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Abstract

The notion of recognition of a language by a finite semigroup can be generalized to
recognition by finite groupoids, i.e. sets equipped with a binary operation ‘-’ which is
not necessarily associative. It is well known that L can be recognized by a groupoid iff
L is context-free. However it is also known that some subclasses of groupoids can only
recognize regular languages.

A groupoid H is said to be conservative if a - b € {a,b} for all a,b € H. The first
result of this paper is that conservative groupoids can only recognize regular languages.
This class of groupoids is incomparable with the ones identified so far which share this
property, so we are exhibiting a new way in which a groupoid can be too weak to recognize
non-regular languages.

We also study the class L.,,s of regular languages that can be recognized in this way
and explain how it fits within the well-known Straubing-Thérien hierarchy. In particular
we show that L.,,s contains depth 1/2 of the hierarchy and is entirely contained in depth
3/2.

Keywords: groupoid, conservative algebra, algebraic automata theory

1. Introduction

A semigroup S is a set with a binary associative operation. It is a monoid if it also
has an identity element. The algebraic point of view on automata, which is central to
some of the most important results in the study of regular languages, relies on viewing
a finite semigroup as a language recognizer. This makes it possible to classify a regular
language according to the semigroups or monoids able to recognize it. There are various
ways in which to formalize this idea but the following one will be useful in our context: a
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language L C A* is recognized by a finite monoid M if there is a homomorphism A from
the free monoid A* to the free monoid M* and a set F' C M such that w € L iff h(w) is
a sequence of elements whose product lies in F'. Since the operation of M is associative,
this product is well defined. This framework underlies algebraic characterizations of
many important classes of regular languages (see [13] for a survey).

These ideas have been extended to non-associative binary algebras, i.e. groupoids. If
a groupoid is non-associative, a string of groupoid elements does not have a well-defined
product so the above notion of language recognition must be tweaked. A language L
is said to be recognized by a finite groupoid H if there is a homomorphism h from
the free monoid A* to the free monoid H* and a set ' C H such that w € L iff the
sequence of groupoid elements h(w) can be bracketed! so that the resulting product lies
in F. It has been shown that a language can be recognized by a finite groupoid iff it is
context-free [9, 10, 18§].

However, certain groupoids are too weak to recognize non-regular languages. The
first non-trivial example was provided by Caussinus and Lemieux who showed that loops
(groupoids with an identity element and left/right inverses) can only recognize regular
languages [6]. Beaudry et al. later showed that the languages recognized by loops are
precisely the regular open languages [3]. Along the same lines, Beaudry showed in [2]
that if H is a groupoid whose multiplication monoid M(H) is in the variety DA then it
can only recognize regular languages. (M(H) is the transformation monoid generated by
the rows and columns of the multiplication table of H.) Finally, Beaudry et al. proved
that this still holds if the multiplication monoid lies in the larger variety DO [4].

A groupoid H with operation ‘-’ is said to be conservative if a - b € {a,b} for all
a,b € H. The simplest example of a non-associative and conservative groupoid is the one
defined by the Rock-Paper-Scissors game. In this game, two players simultaneously make
a sign with their fingers chosen among Rock, Paper, and Scissors. Rock beats Scissors,
Scissors beats Paper, Paper beats Rock, and identical signs result in a tie. The associated
groupoid has three elements r, p, s and the multiplication is given below (explicit list of
products on the left, multiplication table on the right).
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Note that H is indeed conservative and non-associative since

(rep)-s=s#r=r-(p-s).

The main result of our paper is that conservative groupoids recognize only regular lan-
guages and in fact a very restricted class of regular languages. Our results are incom-
parable to those of Beaudry et al. since a straightforward calculation® shows that the

LIf h(w) is the empty word then it cannot be bracketed. To handle this exception, we consider that
the result of the evaluation of € is a special element n ¢ H which may or may not be a part of F'. This
technical issue is without incidence for the main results of this paper.

2This calculation is somewhat tangential to our results but we include it here for completeness. Let
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multiplication monoid of the Rock-Paper-Scissors groupoid does not belong to the variety
DO nor to the larger variety DS.

Conservative groupoids have already been studied in the literature (e.g. [7]) and
anticommutative conservative groupoids were used as a model for undirected graphs
in [19]. More generally, conservative algebras have also found applications in theoretical
computer science. Most notably, they occur naturally in the study of the complexity of
the list-homomorphism problem [1, 5].

1.1. Conservative Groupoids and Tournaments

It is convenient to think of conservative groupoids as defining a generalization of
the Rock-Paper-Scissors game. For any conservative groupoid H, we define the game
in which players 1 and 2 each choose an element of H (say a and b respectively) and
player 1 wins iff a - b = a. In fact, it is helpful to think of this game as a competition
between elements of H.

Consider now a sequence w € H* of elements of the groupoid. A bracketing of this
sequence can be viewed as specifying a tournament structure involving the symbols of
w, i.e. a specific way to determine a winner among the elements of w. For instance, if
w = abed, then (a-b) - (c-d) is the tournament that first pits a against b and ¢ against d
and then has the two winners of that first round competing. Similarly in the tournament
((a-b)-c)-d we first have a facing b with the winner then facing ¢ and the winner of
that facing d. Note that this analogy makes sense because H is conservative and the
“winner” of any such tournament (i.e. the value of the product given this bracketing) is
indeed one of the participants (in the above example, one of a, b, ¢, or d). We intend
to study languages of the form A(a) = {w € H* | w can be bracketed to give a} and
we accordingly think of them as A(a) = {w € H* | an organizer can rig a tournament
structure for w to ensure that a wins}.

Let us define contest trees. We denote the set of all contest trees by 7. It is the
smallest set that contains the single-node tree a for any a € H, and such that the tree
t1 @ty is also in T, for any two trees t; and to in 7. Let T : HT — 27 be the function
that computes the set of possible contest trees over a given word.

T(a) = {a}

Tw) = {h@ta|u,ve HY, ww=mw, t; € T(u), ta € T(v)} if Jw| > 1.

us first formally define the multiplication monoid of a groupoid H. To each element a € H one can
associate the functions tq,qq : H — H defined by tq(z) = axz and ¢q(z) = za. The set Ty of functions
from H to H naturally forms a monoid under function composition. The multiplication monoid of H is
the submonoid of Ty generated by the set {ta,qs : a € H}.

An element z of a monoid is idempotent if 2 = z. Tt is well known that for any finite monoid M,
there exists a positive integer w such that z* is idempotent for all x € M. A finite monoid belongs to
the class DO if it satisfies the identity (xy)“ (yx)“ (zy)* = (xy)“ and belongs to the wider class DS if
it satisfies the weaker identity ((zy)* (yx)* (zy)¥)* = (zy)*.

Let H be the Rock-Paper-Scissors groupoid. Note that because H is commutative, we have t, = qq
for each a in H. Let us represent each element ¢t of Ty as a triple [¢(r); t(p); ¢(s)]. Thus ¢, = [r;p;7],
tp = [p;p;s] and ts = [r;s;s]. Now let ¢ = t; and y = trtp = [p;p;r]. We have zy = [s;s;r] and
(zy)? is the idempotent [r;r;s]. Moreover yx = [p;r;r] and (yz)? is the idempotent [r;p;p]. Finally
(zy)?(yx)%(zy)? = [r;r;r] which is idempotent but different from (zy)2. Therefore the multiplication
monoid of H violates the defining identity of DS.



Note that, when performing the left-to-right traversal of a tree in T'(w), the leaves that
we successively reach are the symbols that form w. Next, function W : T — H computes
the winner of a contest tree.

W) = a
W(t1®t2) = W(tl)'W(tg)

Note that the winner of a contest tree is unique. Next, we define the set of possible
winners in a given contest w by overloading function W with an additional definition of
type HT — 2. We define W (w) as {W(t) | t € T(w)}. Finally as defined earlier, we
denote by A(a) the language of the words for which we can arrange a contest in which a
is the winner, i.e. A(a) as {w € H" | a € W(w)}. When drawing contest trees, we often
label interior nodes with the winner of that subtree (see Figure 1).
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Figure 1: A contest tree on rpsrps over the Rock-Paper-Scissors groupoid.

It is convenient to further abuse the above terminology and notation as follows. Let
w be a word and let ¢ be a contest tree in T'(w). We say that ¢ is a bracketing of w and
write t(w) to denote the winner of the contest tree ¢t. For instance if H is the Rock-Paper-
Scissors groupoid then for w = rpsps and for t = r((ps)(ps)), we obtain ¢(w) = r. This
notation and terminology is particularly convenient because of the following observation.

Remark 1. For any t € T(w) and any z,y € H* we have W(xt(w)y) C W (zwy).
Indeed the right-hand side is the set of elements that can win under some bracketing of
zwy whereas the left-hand side represents the possible winners in the special case where
the segment w is bracketed according to t.

1.2. The Straubing-Thérien Hierarchy

The Straubing- Thérien hierarchy consists of classes of regular languages and is one
of the best-known examples of a so-called concatenation hierarchy (see e.g. [13]). A
language L C A* is in depth 0 of the hierarchy if it is either A* or () and it is of depth 1/2
if it is a union of languages of the form A*a; A*asA* ... axA* with each a; € A. Forn > 1
the rest of the hierarchy is defined inductively as follows: the language L is of depth n if
it is a Boolean combination of languages of depth n — 1/2 and is of depth n+ 1/2 if it is
a union of languages of the form LgajLias...arLy with a; € A and L; of depth n. Tt is
clear from the definition that the union of the classes in the Straubing-Thérien hierarchy
is equal to the class of star-free languages, i.e. languages that can be represented by a
regular expression using the union, concatenation and complement operators but without
using the * operator.



The Straubing-Thérien hierarchy has a nice logical interpretation [17, 11] since lan-
guages of depth n 4+ 1/2 are exactly those which can be expressed by a X,,;; first-order
sentence over words using the order predicate®. In the remainder of the paper we write
%1 (resp. X2) instead of “languages of Straubing-Thérien depth 1/2” (resp. 3/2). We also
denote as II; (resp. II5) the class of languages whose complement lies in 3 (resp. Xo).
The following is a useful combinatorial characterization of 3s: a language is X iff it is
a finite union of languages of the form AfaiAjas ... A;_ arA; where each A; C A [14].

The paper is organized as follows. In Section 2, we show that the languages that
can be recognized by conservative groupoids are all regular and in fact lie in 3. In
Section 3, we discuss the class of languages recognized by conservative groupoids, its
closure properties and its place in the Straubing-Thérien hierarchy.

A preliminary version of this paper appeared in the proceedings of the 6th Interna-
tional Conference on Language and Automata Theory and Applications (LATA 2012).

2. Main Theorem
The objective of this section is to establish our main theorem.

Theorem 2. For any conservative groupoid H and a € H, the language A(a) is regular.
Furthermore A(a) lies in Yo, i.e. it can be written as a finite union of languages of the
form ojaio7 ...0}_jaro} where the a; lie in H and the o; are subsets of H.

The demonstration proceeds in two steps. In the first step, we build a context-free
grammar G that generates A(a). In the second step, we analyze this grammar and show
that the language it generates lies in X,.

2.1. Initial Observations

We begin by establishing some further notation and auxiliary lemmas which are useful
in the sequel. In particular our first objective is to provide tools which help identify the
set of winners over a given string.

If H is a conservative groupoid and a,b are elements of H then we say that a is
left-favorable to b if ab = b (i.e. a loses when placed to the left of b) and that a is right-
favorable to b if ba = b (i.e. a loses when placed to the right of b). Note of course that
for any a # b, it holds that a is right-favorable to b iff b is not left-favorable to a and
vice-versa. We define the auxiliary functions fr : H — 2 and fr : H — 2 that, given
a symbol b, return the symbols that are respectively left-favorable and right-favorable to
b. Formally fr(b) ={a€ H|a-b="0b} and fr(b) ={a € H|b-a =b}.

Let o be a set of groupoid elements. We generalize our earlier definition of A by
setting A(o) = {w € H* | w can be bracketed to give some a in o}. We define A(c) =
Ao) U {e}

3Details can be found in e.g. [17, 11]. A 3, sentence over words begins with n alternating blocks of
quantifiers (starting with an existential block) that quantify over positions in the word. The quantifier-
free part is built from predicates of the form Quz (interpreted as “position z in the word holds an ) and
comparisons between positions z < y. For instance, the language A*aA*bA* discussed in Section 3.2
is defined by the X1 sentence Jx3Jy < y A Qax A Qpy. On the other hand, the language A*aaA* of
Proposition 20 can be defined by the 32 sentence 3zIyVz z < y A Qaz A Qay A (z < z <y — —Qp2).

5



Lemma 3. Leta € H andu € H*. Then, a € W (u) if and only if there is a factorization
u = vaw such that

o if [v| > 1, then there exists p € fr(a) N W(v);
o if jw| > 1, then there exists q € fr(a) N W (w).

An alternative formulation of this statement is that for any a € H, the language A(a)
is equal to the concatenation A(fr(a)) - {a} - A°(fr(a)).

PRrOOF.

(<)

Suppose that u = vaw and that s € T'(v) and ¢t € T(w) are such that s(v) = p and
t(w) = q with pa = a and aq = a. Consider the bracketing for u given by (s(v)(at(w))).
It evaluates to (p(aq)) = (pa) = a and therefore a € W(u) as claimed.

(=)
Proceed by induction on |u|. For the base case |u| = 1, note that if a € W(u), then in
fact u = a and we trivially obtain a factorization u = cae.

For the induction step, suppose that a € W(u) and |u| = k + 1. Consider a contest
tree ¢ in T'(u) such that ¢(u) = a. Consider the left-child ¢; and the right-child tr of
the root of t. Let z,y be the strings such that v = zy and such that t;, € T(x) and
tr € T(y). Since tr(2)tgr(y) = a and since H is conservative, one of the following must
hold:

1. tr(z) = a and atg(y) = a (i-e. tr(y) € fr(a));
2. tr(y) =a and ty(z)a = a (i.e. tp(z) € fr(a)).

Assume that case 1 holds (case 2 is handled symmetrically). Since a € W(z) and since
|z| < |u| we know by induction that 2 can be factorized as = vaw such that there exist
p € W(w)N fr(a) (or v is empty) and ¢ € W(w) N fr(a) (or w is empty). (See Figure 2)
If w = € then u = vay is a factorization with the properties required in the lemma’s

a
a

a q
a tr(y) P q tr(y) P q tr(y)
VA M ?M
e [ v | o Jefw [ v ] [ o efw | v ]

Figure 2: Steps in the proof of Lemma 3.

statement. Otherwise u = vawy and we know that w and y can be bracketed to obtain
q and tg(y) respectively. Since both of these elements are in fr(a), their product is also
in fr(a) so there exists ¢ € W(wy) N fr(a) and we are done. O

Following the intuition behind this lemma, we say that an element a € H is able
to beat a word w € H* to its left (resp. to its right) if there exists b € W (u) N fr(a)
6
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Figure 3: On the left, a favorable decomposition tree for p in the Rock-Paper-Scissors groupoid. The
yield of this tree is rpsrps. By Lemma 3, p wins on this word. On the right, a contest tree over rpsrps
built from the decomposition at left.

(resp. b € W(u) N fr(a)). Moreover, a favorable decomposition tree D for a € H is a
binary tree labelled by H U {e} such that for all nodes a of D, if b is a left (resp. right)
child of a, then b € fr(a) U {€e} (resp. b € fr(a) U {e}). The yield A(D) of D is an
inorder walk on D (see Figure 3). By Lemma 3, if D is a favorable decomposition tree
for a, then a € W(A(D)). On the other hand, if a € W(u), then there is a favorable
decomposition tree D for a such that u = A(D). It is important to distinguish contest
trees and favorable decomposition trees and Figure 3 gives an example of the contrast.

Remark 4. Any subtree r of a favorable decomposition tree D is a favorable decomposi-
tion tree for its root.

Our proof of the main theorem relies on a generalization of Lemma 3.

Lemma 5. For any o C H it holds that
Ao) = U A(fL®)Uo)-{b} A (fr(b) Vo).
bEo

Proor. Note that when o is a singleton, the statement is exactly Lemma 3.
Let us first show the left to right containment.

Afo) = [ J AD)

beo

C | A(u ) - {0} - A“(fr(b) (by Lemma 3)
beo

C [ JA(f2(b) Ua) - {b} - A“(fr(b) U o)
beo

For the right to left inclusion, we need to show that for any b € o we have A€(f1(b) U
o) - {b} - A°(fr(b) Uo) C A(o). Suppose w = zby with x € A°(fr(b) Uo) and y €
A¢(fr(b) Uo) and assume for now that = and y are non-empty. By definition of A there
exists some a € W(z) with a € f1(b) Uo and some ¢ € W (y) with ¢ € fr(b) Uo. Since
W (abc) C W (xby) it suffices to show that W (abc) N o # (. If a and ¢ both lie in o then
W(abe) C o and we are done. If a € fr(b) and ¢ € o then (ab)e = be € {b,c} C o.
Symmetrically, if ¢ € fr(b) and a € o then a(bc) = ab € {a,b} C o. Finally if a € f1.(b)
and ¢ € fr(b) then (ab)c=bc=0b € 0.

The case where x or y is empty can be handled just like the case where a (resp. b)
lies in f1,(b) (resp. fr(D)). O
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2.2. A Context-free Grammar for A(a)

We construct, for a conservative groupoid H and any a € H, a context-free grammar
generating A(a). This can be achieved in a number of ways but the following grammar
suggested by Lemma, 5 is particularly useful for our purpose. Let Gy be the grammar
with the non-terminals N = {S,} U{Bs | § # o C H} (with S, as the initial non-
terminal) and the production rules

R {Sa — Bcr’ aBa'” | OJ = fL(a’)ﬂ OJI = fR(a’)}
{By = By bBor |0 £ 0 CH, beo, ' =aU f(b), o’ =0cU fr(b)}

{By > €|0#0 CH}.

C C

Lemma 6. Let Gy be the grammar described above. For each non-terminal B, it holds
that L(B,) = A°(0) and the language generated by Gp is L(S,) = A(a).

ProOF. This is almost immediate from Lemma 5. Formally, we show that L(B,) C
A¢(o) for all o by induction on |u| for a u € L(B,). If u = € then by definition u € A¢(o).
If |lu| = k+1 and u € L(B,) then the first production used to derive u from B, is of the
form B, — B, b B,» with o/ = fr,(b) Uo and ¢” = fr(b) Uo. Therefore u = zby with
x € L(B,) and y € L(By~). By induction z € A°(¢’) and y € A°(¢”) so u € A(o) by
Lemma 5.

To show L(B,) 2 A¢(c) we again use induction. For the base case, note that € €
L(B,) since Gy contains the production B, — e. If |u| = k + 1 then by Lemma 5
we have u = zby with b € 0 and z € A°(¢’) and y € A°(¢”). By induction we get
x € L(B,) and y € L(B,~) and thus u € L(B,) using a derivation that starts with the
rule B, — By b By.

It is now obvious that since the only rule for S, is S, — By, (a) @ By, (a), Lemma 3
guarantees that L(S,) = A(a).

2.3. From the grammar to a o expression

Let H be a conservative groupoid with a some element of H and let L = A(a) C H*.
We are now ready to prove Theorem 2, and show that L is in fact in Yo, i.e. it is a finite
union of sets of the form oja 07 - - -a,0o};, with each a; € H and 0; C H.

Build from H the context-free grammar Gz with the method of Section 2.2; its initial
non-terminal is S,. We say that a derivation § is nonerasing if no production of the form
B — €is used in it. An induction on the length of § shows that a nonerasing derivation
outputs a string Y (§) = By,a1 By, - - - an By, , where each By, is a non-terminal and each
a; a terminal. We slightly abuse notation and use § to denote both the derivation and
the corresponding derivation tree. Then, we also write Y (§) to denote the output of a
tree 4, i.e. the left-to-right sequence of leaves of §. Erasing the non-terminals in Y'(J)
we obtain a word w(d) = ay - - - an. Replacing each non-terminal B, in Y (§) with o*, we
obtain a regular expression for the language L(§) = ofai07 ---ano) C L.

Let A denote the set of all nonerasing derivations from S,; we have

UL@cL={w@):sea}yc LG (1)

dEA ISPAN
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so that L is a union of sets of the form oja 07 ---a,0);. The union in Equation 1 is
infinite but we will prove that all but a finite numbers of the terms L(4) it contains are
redundant. More specifically, we say that a non-erasing derivation ¢ is dominated by a
non-erasing derivation ¢’ if L(§) C L(¢"). Note that if § is a non-erasing derivation that
contains « as a subtree and if + is dominated by some +' with the same root then the
tree ¢’ obtained by replacing « in § by v’ dominates 6.

We will define a finite set F C A of non-erasing derivations such that every non-
erasing derivation in A is dominated by one in F. Consequently, we will have L =
User L(9), a finite union. We prove this in a sequence of steps, where each step uses a
particular transformation on derivation trees. The successive transformations we present
consist in collapsing homogeneous subtrees, eliminating hiccup nodes, straightening paths
with multiple angles, and shortening paths that are too long. These transformations
collaborate to reduce any redundant tree 6 € A—in particular, one whose depth is more
than 3|H|—into a tree ¢’ € F that dominates 9.

We say that v is homogeneous for B, if B, is the only non-terminal involved in -,
i.e. every node in the derivation tree is either labeled by B, or by a letter in o. In
particular we have w(y) € o* and therefore L(vy) C o*. We claim that every ¢ containing
a homogeneous subtree v for B,, is dominated by the derivation obtained by replacing v
in § by B,. By our earlier observation, it suffices to establish that the tree v, consisting
of the single node labeled B, dominates «. This is obvious since L(~,) = o*. Therefore
any derivation ¢ is dominated by a §’ with |§| > |¢’| and such that ¢’ has no homogeneous
subtree.

The technique we use in the rest of this proof and which we call “recursive top-down
relabeling” is based on the following simple property of G .

Proposition 7. For any two subsets o C ¢’ and any production B, — BpaB. in the
grammar, there exists another production B, — By aB; with p C p' and 7 C 7'.

This is immediate from the definition of Gy and in fact we can be more precise and
establish that p’ = pUo¢’ and 7" = 17U o',

Let 0 be a nontrivial derivation tree, let B,, B, , b and B, be the root and its
sons, respectively, and let Y (§) = By,a1B,, - - - ax By, - The first production used in the
corresponding derivation is B, — B, bB,,. By the proposition, for every superset ¢’ of
o, there exists a production By — B/bB., with 11 C 71 and 72 C 75. We can relabel
the nodes of 9, first replacing with B/, B/, b and B, the root and its sons, and then by
doing similar replacements recursively in a top-down manner. The result is a derivation
tree ¢’ with root labelled B/, whose output is Y'(8') = By a1 By - ~ay By , where g; C o}
for every 0 < i < k, and therefore ' dominates 4.

We first apply this technique to those derivations which involve a production of the
form B, — B,bB,, and therefore such that § contains the pattern v:

v By

N

B, b B,

We say that a node, as above, with the same label as its left- and rightmost children is
a hiccup node. We want to show that every tree d containing a hiccup node is dominated
9



by one of equal or lesser size that is hiccup-free.

Let v be a subtree of § rooted at a hiccup node x such that no ancestor of x is a
hiccup node (i.e. we choose 7 to be as close to the root of ¢ as possible). First note that
if all non-terminal labels in 7 are also labeled B, then, by the homogeneous case, v can
be replaced by B, .

Otherwise, v contains a subtree u which breaks away from homogeneity:

where T,,, T., T, are subtrees with roots B,, B;, By respectively and where at least
one of 7 # ¢ and x # o holds; the case where the leftmost B, is expanded is symmetric.
The output of this subtree is Y (u) = Y (T,)bY (T )cY (Ty).

We want to show that if the first break in homogeneity occurs at depth i in v, then
~ can be dominated by a ' of identical size and with B, as its root but where the first
break in homogeneity occurs at depth ¢ — 1. To do this, consider v and reverse in the
derivation the order of productions B, — B,bB, and B, — B;bB,, and apply our
top-down relabeling technique to the left son of the root and its subtree; the result is a
subtree u' which dominates w:

O
e

where T, is obtained from 7T, by replacing the root by B, and using top-down relabeling.
Note that since either o # 7 or o # Y, the break in homogeneity has been moved up
to the root of v’ and by substituting u by «’ in 7, we obtain, as claimed, a 7’ in which
the first break in homogeneity occurs at depth ¢ — 1. By iterating this construction ¢ — 1
times, we obtain a 7"/ that dominates v and has the same root B, but where the root is
not a hiccup anymore. Note that this process might create new hiccups in the subtree "
but our construction can be iterated to eliminate these in turn. It is crucial to point out
that our relabeling always replaces a B, by a B, where ¢ C ¢’ so the depth of recursion
in our hiccup elimination procedure is at most |H]|.

We have thus far shown that any non-erasing derivation is dominated by one of equal
or lesser size in which no two sons of a node carry the same label as their parent. There
is still an infinite number of trees to consider since trees can contain a root-leaf path with
an arbitrarily long sequence of nodes labelled with the same non-terminal.

10



Along such a sequence, we say that the path moves to the left (resp. right) from a
given node if the left child (resp. right child) of that node is labeled B,. We show below
that any subtree that begins with a B, path is dominated by one where the path is of
length at most two and in fact consists of at most one move to the left followed by one
move to the right.

We say that a right B,-angle occurs at a node if this node is a leftmost son and both
the node, its father and its rightmost son carry the same label B, (see pattern p in the
diagram below). We define a left B,-angle dually (see pattern p’).

SN,
N SN

In the above, T}, T, and T, are trees with roots labeled B,, B, and B, respectively.
Seen as portions of a derivation tree, both patterns in this diagram have the same output
so that any derivation tree v which contains p is dominated by the tree v’ which contains
p’ instead of p (and vice versa). Observe that any other angle that may exist in « is
unaffected.

Therefore if 7 is a hiccup-free subtree rooted at B,, we can repeat this substitution*
process until the B, path starting at the root contains no more than one B,-angle and
we assume without loss of generality that it is a right angle. In other words, the path
consists of a certain number of moves to the left followed by a certain number of moves
to the right. Suppose that the B, path begins by at least two moves to the left, i.e. we

Bs

are in the following configuration:
B,
C2

TU C1 Sl

S

where T}, is a tree with root B, and 51, .52 are trees with roots By, , By, respectively and
where 1, x2 are both strict supersets of o.

4This substitution is reminiscent of the tree rotations that are performed on AVL trees and other
balanced trees.
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This subtree is dominated by the following one

B,

SN

Ta- C1 BXl

SN

Sl Co Sé

where S} is the tree obtained by top-down relabeling S5 using the root By, y,, following
Proposition 7. Note that, since x1 U o = x1, we can safely attach the subtree S; as the
leftmost child of B,,.

This shows that any subtree with a B, path starting at the root with ¢ > 2 moves
to the left can be dominated by a subtree where the B, path starts with ¢ — 1 moves
to the left. Applying this argument i — 2 times, we obtain a subtree where the B, path
begins with one left move possibly followed by a sequence of right moves. A symmetric
argument shows that we can assume that the latter sequence consists of at most one
right move.

By applying the above transformations repeatedly, we can dominate any derivation
tree by one of equal or smaller size which is hiccup-free and where every B, path is of
length no more than 2. The set F of such trees is finite since they all have depth at
most 3| H| so this translates into a finite 3o expression for the language generated by the
grammar. This concludes the proof of Theorem 2.

Example 8. To illustrate the above proof, let us go back to the Rock-Paper-Scissors
game and construct a regular expression for A(p) the set of words in {r,p, s}* on which
Paper can win. The grammar generating A(p) is given by the rules:

Sp = Bppy P By
Birpy = By PBrpy | Birp,sy T Birp,sy | €
Birpst = Birpst " Birp,st | Birp,sy P Birpst | Birp,sy 8 Birp,sy | €

Note that we can exclude the non-terminals By, Bypy, Bisy, Bir,s), Bip,s) which are in
fact unreachable from S,.

Every non-erasing derivation from S, begins with S, = By, p B py. In turn,
derivations from By, start with either By, ,y = B\ p Birpy or Birpy = Birpo) T
By p,sy- The first case immediately creates a hiccup node and can therefore be dominated
and safely ignored. In the second case, one is left with two occurrences of By, s but
any further derivation from these non-terminals must also create hiccup nodes. We are
therefore left with a Yo expression containing only four useful terms corresponding to the
following non-erasing derivations.

Sp = Birpy P Birpy
Sp = Birp} P Birpy = Birpy P Birp,sy 7 Birp,s}
Sp = Birp} P Birpy = Birp,s} T Biryp,syp Birp)

Sp = Brpy P Birpy = Birp,s} " Blrp,st P Birp,s} " Birp,s}
12



Accordingly, A(p) is represented by the reqular expression
* | (rlp)*p(rlpls)*r(rlpls)™ | (rlpls)*r(r|pls)*p(rlp)* |
(rlpls)*r(rlpls)*p(r|pls)*r(r|pls)*.

(rlp)*p(rlp)

This expression basically says that Paper can win on a string x if and only if x = upv
where both u and v either consist only of Papers and Rocks or contain a Rock. The same
language can be described more succinctly by the expression

[p"| (rlpls)*r(rlpls)*1p [p"| (rlp]s)"r(r|pls)*].

3. Languages Recognized by Conservative Groupoids

We now know that languages recognized by conservative groupoids are regular. In
this section we seek a more precise characterization.

3.1. Conservative Semigroups

One starting point is to consider conservative groupoids which are also associative,
i.e. semigroups for which = -y € {x,y}. In particular, these satisfy 2> = x but we can
give an exact characterization.

Lemma 9. A semigroup S is conservative iff its set of elements can be partitioned into
k classes C1,...,Cy such that

1. z-y=y- -z =2z whenever x € C; andy € C; fori < j;
2. z-y=ux for all z,y € C; (left-zero) or x -y =y for all x,y € C; (right-zero) for
any j.

PROOF. (<)

By definition, such a semigroup is conservative. Also, the operation defined above is
associative. Indeed if x,y, z are three elements lying in the same class C; then (z-y) -z =
x-(y-z)=uaif C; is left-zero and (z-y) -z =z - (y - 2) = z if C; is right-zero. If z,y, 2
are not in the same class then associativity follows because the elements in the most
absorbing class are the only ones that matter. Suppose for instance that x and z lie in
the same class C; while y lies in some C; with ¢ > j. Since z-y =z and y -z = z we
clearly have (z-y)-z=z-(y-2) = zz.

(=)

Conversely, suppose that S is a conservative semigroup. Let us recall the definition
of Green’s J-preorder noted <. Let z,y € S. We write x <7 y if there exists o, 8 € S
such that x = ayf. Finally, let us remind that x J y is Green’s J-equivalence relation
built with <.

Let us denote the J-classes of S by C1,...,Cy. Firstly, z <7 y or y <7 zx for all
xz,y € S since S is conservative. Then, the [J-classes are totally ordered by < and we
can assume that Cy,..., Cy are labelled such that C; <s C; iff ¢ < j.

(1). Let € C;, y € C; such that i < j. Thus, 2y <7 = <7 y and then, zy # y.
Since S is conservative, xy = z. We can show yx = x in the same way.

(2). Let x,y € C;. We suppose that x # y, otherwise the result is clearly true. Since
xz,y € Cy, then x <7 y and y <7 x; i.e. there exist «, 8,7, p € S such that z = ayf and

13



y = yxp. Since S is conservative, then we have one of a = z or § = x and one of vy =y
or p = y. This is equivalent to having one of zy = x or yzr = x and one of yxr = y or
zy = 1. Note that we cannot have xy = x and yxr = x at the same time because neither
of xy = y or yx = y would be true and that would cause a contradiction. If we have
xy = x, then yx = y and the left element wins in both cases. If we have yz = x, then
xy = y and the right element wins in both cases.

O

This characterization can be translated into a description of the languages recogniz-
able by conservative semigroups. For an alphabet A, consider a partition C1, ..., Cj each
with an associated direction dy,...,d; with d; € {L,R, C} given in the following way:

e if C; has at least two elements and is a left-zero, d; = L;
e if C; has at least two elements and is a right-zero, d; = R;
e otherwise C; has one element and d; = C.

For a € C; with d; = L (resp. d; = R), define the language L, (resp. R,) of words
with at least one a that contain no occurrence of letters in classes C; with ¢ < j and
where the first (resp. last) occurrence of a letter in C; is an a. If d; = C, define the
language C, of words with at least one a that contain no occurrence of letters in classes
C; with i < 7.

Corollary 10. A language can be recognized by a conservative semigroup iff it is the
disjoint union of some Lo, R, and C,.

Note that the class of languages recognized by conservative semigroups does not, have
many closure properties. For instance, it is not closed under union or intersection: each
of the languages A*aA* and A*bA* can be recognized but their union (or intersection)
has a syntactic semigroup which is not conservative.

3.2. Basic Properties of the Non-Associative Case

The apparent absence of closure properties makes it difficult to provide a com-
plete characterization of languages recognized by non-associative, conservative groupoids.
Moreover the definition of recognition by a groupoid allows a homomorphism A : A* —
H* that “translates” a word over the original alphabet into a string of groupoid elements
and this can be surprisingly powerful. Consider for instance the alphabet A = {a,b}
and the language K = A*aA*bA*. This language is not commutative (i.e. there exist
x,y such that xzy € K and yx ¢ K) yet it can be recognized by the rock-paper-scissors
groupoid H = {r,p, s} which is commutative. Indeed, if one chooses the accepting set
F = {p} and if h(a) = ps and h(b) = r then it is possible to show that w € K iff
W(h(w)) N F # 0. Indeed if w ¢ K then h(w) = r"(ps)™ for some n,m € N and by
Example 8, it is impossible for p to win such a word. Conversely, suppose that w € K.
Consider the first p occurring in h(w). On its left one finds ™ for some n > 0 and on its
right there is at least one Rock because w € K. Therefore by Example 8, Paper is able
to win on h(w).

14



In the rest of this section we prove a number of results which provide important insight
into the place that languages recognizable by conservative groupoids occupy within the
Straubing-Thérien hierarchy.

We begin by four simple lemmas.

Lemma 11. The class of languages recognized by conservative groupoids is closed under
inverse homomorphisms h : B* — A* from one free monoid to the other, i.e. if L C A*
can be recognized by the conservative groupoid H then h=1(L) can also be recognized by
H.

PRrooF. This is a well-known straightforward consequence of the definition of recognition
by a groupoid and does not depend on the fact that H is conservative. Indeed if L is
recognized using the mapping ¢ : A* — H* and the accepting subset F' then by setting
1) = ¢ o h we obtain a homomorphism from B* to H* and we have

W(z) NF#0 e W(eh)NF £0e hiz) € L zeh (L)

Corollary 12. Every language recognizable by a conservative groupoid lies in .

PRrROOF. Suppose L C A* is recognizable by a conservative groupoid H using the homo-
morphism h : A* — H* and the accepting subset F' C H. By definition, L = h=}(A(F))
and A(F) lies in 33 by Theorem 2. It is known (see [13]) that X5 is closed under inverse
homomorphic images. O

Lemma 13. If L C A* is recognizable by a conservative groupoid, then for any B C A
the language L N B* is also recognizable by a conservative groupoid.

PROOF. Suppose L is recognized by the conservative groupoid H using the homomor-
phism h : A* — H* and accepting subset F' C H. Define Hy by adding a new absorbing
element 0 in H (i.e. 0z = 20 = 0 for all x € H). Note that the groupoid Hy is still con-
servative. Now define g : A* — H{ by setting g(a) = h(a) if a € B and g(a) =0if a € B.
For any w ¢ B*, we therefore have a 0 occurring in g(w) and thus W(g(w)) = {0}. On
the other hand if w € B* then g(w) = h(w) and therefore L N B* is precisely the set of
words such that W (g(w)) N F # 0. O

Lemma 14. If L. C A* is recognized by a conservative groupoid H then L = LT (where
LT denotes LL*).

PROOF. Suppose L is recognized using h : A* — H™* and accepting subset F. Consider
a word of LT ie. x = x1...x, with each 2; in L. We know that for each 4 there
exists some a; € F such that h(z;) can be bracketed to get a; as the winner. Now
h(z) = h(z1)...h(zk) so W(h(z)) 2 W(ay ...ax). Since H is conservative and since all
a; lie in F, the set W (h(z)) contains at least one of the a; and x € L. O

Let L be a language over A*. The syntactic pre-order of L on A* is defined by setting

x <y y iff for all s,t € A* it holds that syt € L = sat € L. Note that < is compatible

with concatenation in the sense that x <r y = uzv <r, uyv for any z,y,u,v € A*. This
15



pre-order and the corresponding equivalence relation (z =p, y if sat € L < syt € L for
all s,t € A*) are central to algebraic automata theory. A theorem of Pin [12] states
that every positive variety of languages, i.e. every class £ of languages closed under
union, intersection, inverse morphic images (if K C A* isin £ and h : B* — A* is a
homomorphism then h=!(K) € £) and left and right quotients (if K € £ and a € A then
a 'K € L and Ka=! € £ where a 'K = {2z : ax € K} and Ka™! = {x : za € K})
can be characterized by a (possibly infinite) set of defining identities of the syntactic
pre-order. A formal treatment of identities can be found in [13] but the following two
examples are somewhat typical and particularly relevant in our context. A language L
lies in ¥y iff <, € for all = (see e.g. [15, 13]). A language L lies in X iff there exists
some w such that z¥yx* <y x“ whenever the set of letters occurring in x is equal to the
set of letters occurring in y [15].

The syntactic pre-order allows us to give a simple necessary condition for recogniz-
ability by a conservative groupoid.

Lemma 15. If L C A* is recognized by a conservative groupoid then x* <p x for all
x e A*.

Proovr. It suffices to show that for any conservative groupoid H and any s,u,t € H* it
holds that W (sut) C W (su?t).

Suppose w = wuj...up. Pick any element in W(u), i.e. fix some j such that u;
is a winner in u given the correct bracketing. By Lemma 3, there exist contest trees
7 € T(ur...uj—1) and 7 € T(ujt1...ug) such that 7(u1...uj—1) = £ € fr(uy)
and 7/(uj41...ux) = 7 € fr(u;). Now consider the partial bracketing of su?t =
Sup ... upuy ... ugt given by

sup .o T (U - ug)T(U U ) U gt = Sug Tl gt
In turn, the latter can be bracketed as

sug - wj—1 ((wr) (Qug))uj - o gt = sug - wj—1 (W) Ujtq - . ugt

= sui...upt = sut.
In particular W (sut) C W (su?t). O

Corollary 16. The class of languages recognized by conservative groupoids

1. is not closed under complement
2. is not closed under union.

PROOF.

1. We showed earlier that L = X*aX*bX* is recognizable by the Rock-Paper-Scissors
groupoid but Lemma 14 guarantees that its complement L€ is not recognizable by
a conservative groupoid. Indeed note that L¢ contains the words a, b and € so
(L)* = {a,by* # L°.

2. The language L1 = a{a,b}* can be recognized by the two element conservative
groupoid {z,y} where xy = x and yx = y. (This groupoid is in fact associative.)
Similarly, Ly = {a,b}*b can be recognized by a two element conservative groupoid.
Since a € L1 and b € Ly we have a,b € L1 U Ly and therefore ba € (L1 U L3)™ even
though ba & L U Ls. By Lemma 14, this proves that L; U Ly cannot be recognized
by a conservative groupoid. (I
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Whether the class of languages recognizable by conservative groupoids is closed under
intersection remains an open question.

Finally, the following lemma is useful for analyzing particular sequences of groupoid
elements since it shows that repetitions of a given element can be eliminated without
changing the set of potential winners.

Lemma 17. Let H be a conservative groupoid and let a € H. For any s,t € H* we have
W (sat) = W (saat).

ProOOF. By Lemma 15, we have W (sat) C W (saat) for all a € H.

Let b € W (saat). Let D be a favorable decomposition tree for b such that A(D) =
saat. Let a; and as be the two instances of a. Without loss of generality, we can suppose
that a; is a descendant of as in D because a; and as are neighbours. Moreover, there
is a subtree r of D rooted at a; such that saat = xA(r)ast. Let v’ be the left subtree
of a; in r. Since r is a favorable decomposition tree for a, there exists a contest tree
p € T(A(r")az) such that p(A(r')az) = as.

For this reason, we just need to show that b € W (zaat). By replacing r by a leaf € in
D, we get a favorable decomposition tree D’ for b such that A(D') = zast = xzat. Thus,
b e W(zat) C W(sat). O

Lemma 17 says that for any conservative groupoid H, any h € H and any s,t € H*
the language A(h) has the following property

sat € A(h) < saat € A(h).

This property is known as stutter invariance and has been extensively studied, in partic-
ular in the context of automated verification (e.g. [8]).

3.3. Place in the Straubing-Thérien Hierarchy

Our main theorem shows that if L can be recognized by a conservative groupoid then
L is in Y5 but examples in Corollary 16 show that the converse is not true. We begin
this section by showing that each L in ¥; is recognizable by a conservative groupoid.

Lemma 18. Let A ={a11,...,81k,---,G01,---,00k | be some alphabet. (Let us stress
that the a; ; are all distinct.) Then

A*a1 1 AY . AT g AU LU A AT A ag g, AT
can be recognized by a conservative groupoid.

PrROOF. Let H; = {a;1,8i1,---, ik Pk} and let H = |J H;. We choose the
1<i<l

homomorphism h : A — H* defined by h(a;;) = o, ;8 ; and the accepting subset

F = {B1kys---,01k }- We define the conservative operation on H by first defining it

within each H;:

® O O |k = kg,

o;; forall j#1
® ;jBik = e
/B'L',ki lf] =1
17



Q; g fOI'&HjZkZ?ékZ
o a; Bk = ’ .
Bix forallj<k#k

ap forall j<k-—1
o Bijop = ,
ﬁiJ for allj > k—1

ﬁiJ for all j > k

* BigbPis = {m,k for all j < k

The above rules specify the multiplication within each H;. In the rules below, we
define the other products and therefore assume i # r.

® Y jOp | = Qlp L}

. if k £k,
® aifrk = {ﬂ o, 7

Qg g if k= kr

g if j# ki

o bijark = B, ifj=k;
1,7 I .7 -

Bri ifj#k; and k #k,
® Biibre=19," . . B
Bi; ifj=kiork=k,

Let us point out a few important properties of H. First, for any ¢, the element 3; ,
is weak when facing an opponent on its left since fr(8i ) = {@i1, Bik; }- It is however
strong when facing an element on its right since fr(8ir,) = H. Secondly, an element
o ; loses on its right against any element outside of H; with the sole exception of the
Br.k,- The same is true for any element f3; ; with j # k;.

CLAaM (f). Let w = h(v) and |u| > 0. There is an «; ; in W (u).

PRrROOF. By definition of h, the word u is a sequence of pairs o, s, 0r,.s;- We begin by
considering the following partial bracketing of wu:

(O‘h,slﬂh,SJ(arz,sZﬂw,Sz) cee (O‘Tmsnﬂrmsn)-

The result within each pair of brackets is of « type and so any further bracketing will
produce a winner of « type. O

CLAIM.
w € A%y 1 A" A%ay AT UL U AT AT A, AT T F W (h(w)) £ 0.

PROOF.

(=)

By hypothesis, h(w) = w11 8;1u2 ... Uk, 0 k; Bik, Uk;+1- By the claim f, there exists
Ao € Wi(ug) for all 1 < ¢ < k; + 1 such that Ay is of the form «; ;. Let ¢, be the contest

tree over each uy such that ty(ue) = Ag.
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Consider the following partial bracketing of wia; 18102 . . . Uk, & k; Bi b Uk 41

(t1(ur)as1)Bia(ta(uz)ai2) - (tk, (uk, )ik, ) (Bi gt (k1))
= (Arai1)Bin(Aeai) o (A, @ik, ) (Bikey Aki+1))-

Since a; ja, 1, = oy for all 4, j,r, k and B; i, 0 = By, for any 4,7, k, the latter partial
bracketing evaluates to

oi1Binei2Bio. .. 0 Bik, -

It thus suffices to show that §; , can win on this string and this is achieved through
the following bracketing:

(i1 (Bia (- (Biks—2(ishy =1 (Biks—1i k) - - ) Bi ks )-

(<)
By definition h(w) is a sequence of pairs a; ,3;  which we call companion pairs. Note first
that for any favorable decomposition tree D, if A\(D) = safBv where «, 8 are companion
letters, then either « is the rightmost node of the left subtree of the subtree rooted at
in D or § is the leftmost node of the right subtree of the subtree rooted at o in D.
Suppose B r, € W(h(w)) and let h(w) = sap k, Bp.k,v Where this occurrence of 3, &,
is the eventual winner. By Lemma 3, there exists a favorable decomposition tree D for
Bp,k,- A perfect subtree D’ of D is a favorable decomposition tree such that

e the root of D" is 4, for some g € {1,...,1};
® 34k, is an ancestor of its companion element oy, ;

e any proper subtree D" of D’ is not a perfect subtree of D’.

There is at least one perfect subtree in D because if D does not have a perfect proper
subtree, then D itself is a perfect subtree. Therefore let D’ be a perfect subtree with
root, of label 34 r,. We observe the following facts about D’

® «y 1, is the rightmost node of the left subtree of 3, 1, since ag x, is not the ancestor
of ﬂq,kq 5

(x) D’ does not contain another 3, . which is the ancestor of its companion element
@, because this would imply that D’ has a perfect proper subtree rooted at this

ﬁz,kz;

e g is the left child of 8, because fr(Bqk,) = {aq1,Bqk,} and by % the choice
of Bg,k, is excluded;

o let 1 < ¢ < kg, then the right child of a4+ can only be a4 or B4 with s <t
because the only other choices in fr(aq:) are of 3, . type and this cannot happen
by *;
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ﬁq,kq

Qq,1

\
Qq,kq

Figure 4: The structure of the perfect subtree D’

e let 1 < ¢ < kg, then the right child of 3,; can only be ayy1, Bg,s Or ags With
s < t because the only other choices in fr(5,:) are of 3, . type and this cannot
happen by *.

Now consider the left subtree D" of 3,1, with root a4 and consider the rightmost
path in that subtree (see Figure 4). This sequence of labels starts at o1, ends at ag g,
and by the above facts it must therefore include a subsequence oy 1, 34,1, g2, - -, Qg k,-

Thus, A(D’) includes the subsequence oy 1, B¢,1,- -, Qq.k,» B kys 1-€-

AND'") € Hfag1H* B H” ... H g o, H Bg,1c, H,
so does A\(D), and this implies that
we A%ag 1 A" .. A%agp, A"
by the definition of h. O
Theorem 19. FEach language in ¥ is recognizable by a conservative groupoid.
PROOF. Suppose L is in 1, i.e. that
L=DB"b1B*...B*b1 4, B*"U...UB*b1B*... B*by ,, B*.

Lemma 18 establishes the theorem for the special case where all the b; ; are distinct. If
they are not distinct, then let A = {a11,...,01,k,---,001,--.,00k,} be a new alphabet
in which all a; ; are distinct and define

K= A*al,lA* cee A*al,klA* u...u A*agJA* cee A*ag,]WA*.

Since K is recognizable by a conservative groupoid, it is sufficient by Lemma 11 to give
a homomorphism h : B* — A* such that h=!(K) = L. Suppose B = {c1,...,c,}. We
define

Or1,ky  Or 1 kq—1 8r1,1 Or,2,ky Or,2,1 Or kg Or,e,1
h(c,) = O N e T 1 D Y e R ) DY b}

where 6r,i,j =1if bi,j = Cr and 6r,i,j =0if bi,j 7é Cr. Thus a5 OCcurs in h(CT) iff bi,j = Cp-
Let us first show that h(L) C K. Suppose w € L and without loss of general-
ity that w € B*by1B*... B*b1 5, B*. Then by1b12...b1, is a subsequence of w and
h(b1,1)h(b1,2) ... (b1 k,) is a subsequence of h(w). By definition of h the letter a; ; oc-
curs in h(b; ;) S0 a1,1a12 ... a1k, is a subsequence of h(w) and thus h(w) € K.
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Conversely, suppose h(w) contains the subsequence a1 1a1.2...a1,%, . Each a; ; in this
sequence comes from some h(c,) where by ; = ¢,. A single h(c,) may contain more than
one a; ; but note that these occur in decreasing order with respect to j. Therefore these
a1,; must be the result of distinct occurrences of letters in w and therefore w contains
the subsequence by1...b1, and w € L. O

Our results thus far show that the class of languages recognizable by conservative
groupoids contains »; and is contained in ¥5. We complete this picture by establish-
ing two partial results that clarify the place of this class within the Straubing-Thérien
hierarchy.

The class of languages that lie both in Y5 and in II5 is well-studied and admits a long
list of logical, algebraic and combinatorial characterizations [16]. It is therefore natural
to ask if the class of languages recognizable by conservative groupoids is contained in Ils.
As the next example shows, this is in fact not the case.

Proposition 20. The language {a,b}*aa{a,b}* is recognizable by a conservative group-
oid. This language is known to lie outside Iy (see e.g. [16]).

ProoF. Let w € A*. Consider the groupoid H with the following multiplication table

| = DN = -t
N|WIN| NN
L[| W= W
N N N S Y

Y M

with h(a) = 123, h(b) = 4 and F = {2}. We claim that w € A*aaA* if and only if
2 € W(h(w)).

(=)

If w e A*aaA*, then h(w) = 2123123y with 2,y € H*. Consider the partial bracketing
x12(31)(23)y = 21213y. We claim that the 2 in this word can win. Indeed, to its left one
finds =1 and we need to show that 21 € A(f1(2)). If we pick an arbitrary contest tree ¢ in
T(x) then (¢(z)1) # 3 since 31 = 1. Therefore (t(x)1) € {1,2,4} = fr(2). Similarly, to
the right of 2 one finds 13y. For any contest tree s € T'(3y) we have (1(s(3y))) € {1,2}
since 1 beats every element on its right except 2. Therefore 13y € A(fr(2)) and by
Lemma 3 we have 2 € W (2123123y).

(<)

For any ¢,j € {1,2,3,4}, let A, ; denote the set of strings which begin with ¢, end with
j and are substrings of (1234)" for some n. For instance Az, = {3412, 34123412, ...,
34(1234)%12, ...} and Az = {23(4123)!i > 0}. In the following table, we compute
upper bounds V; ; for the set of elements that can win on some word in A4; ;. To compute
such bounds, it suffices to ensure that V;; contains ¢ and that for every ¢,j we have
Vii 2 Up{stls € Vig,t € Vigr,j}. We claim that Table 1 provides the minimal solution
to these constraints although it is sufficient for our purposes to verify that it is a solution.
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1 2 3 4
L4y [ {1,234 [ {134} [ {14)
{4} | {234} | {34} | {4}
{4} | {234} | {34} | {4}
{4 | {234} | 34} | {4}

Y M

Table 1: The set V; ; upper bounds the set of elements that can win on a substring of (1234)™ that
begins with ¢ and ends with j.

Now suppose that 2 € W(h(w)) but assume for the sake of contradiction that w ¢
A*aaA*. Because 2 wins on h(w), then w has at least one a. If it has exactly one a,
then h(w) € h(b*ab*) = 4*1234* and since we are interested in W (h(w)), we can use
Lemma 17 and assume that the blocks of 4’s are of length at most 1. If w has more than
one a then

h(w) € h(b*ab™ ... b ab*) = 4*1234" ... 471234*.

By Lemma 17, we can remove repeated occurrences of 4 and simply assume that h(w) is
in 4*1234 ...12341234* with the initial and final blocks of 4 of length at most 1. Therefore
if 2 € W(h(w)) then 2 wins on a substring of (1234)"™ which begins with 1 or 4 and ends
with 3 or 4 but this contradicts the upper bounds V; ; computed in the preceding table.

O

Lemma 21. If L C A* is a language in II; that can be recognized by a conservative
groupoid then there exists B C A such that either L = B* or L = Bt.

Proor. If L € II; then 2 > € for all z and this implies that 22 > « for all 2. On
the other hand, since L can be recognized by a conservative groupoid then 2 <p = by
Lemma 15. Therefore 22 =; z for all . In particular yz =; yzyz and since x >, €
we get yzyz >1 zy. Thus yz =p zy. It is well known that if L satisfies 22 =;, x and
yxr =5 xy then x =; y whenever x and y contain the same set of letters. Now let
B = {a € Ala € L}. Since L = LT by Lemma 14 we have Bt C L and if € € L we
further have B* C L. Suppose that there exists z € L — B*. This means that z = ycz
for some ¢ ¢ B. By definition of B we have ¢ € L but since y >, € and z >, € we get
ycz >, c. However this shows that x ¢ L, a contradiction. Therefore L C B*. O

4. Conclusion and Future Work

We have shown that conservative groupoids can only recognize regular languages.
Beaudry, Lemieux, and Thérien had previously exhibited a large class of groupoids with
the same limitations [3, 2, 4] but our work is incomparable to theirs and our methods are,
accordingly, quite different. It is natural to ask whether our approach can be generalized
to find a wider class of “weak” groupoids and an obvious target are the 0-conservative
groupoids, that is groupoids H with a 0 element such that 0-z =x-0=0forall x € H
and z -y € {z,y,0} for all x,y € H; i.e. all non-conservative products are 0.

Moreover, we have shown that the languages recognizable by conservative groupoids
include all of 3; and are contained in 5. We also established some necessary conditions
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for recognizability by conservative groupoids but the picture is still incomplete and leads
to some interesting open problems.

While we have shown that the class of languages recognizable by conservative group-
oids is not closed under union or complement, we still do not know if it is closed under
intersection. We conjecture that it is not but note that Lemmas 14 and 15 can be of no
help in proving this since they are based on necessary conditions that are preserved by
intersection.

Another interesting question concerns the optimality of our constructions. With
A = {a} the language C) = {a’ : t > k} is in ¥; since it is represented by the expression
A*aA*aA* .. .aA* (with k as). The construction of Lemma 18 shows that Cj can be
recognized by a conservative groupoid of size 2k. Intuitively, one might expect that any
conservative groupoid requires size at least k to recognize C}, since this language basically
counts up to k. But surprisingly it is possible to count up to 6 with the following groupoid
that only has five elements.

NN NN
Ot Ot O] D[ Ot O

O | QO x| ] s

Wl W| W Wl W

U i[O DN =t
o x| = o= =

We leave it as a (fun) exercise to check that if one sets h(a) = 12345 and F = {4}
then h=1(F) = {a® : t > 6}, i.e. that W((12345)") contains 4 if and only if t > 6. We
do not have any non-trivial lower bounds for the optimal size of a conservative groupoid
recognizing Cj and our best upper bound is 2k (guaranteed by Lemma 18).
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