (b)) ·W (tv)
= (W (tu) · b) ·W (tv)
= b ·W (tv) because W (tu) ∈ σ′ − σ ⊆ f(b)
∈ σ because b, W (tv) ∈ σ and ‘ · ’ is conserv.

v = ε W (tv) ∈ σ′ − σ W (tv) ∈ σ
u = ε b b⊗ tv b⊗ tv

W (tu) ∈ σ′ − σ tu ⊗ b (tu ⊗ b)⊗ tv (tu ⊗ b)⊗ tv
W (tu) ∈ σ tu ⊗ b tu ⊗ (b⊗ tv) tu ⊗ (b⊗ tv)

Fig. 1. Key step in the inductive cases in the proof of correctness.

Figure 1 presents a tw that should be selected in each of the nine cases.

We now have established that L(Bσ) ⊆
⋃
b∈σ Λ(b) ∪ {ε}. What remains to

show is Lemma 2.

Lemma 2. For any a ∈ Σ, L(Aa) ⊆ Λ(a).

Proof. This is easy as the only Aa-production is Aa → Bf(a) aBf(a), where Bf(a)
generates either the empty word or a word for which we can arrange a contest
such that the winner is favorable to a. So, by analyzing four cases, we can show
that we can arrange for all words in L(Aa) to have a as a winner.

2.3 Completeness of the Grammar

Lemma 3. For all non-empty subsets σ of symbols,
⋃
b∈σ Λ(b) ∪ {ε} ⊆ L(Bσ).

Proof. We do so by induction on the length of the words. Base case. Let us
consider a word w of length 0. We have that w = ε. Because of the productions
of the form Bσ → ε, we have that ε ∈ L(Bσ), for all σ ⊆ Σ. Induction hypothesis.
We suppose that the inclusion holds for all ∅ 6= σ ⊆ Σ and all words of length
at most n. Induction step. Let us consider ∅ 6= σ ⊆ Σ and w of length n + 1
such that w ∈

⋃
b∈σ Λ(b) ∪ {ε}. Since w 6= ε, let b ∈ σ such that w ∈ Λ(b). Let

σ′ = σ∪f(b). There exists a contest tree tw ∈ T (w) such that W (tw) = b. There
are two possible shapes for tw: it is a leaf or it is a larger tree. If tw is a leaf, then
w = b and the derivation Bσ ⇒ Bσ′ bBσ′ ⇒ bBσ′ ⇒ b shows that w ∈ L(Bσ).
Otherwise, tw = tu ⊗ tv where b is the winner of at least one of tu and tv (by
conservativeness of ‘·’). Without loss of generality, let us suppose that W (tv) = b.
We know that W (tu) ∈ f(b), since W (tu) is defeated by b. Let u, v ∈ Σ+ such
that tu ∈ T (u) and tv ∈ T (v). Note that 1 ≤ |v| ≤ n. Since W (tv) = b, then
v ∈ Λ(b), so v ∈ Λ(b) ∪ {ε}, and (by IH) v ∈ L(B{b}). Since v 6= ε, there exists
a derivation B{b} ⇒+ v that first uses the production B{b} → Bσ′′ bBσ′′ , where
σ′′ = {b} ∪ f(b). Let v′, v′′ ∈ Σ∗ such that v = v′ b v′′ and v′, v′′ ∈ L(Bσ′′). At
this point, we have that w = u v′ b v′′, that there exists a contest tree tu ∈ T (u)
such that W (tu) ∈ f(b), either that v′ = ε or that there exists a contest tree
tv′ ∈ T (v′) such that W (tv′) ∈ σ′′, and either that v′′ = ε or that there exists a
contest tree tv′′ ∈ T (v′′) such that W (tv′′) ∈ σ′′. Given the possible emptiness
of v′ and that of v′′, we would have four cases to analyze. We only examine
the case where both v′ and v′′ are non-empty, as the other cases are simpler.
Let tu v′ = tu ⊗ tv′ . By conservativeness, we have that W (tu v′) ∈ σ′′ and, so,

W (tu v′) ∈ σ′. Also, we have that W (tv′′) ∈ σ′′ and, so, W (tv′′) ∈ σ′. Since
|u v′| ≤ n ≥ |v′′|, we use the IH and obtain that u v′, v′′ ∈ L(Bσ′). Thus the
derivation Bσ ⇒ Bσ′ bBσ′ ⇒∗ u v′ bBσ′ ⇒∗ u v′ b v′′ = w shows that w ∈ L(Bσ).

At this point, we have established that
⋃
b∈σ Λ(b) ∪ {ε} ⊆ L(Bσ). What

remains to show is Lemma 4.

Lemma 4. For any a ∈ Σ, Λ(a) ⊆ L(Aa).

Proof. This is shown by noting that, for any word w in Λ(a), there is a contest
tree tw ∈ T (w) such that W (tw) = a and analyzing the three following cases:
tw = a, tw = tu ⊗ tv where W (tu) = a, and tw = tu ⊗ tv where W (tu) 6= a. In
each case, it is simple to exhibit a derivation Aa ⇒∗ w, using arguments similar
to those used in the demonstration of completeness for the Bσ’s.

2.4 Regularity of the Language Generated by the Grammar

Before we demonstrate that L(G) is regular, we present a couple of lemmas. In
the first lemma, we make the rather intuitive observation that, the larger the
set σ in Bσ, the larger the generated language.

Lemma 5. For any ∅ 6= σ ⊆ σ′ ⊆ Σ, we have that L(Bσ) ⊆ L(Bσ′).

Proof.

L(Bσ) =
⋃
b∈σ

Λ(b) ∪ {ε} ⊆
⋃
b∈σ′

Λ(b) ∪ {ε} = L(Bσ′).

Lemma 6. For any ∅ 6= σ ⊆ σ′ ⊆ Σ, we have that L(Bσ′) = L(Bσ′ Bσ).

Proof. Showing that L(Bσ′) ⊆ L(Bσ′ Bσ) is trivial as it is sufficient to system-
atically use production Bσ → ε. Let us show L(Bσ′ Bσ) ⊆ L(Bσ′) by induction
on the length of the words. Induction basis. Let w ∈ Σ∗ of length 0. Then, w has
to be ε and w ∈ L(Bσ′). Induction step. Let w ∈ L(Bσ′ Bσ) of length n + 1.
There exist u ∈ L(Bσ′) and v ∈ L(Bσ) such that w = u v. If u = ε, then
w = v ∈ L(Bσ) ⊆ L(Bσ′) and we are done. Otherwise, there exist b ∈ σ′,
σ′′ = σ′ ∪ f(b), and u′, u′′ ∈ L(Bσ′′) such that u = u′ b u′′. Note that |u′′ v| ≤ n
and, since u′′ v ∈ L(Bσ′′ Bσ) with σ ⊆ σ′′, the IH can be used to get that
u′′ v ∈ L(Bσ′′). Thus w = u′ b u′′ v ∈ L(Bσ′′ {b}Bσ′′) ⊆ L(Bσ′) and we are done.

Now we can turn to the main task of showing Lemma 7.

Lemma 7. G generates a regular language.

Proof. Let us examineG’s productions. Note that each time there is a production
of the form Bσ → Bσ′ bBσ′ , then we have that σ ⊆ σ′. The productions can be
classified into two kinds: those for which σ = σ′ and those for which σ ⊂ σ′. The
second kind of productions introduces no recursion among the non-terminals.
The first kind does but only via self-recursion. We show that this does not lead
to an non-regular language.

Ci → Ci b1 Ci ri = (b1 |
. |

Ci → Ci bk′ Ci bk′ |
Ci → Clk′+1

bk′+1 Clk′+1
rlk′+1

bk′+1 rlk′+1
|

. |
Ci → Clk−1 bk−1 Clk−1 rlk−1 bk−1 rlk−1)∗

Ci → ε

where max(lk′+1, . . . , lk−1) < i

Fig. 2. Converting productions (possibly) with self-recursion into a regular expression.

The non-empty subsets of Σ form a partially ordered set, with respect to
inclusion (⊇). Let σ1, . . . , σ2|Σ|−1 be a topological ordering of the non-empty
subsets of Σ such that if σj ⊃ σi, then j < i. As a consequence, σ1 has to be Σ
and σ2|Σ|−1 has to be one of the singletons. Let us use the alias non-terminals
C1, . . . , C2|Σ|−1 for the permutation of the Bσ’s according to this ordering;

i.e. Ci = Bσi , for 1 ≤ i ≤ 2|Σ| − 1. Consequently, we now view production
Bσi → ε as Ci → ε and production Bσi → Bσj bBσj as Ci → Cj bCj , where
i = j if and only if σi = σj .

In order to show that Aa generates a regular language, we successively show,
by induction on i, that each non-terminal Ci generates the same language as
a regular expression ri. We can then conclude that Aa also generates a regular
language. We do an inductive reasoning on the Ci’s but, as will be apparent,
there is no need to provide a special case for the basis.

Let 1 ≤ i ≤ 2|Σ| − 1. By IH, we know that each Cj generates the same
language as some regular expression rj , for j < i. Let us consider all the Ci-
productions P1, . . . , Pk. Without loss of generality, let us suppose that P1, . . . ,
Pk′ are the productions that involve self-recursion, that Pk′+1, . . . , Pk−1 are
those that involve non-self-recursion, and that Pk is Ci → ε. Note that we have
0 ≤ k′ < k. Value k′ might be as low as 0 because there might exist non-
terminals for which all productions are non-self-recursive. Value k′ cannot get
higher than k − 1 because there is production Pk.4 For the sake of illustration,
we list the productions on the left-hand side of Figure 2. On the right-hand
side of Figure 2, there is a single replacement equation whose right member is
regular expression ri. The regular expression is a Kleene iteration over a union
that contains an alternative for each non-ε-production. Each self-recursive pro-
duction is converted into its middle symbol. Each non-self-recursive production
is trivially converted into a regular expression, as the concerned non-terminals
already denote regular languages, by IH. We must show that ri generates L(Ci).

We start by showing that L(ri) ⊆ L(Ci). We do so by induction on the size
of the words. Induction basis. Let w ∈ Σ∗ of length 0. Then, w must be ε and,
clearly, w ∈ L(Ci). Induction step. Let w ∈ L(ri) of length n+1. By construction,

4 For instance, in the case of C1 = Bσ1 = BΣ , k′ = k− 1 since all the productions are
self-recursive except C1 → ε.

we have that ri = (r′i)
∗, where r′i is a union. Since w 6= ε, then w ∈ L(r′i ri), which

means that there exist u ∈ Σ+ and v ∈ Σ∗ such that w = u v, u ∈ L(r′i), and v ∈
L(ri). Since |v| ≤ n, we know that v ∈ L(Ci), by IH. There are two cases for u:
either u = bm, for 1 ≤ m ≤ k′, or u ∈ L(rlm bm rlm), for k′+1 ≤ m ≤ k−1. In the
first case, the following derivation shows that w ∈ L(Ci): Ci ⇒ Ci bm Ci ⇒ bm Ci
⇒∗ bm v = u v = w. In the second case, we have that there exist u′, u′′ ∈ L(rlm)
such that u = u′ bm u

′′. By IH, we have that u′, u′′ ∈ L(Clm). By construction
of G, we know that Ci = Bσ and Clm = Bσ′ such that σ ⊂ σ′. Consequently,
L(Ci) ⊆ L(Clm). By the second lemma, L(Clm) = L(Clm Ci). Consequently, w
= u v = u′ bm u

′′ v, where u′ ∈ L(Clm) and u′′ v ∈ L(Clm Ci) = L(Clm), which
guarantees that Ci ⇒ Clm bm Clm ⇒∗ w.

We continue by showing that L(Ci) ⊆ L(ri). Once again, we show this result
by induction on the length of the words. Induction basis. Let w ∈ Σ∗ of length 0.
Then, w must be ε and, clearly, w ∈ L(ri). Induction step. Let w ∈ L(Ci) of
length n + 1. Since w 6= ε, the derivation Ci ⇒∗ w must start with the use
of a non-ε-production. Then, two cases are possible. If the production is one of
the first k′ ones, then it is Ci → Ci bm Ci, for m ≤ k′, and there exist u, v ∈
L(Ci) such that w = u bm v. Since |u| ≤ n ≥ |v|, we use the IH and have that
u, v ∈ L(ri). Consequently, w = u bm v ∈ L(ri)L(ri)L(ri) ⊆ L(ri), since ri is a
Kleene iteration. In the other case, the first production used is Ci → Clm bm Clm ,
for k′ < m ≤ k − 1, and there exist u, v ∈ L(Clm) such that w = u bm v. By
construction of G and the ordering of the C non-terminals, we know that Clm
appears before Ci (i.e. lm < i) in the ordering and so Clm generates the same
language as rlm , by IH. Consequently, w = u bm v ∈ L(rlm) {bm}L(rlm) ⊆ L(ri).

3 Non-commutative Case

We now study the case where the operator is non-commutative but still conserva-
tive and defined everywhere. That is, there exist a, b ∈ Σ such that a · b 6= b · a.
We show Theorem 2. We show it using an adaptation of the grammar-based
method of Section 2.

Theorem 2. Given an arbitrary symbol a in Σ, the language Λ(a) is regular.

As in the commutative case, we start by giving the construction of a context-
free grammar that generates Λ(a) and then show that its language is regular.

3.1 Building the Grammar

Due to the loss of the commutativity property, we now need two auxiliary func-
tions that return, for a given symbol b, the symbols that are favorable to b:
functions fL, fR : Σ → 2Σ for the symbols that are defeated when they appear
on the left-hand side of the operator and those that are defeated when they
appear on the right-hand side of the operator, respectively. Formally: fL(b) =
{c ∈ Σ | c · b = b}, and fR(b) = {c ∈ Σ | b · c = b}.

We define the context-free grammar G = (N,Σ,Aa, R) where all the compo-
nents are the same as in the commutative case except for the productions:

R = {Aa → Bσ′ aBσ′′ | σ′ = fL(a), σ′′ = fR(a)}
∪ {Bσ → Bσ′ bBσ′′ | σ ⊆ Σ, b ∈ σ, σ′ = σ ∪ fL(b), σ′′ = σ ∪ fR(b)}
∪ {Bσ → ε | ∅ 6= σ ⊆ Σ}.

The main difference is that we take care of handling the sets of defeated symbols
independently on the left- and on the right-hand sides. We do not show the
following lemmas as the proofs are similar to those of Section 2.

Lemma 8. L(Bσ) =
⋃
b∈σ Λ(b) ∪ {ε}.

Lemma 9. L(Aa) = Λ(a).

3.2 Regularity of the Language Generated by the Grammar

Lemma 10. G generates a regular language.

Proof. In order to show Lemma 10, we use the alias variables C1, . . . , C2|Σ|−1
once again. We remind the reader that Ci = Bσi , for 1 ≤ i ≤ 2|Σ| − 1, that, if
σj ⊇ σi, we have j ≤ i, and finally that, for any production Ci → α, any Cj
that appears in α is such that j ≤ i. Again, we show by induction on i that
each Ci generates a regular language, which is the same as the one generated by
the regular expression ri. At step i, we suppose that Cj is equivalent to rj , for all
j < i. The changes that must be made to the proof in the non-commutative case
relate to the construction of the regular expression ri and the demonstrations
that L(ri) ⊆ L(Ci) and L(Ci) ⊆ L(ri).

Let us consider all the Ci-productions P1, . . . , Pk. Without loss of generality,
let us suppose that the productions are grouped by kind of recursion. Note that
the non-ε-productions are of the form Ci → Cj bCh, with j ≤ i ≥ h, and hence
cannot be merely categorized as being self-recursive or not. Let 0 ≤ k′ ≤ k′′ ≤
k′′′ < k such that P1, . . . , Pk′ are completely self-recursive, Pk′+1, . . . , Pk′′ are
self-recursive on the left only, Pk′′+1, . . . , Pk′′′ are self-recursive on the right only,
and Pk′′′+1, . . . , Pk−1 are not self-recursive at all. Figure 3 presents the original
Ci-productions and the regular expression ri in which they are transformed.

As in the commutative case, there remains to show that L(ri) = L(Ci). Due
to lack of space, we omit the proof that each language is contained into the
other. However, the arguments are similar to those used in the commutative
case, except that there are a few extra sub-cases to analyze; i.e. those for the
productions that are self-recursive on the left only and for the productions that
are self-recursive on the right only.

4 Languages Recognized by Conservative Groupoids

We now know that languages recognized by conservative groupoids are regular
and it is natural to seek a more precise characterization. This seems challenging.

Ci → Ci b1 Ci ri = (b1 |
. |

Ci → Ci bk′ Ci bk′ |
Ci → Ci bk′+1 Clk′+1

bk′+1 rlk′+1
|

. |
Ci → Ci bk′′ Clk′′ bk′′ rlk′′ |
Ci → Clk′′+1

bk′′+1 Ci rlk′′+1
bk′′+1 |

. |
Ci → Clk′′′ bk′′′ Ci rlk′′′ bk′′′ |
Ci → Clk′′′+1

bk′′′+1 Cl′
k′′′+1

rlk′′′+1
bk′′′+1 rl′

k′′′+1
|

. |
Ci → Clk−1 bk−1 Cl′

k−1
rlk−1 bk−1 rl′

k−1
)∗

Ci → ε

where max(lk′+1, . . . , lk−1, l
′
k′′′+1, . . . , l

′
k−1) < i

Fig. 3. Converting productions into a regular expression in the non-commutative case.

One starting point is to consider conservative groupoids which are also asso-
ciative, i.e. semigroups for which x ·y ∈ {x, y}. In particular, these satisfy x2 = x
but we can give an exact characterization.

Lemma 11. A semigroup S is conservative iff its set of elements can be parti-
tioned into k classes C1, . . . Ck such that x · y = y · x = x whenever x ∈ Ci and
y ∈ Cj for i > j and for any j either x · y = x for all x, y ∈ Cj (left-zero) or
x · y = y for all x, y ∈ Cj (right-zero).

Proof. By definition, such a semigroup is conservative. Also, the operation de-
fined above is associative. Indeed if x, y, z are three elements lying in the same
class Ci then (x ·y) ·z = x ·(y ·z) = x if Ci is left-zero and (x ·y) ·z = x ·(y ·z) = z
if it is right-zero. If x, y, z are not in the same class then associativity follows
because the elements in the most absorbing class are the only ones that matter.
Suppose for instance that x and z lie in the same class Ci while y lies in some Cj
with i > j. Since x ·y = x and y ·z = z we clearly have (x ·y) ·z = x · (y ·z) = xz.

Conversely, suppose S is a conservative semigroup. For any x, y, one of three
cases must hold: (1) x · y = y · x = x (or . . . = y), (2) x · y = x and y · x = y, or
(3) x · y = y and y · x = x and we say that the pair x, y is of type 1, 2, or 3.

First note that cases (2) and (3) define equivalence relations on S. Moreover,
if x 6= y is a pair of type (2) then there cannot exist a z 6= x such that x, z is a
pair of type (3). Indeed, we would then have z · y = (x · z) · (y · x) = x · z · y · x.
Because S is conservative we must have z · y ∈ {y, z} but this either leads to
x ·z ·y ·x = x ·z ·x = x or x ·z ·y ·x = x ·y ·x = x. Both cases form a contradiction.

These facts allow us to partition S into classes such that within each either
x · y = x for all x, y ∈ Cj or x · y = y for all x, y ∈ Cj . (These Cj correspond to
the J -classes of the semigroup.) It remains to show that we can impose a total
order on these classes. We simply choose to place class A below class B if there
is some x in A and some y in B such that x · y = y · x = x. This is well defined:

if, e.g., we choose z another representative of B with y · z = y and z · y = z, then
x ·z = x ·y ·z = x ·y = x. Moreover, this forms a total order since for any pair x, y
not of type (2) or (3), we must have x ·y = y ·x = x or x ·y = y ·x = y. It is now
straightforward to check that S has the structure described in the statement.

This characterization can be translated into a description of the languages
recognizable by conservative semigroups. For an alphabet Σ, consider a partition
C1, . . . , Ck each with an associated direction d1, . . . , dk with di ∈ {L,R}. For
a ∈ Cj with dj = L (resp. dj = R), define the language La (resp. Ra) of words
that contain no occurrence of letters in classes Ci with i < j and where the first
(resp. last) occurrence of a letter in Cj is an a. A language can be recognized by
a conservative semigroup iff it is the disjoint union of some La and Ra.

Note that the class of languages recognized by conservative semigroups does
not have many closure properties. For instance, it is not closed under union
or intersection: each of the languages Σ∗aΣ∗ and Σ∗bΣ∗ can be recognized but
their union (or intersection) has a syntactic semigroup which is not conservative.

The apparent absence of closure properties makes it difficult to provide a
complete characterization of languages recognized by non-associative, conserva-
tive groupoids. We believe that this is nevertheless an interesting challenge and
we end this section with a discussion of basic examples and avenues for research.

First, while any language L recognized by a conservative semigroup must
be idempotent, this need not be the case for one recognized by a conservative
groupoid. A language is idempotent if, for any x, y, z ∈ Σ∗, we have xyz ∈
L⇔ xy2z ∈ L. A language recognized by a conservative groupoid G need not be
idempotent despite the fact that g2 = g for any g ∈ G. For instance, the language
{a, b}∗a{a, b}∗a{a, b}∗ consisting of words with at least two as is not idempotent.
It can however be recognized by the Rock-Paper-Scissors groupoid by setting
φ(a) = RPS and φ(b) = ε and choosing {P} as the accepting set. If w contains
no a then φ(w) = ε cannot produce P . If w contains a single a then φ(w) = RPS
and one readily checks that R · (P · S) = R and (R · P) · S = S. However,
φ(aa) = RPSRPS which can be bracketed as ((R · P) · (S · (R · (P · S)))) = P .
More generally, if k ≥ 3 the k copies of RPS can be bracketed as follows. First
bracket each of the k − 2 last copies of RPS individually to obtain S, absorb
these Ss to obtain RPSRPS, and use the bracketing above.

Similarly, {a, b}∗a{a, b}∗a{a, b}∗a{a, b}∗ can be recognized by
the four-element groupoid with the multiplication table besides.
One can see that both φ(a) = 1234 and φ(aa) = 12341234 can
never be bracketed to obtain 3. In both cases, the rightmost 3 can-
not win against 4 and the leftmost 3 cannot win against 1, pos-
sibly after having defeated 2. On the other hand, 3 can be the
winner of φ(aaa) = 123412341234, as shown by the bracketing:
((((1 · (2 · 3)) · (4 · 1)) · 2) · (3 · (((4 · 1) · 2) · (3 · 4)))).

1 2 3 4
1 1 1 1 4
2 1 2 3 2
3 1 3 3 4
4 4 2 4 4

We think that there are similar conservative groupoids that can “count” up
to k for any k and have verified this up to k = 6. In fact, distinguishing between
five and six occurrences of a can be achieved, somewhat counter-intuitively, with
a five-element groupoid.

On the other hand, we believe it is impossible to count the occurrences of
a letter modulo some p using a conservative groupoid and more generally that
every language L recognized by a conservative groupoid G is star-free, i.e. that
for some k and any x, y, z ∈ Σ∗ we have xykz ∈ L⇔ xyk+1z ∈ L.

For any g in a conservative groupoid G, we have g2 = g. So whenever g ∈
W (u), we must also have g = g2 ∈W (u2). As a referee kindly pointed out, this
suffices to show a partial result along those lines, which is that the language
(aa)∗a of words of odd length cannot be recognized by G.

Due to space restrictions, further partial results are omitted here. An up-to-
date extended version of the paper is available from the authors’ websites.

5 Conclusion and Future Work

We have shown that conservative groupoids can only recognize regular lan-
guages. Beaudry, Lemieux, and Thérien had previously exhibited a large class
of groupoids with the same limitations but our work is incomparable to theirs
and our methods are, accordingly, quite different. It is natural to ask whether
our approach can be generalized to find a wider class of “weak” groupoids and
an obvious target are the 0-conservative groupoids, i.e. groupoids H with a 0
element such that 0 · x = x · 0 = 0 for all x ∈ H and x · y ∈ {x, y, 0} for all
x, y ∈ H; i.e. all non-conservative products are 0.

It is well known that left-linear and right-linear context-free grammars gen-
erate regular languages [6]. The work presented in this paper can be used to
recognize a larger family of context-free grammars that generate regular lan-
guages. The work of [1, 2] is similar in that regard: context-free grammars with
productions of the form A → AαA (called self-embedded), and other simpler
forms of recursion, are shown to generate regular languages.

References

1. Andrei, S., Cavadini, S., Chin, W.N.: Transforming self-embedded context-free
grammars into regular expressions. Tech. Rep. TR 02-06, University “A.I.Cuza”
of Iaşi, Faculty of Computer Science (2002)

2. Andrei, S., Chin, W.N., Cavadini, S.V.: Self-embedded context-free grammars with
regular counterparts. Acta Inf. 40(5), 349–365 (March 2004)

3. Beaudry, M.: Languages recognized by finite aperiodic groupoids. Theor. Comput.
Sci. 209(1-2), 299–317 (1998)

4. Beaudry, M., Lemieux, F., Thérien, D.: Finite loops recognize exactly the regular
open languages. In: Proc. 24th Int. Conf. Automata, Languages and Programming
(ICALP’97). pp. 110–120 (1997)

5. Beaudry, M., Lemieux, F., Thérien, D.: Groupoids that recognize only regular
languages. In: Proc. 32nd Int. Conf. Automata, Languages and Programming
(ICALP’05). pp. 421–433 (2005)

6. Linz, P.: An Introduction To Formal Languages And Automata. Jones and Bartlett
Publishers, Inc., USA, 2nd edn. (1997)

7. Pin, J.E.: Syntactic semigroups. In: Handbook of language theory, vol. 1, chap. 10,
pp. 679–746. Springer Verlag (1997)

