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Abstra
t

The notion of re
ognition of a language by a �nite semigroup 
an be generalized to

re
ognition by �nite groupoids, i.e. sets equipped with a binary operation ` · ' whi
h is

not ne
essarily asso
iative. It is well known that L 
an be re
ognized by a groupoid i�

L is 
ontext-free. However it is also known that some sub
lasses of groupoids 
an only

re
ognize regular languages.

A groupoid H is said to be 
onservative if a · b ∈ {a, b} for all a, b ∈ H . The �rst

result of this paper is that 
onservative groupoids 
an only re
ognize regular languages.

This 
lass of groupoids is in
omparable with the ones identi�ed so far whi
h share this

property, so we are exhibiting a new way in whi
h a groupoid 
an be too weak to re
ognize

non-regular languages.

We also study the 
lass Lcons of regular languages that 
an be re
ognized in this way

and explain how it �ts within the well-known Straubing-Thérien hierar
hy. In parti
ular

we show that Lcons 
ontains depth 1/2 of the hierar
hy and is entirely 
ontained in depth

3/2.

Keywords: groupoid, 
onservative algebra, algebrai
 automata theory

1. Introdu
tion

A semigroup S is a set with a binary asso
iative operation. It is a monoid if it also

has an identity element. The algebrai
 point of view on automata, whi
h is 
entral to

some of the most important results in the study of regular languages, relies on viewing

a �nite semigroup as a language re
ognizer. This makes it possible to 
lassify a regular

language a

ording to the semigroups or monoids able to re
ognize it. There are various

ways in whi
h to formalize this idea but the following one will be useful in our 
ontext: a
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language L ⊆ A∗
is re
ognized by a �nite monoid M if there is a homomorphism h from

the free monoid A∗
to the free monoid M∗

and a set F ⊆M su
h that w ∈ L i� h(w) is
a sequen
e of elements whose produ
t lies in F . Sin
e the operation of M is asso
iative,

this produ
t is well de�ned. This framework underlies algebrai
 
hara
terizations of

many important 
lasses of regular languages (see [13℄ for a survey).

These ideas have been extended to non-asso
iative binary algebras, i.e. groupoids. If

a groupoid is non-asso
iative, a string of groupoid elements does not have a well-de�ned

produ
t so the above notion of language re
ognition must be tweaked. A language L
is said to be re
ognized by a �nite groupoid H if there is a homomorphism h from

the free monoid A∗
to the free monoid H∗

and a set F ⊆ H su
h that w ∈ L i� the

sequen
e of groupoid elements h(w) 
an be bra
keted

1

so that the resulting produ
t lies

in F . It has been shown that a language 
an be re
ognized by a �nite groupoid i� it is


ontext-free [9, 10, 18℄.

However, 
ertain groupoids are too weak to re
ognize non-regular languages. The

�rst non-trivial example was provided by Caussinus and Lemieux who showed that loops

(groupoids with an identity element and left/right inverses) 
an only re
ognize regular

languages [6℄. Beaudry et al. later showed that the languages re
ognized by loops are

pre
isely the regular open languages [3℄. Along the same lines, Beaudry showed in [2℄

that if H is a groupoid whose multipli
ation monoid M(H) is in the variety DA then it


an only re
ognize regular languages. (M(H) is the transformation monoid generated by

the rows and 
olumns of the multipli
ation table of H .) Finally, Beaudry et al. proved

that this still holds if the multipli
ation monoid lies in the larger variety DO [4℄.

A groupoid H with operation ` · ' is said to be 
onservative if a · b ∈ {a, b} for all

a, b ∈ H . The simplest example of a non-asso
iative and 
onservative groupoid is the one

de�ned by the Ro
k-Paper-S
issors game. In this game, two players simultaneously make

a sign with their �ngers 
hosen among Ro
k, Paper, and S
issors. Ro
k beats S
issors,

S
issors beats Paper, Paper beats Ro
k, and identi
al signs result in a tie. The asso
iated

groupoid has three elements r, p, s and the multipli
ation is given below (expli
it list of

produ
ts on the left, multipli
ation table on the right).

r · r = r · s = s · r = r

p · p = p · r = r · p = p

s · s = s · p = p · s = s

r p s

r r p r

p p p s

s r s s

Note that H is indeed 
onservative and non-asso
iative sin
e

(r · p) · s = s 6= r = r · (p · s).

The main result of our paper is that 
onservative groupoids re
ognize only regular lan-

guages and in fa
t a very restri
ted 
lass of regular languages. Our results are in
om-

parable to those of Beaudry et al. sin
e a straightforward 
al
ulation

2

shows that the

1

If h(w) is the empty word then it 
annot be bra
keted. To handle this ex
eption, we 
onsider that

the result of the evaluation of ǫ is a spe
ial element η 6∈ H whi
h may or may not be a part of F . This

te
hni
al issue is without in
iden
e for the main results of this paper.

2

This 
al
ulation is somewhat tangential to our results but we in
lude it here for 
ompleteness. Let

2



multipli
ation monoid of the Ro
k-Paper-S
issors groupoid does not belong to the variety

DO nor to the larger variety DS.

Conservative groupoids have already been studied in the literature (e.g. [7℄) and

anti
ommutative 
onservative groupoids were used as a model for undire
ted graphs

in [19℄. More generally, 
onservative algebras have also found appli
ations in theoreti
al


omputer s
ien
e. Most notably, they o

ur naturally in the study of the 
omplexity of

the list-homomorphism problem [1, 5℄.

1.1. Conservative Groupoids and Tournaments

It is 
onvenient to think of 
onservative groupoids as de�ning a generalization of

the Ro
k-Paper-S
issors game. For any 
onservative groupoid H , we de�ne the game

in whi
h players 1 and 2 ea
h 
hoose an element of H (say a and b respe
tively) and

player 1 wins i� a · b = a. In fa
t, it is helpful to think of this game as a 
ompetition

between elements of H .

Consider now a sequen
e w ∈ H∗
of elements of the groupoid. A bra
keting of this

sequen
e 
an be viewed as spe
ifying a tournament stru
ture involving the symbols of

w, i.e. a spe
i�
 way to determine a winner among the elements of w. For instan
e, if

w = abcd, then (a · b) · (c · d) is the tournament that �rst pits a against b and c against d
and then has the two winners of that �rst round 
ompeting. Similarly in the tournament

((a · b) · c) · d we �rst have a fa
ing b with the winner then fa
ing c and the winner of

that fa
ing d. Note that this analogy makes sense be
ause H is 
onservative and the

�winner� of any su
h tournament (i.e. the value of the produ
t given this bra
keting) is

indeed one of the parti
ipants (in the above example, one of a, b, c, or d). We intend

to study languages of the form Λ(a) = {w ∈ H∗ | w 
an be bra
keted to give a} and

we a

ordingly think of them as Λ(a) = {w ∈ H∗ | an organizer 
an rig a tournament

stru
ture for w to ensure that a wins}.
Let us de�ne 
ontest trees. We denote the set of all 
ontest trees by T . It is the

smallest set that 
ontains the single-node tree a for any a ∈ H , and su
h that the tree

t1 ⊗ t2 is also in T , for any two trees t1 and t2 in T . Let T : H+ → 2T be the fun
tion

that 
omputes the set of possible 
ontest trees over a given word.

T (a) = {a}

T (w) = {t1 ⊗ t2 | u, v ∈ H+, uv = w, t1 ∈ T (u), t2 ∈ T (v)} if |w| > 1.

us �rst formally de�ne the multipli
ation monoid of a groupoid H. To ea
h element a ∈ H one 
an

asso
iate the fun
tions ta, qa : H → H de�ned by ta(x) = ax and qa(x) = xa. The set TH of fun
tions

from H to H naturally forms a monoid under fun
tion 
omposition. The multipli
ation monoid of H is

the submonoid of TH generated by the set {ta, qa : a ∈ H}.
An element x of a monoid is idempotent if x2 = x. It is well known that for any �nite monoid M ,

there exists a positive integer ω su
h that xω
is idempotent for all x ∈ M . A �nite monoid belongs to

the 
lass DO if it satis�es the identity (xy)ω(yx)ω(xy)ω = (xy)ω and belongs to the wider 
lass DS if

it satis�es the weaker identity ((xy)ω(yx)ω(xy)ω)ω = (xy)ω .
Let H be the Ro
k-Paper-S
issors groupoid. Note that be
ause H is 
ommutative, we have ta = qa

for ea
h a in H. Let us represent ea
h element t of TH as a triple [t(r); t(p); t(s)]. Thus tr = [r; p; r],
tp = [p;p; s] and ts = [r; s; s]. Now let x = ts and y = trtp = [p; p; r]. We have xy = [s; s; r] and
(xy)2 is the idempotent [r; r; s]. Moreover yx = [p; r; r] and (yx)2 is the idempotent [r;p; p]. Finally

(xy)2(yx)2(xy)2 = [r; r; r] whi
h is idempotent but di�erent from (xy)2. Therefore the multipli
ation

monoid of H violates the de�ning identity of DS.
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Note that, when performing the left-to-right traversal of a tree in T (w), the leaves that

we su

essively rea
h are the symbols that form w. Next, fun
tionW : T → H 
omputes

the winner of a 
ontest tree.

W (a) = a

W (t1 ⊗ t2) = W (t1) ·W (t2)

Note that the winner of a 
ontest tree is unique. Next, we de�ne the set of possible

winners in a given 
ontest w by overloading fun
tion W with an additional de�nition of

type H+ → 2H . We de�ne W (w) as {W (t) | t ∈ T (w)}. Finally as de�ned earlier, we

denote by Λ(a) the language of the words for whi
h we 
an arrange a 
ontest in whi
h a
is the winner, i.e. Λ(a) as {w ∈ H+ | a ∈ W (w)}. When drawing 
ontest trees, we often

label interior nodes with the winner of that subtree (see Figure 1).

p

p

r p

r

r

s r

s

p s

Figure 1: A 
ontest tree on rpsrps over the Ro
k-Paper-S
issors groupoid.

It is 
onvenient to further abuse the above terminology and notation as follows. Let

w be a word and let t be a 
ontest tree in T (w). We say that t is a bra
keting of w and

write t(w) to denote the winner of the 
ontest tree t. For instan
e if H is the Ro
k-Paper-

S
issors groupoid then for w = rpsps and for t = r((ps)(ps)), we obtain t(w) = r. This
notation and terminology is parti
ularly 
onvenient be
ause of the following observation.

Remark 1. For any t ∈ T (w) and any x, y ∈ H∗
we have W (xt(w)y) ⊆ W (xwy).

Indeed the right-hand side is the set of elements that 
an win under some bra
keting of

xwy whereas the left-hand side represents the possible winners in the spe
ial 
ase where

the segment w is bra
keted a

ording to t.

1.2. The Straubing-Thérien Hierar
hy

The Straubing-Thérien hierar
hy 
onsists of 
lasses of regular languages and is one

of the best-known examples of a so-
alled 
on
atenation hierar
hy (see e.g. [13℄). A

language L ⊆ A∗
is in depth 0 of the hierar
hy if it is either A∗

or ∅ and it is of depth 1/2

if it is a union of languages of the form A∗a1A
∗a2A

∗ . . . akA
∗
with ea
h ai ∈ A. For n ≥ 1

the rest of the hierar
hy is de�ned indu
tively as follows: the language L is of depth n if

it is a Boolean 
ombination of languages of depth n− 1/2 and is of depth n+1/2 if it is

a union of languages of the form L0a1L1a2 . . . akLk with ai ∈ A and Li of depth n. It is

lear from the de�nition that the union of the 
lasses in the Straubing-Thérien hierar
hy

is equal to the 
lass of star-free languages, i.e. languages that 
an be represented by a

regular expression using the union, 
on
atenation and 
omplement operators but without

using the ∗ operator.
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The Straubing-Thérien hierar
hy has a ni
e logi
al interpretation [17, 11℄ sin
e lan-

guages of depth n+ 1/2 are exa
tly those whi
h 
an be expressed by a Σn+1 �rst-order

senten
e over words using the order predi
ate

3

. In the remainder of the paper we write

Σ1 (resp. Σ2) instead of �languages of Straubing-Thérien depth 1/2� (resp. 3/2). We also

denote as Π1 (resp. Π2) the 
lass of languages whose 
omplement lies in Σ1 (resp. Σ2).

The following is a useful 
ombinatorial 
hara
terization of Σ2: a language is Σ2 i� it is

a �nite union of languages of the form A∗
0a1A

∗
1a2 . . . A

∗
k−1akA

∗
k where ea
h Ai ⊆ A [14℄.

The paper is organized as follows. In Se
tion 2, we show that the languages that


an be re
ognized by 
onservative groupoids are all regular and in fa
t lie in Σ2. In

Se
tion 3, we dis
uss the 
lass of languages re
ognized by 
onservative groupoids, its


losure properties and its pla
e in the Straubing-Thérien hierar
hy.

A preliminary version of this paper appeared in the pro
eedings of the 6th Interna-

tional Conferen
e on Language and Automata Theory and Appli
ations (LATA 2012).

2. Main Theorem

The obje
tive of this se
tion is to establish our main theorem.

Theorem 2. For any 
onservative groupoid H and a ∈ H, the language Λ(a) is regular.
Furthermore Λ(a) lies in Σ2, i.e. it 
an be written as a �nite union of languages of the

form σ∗
0a1σ

∗
1 . . . σ

∗
k−1akσ

∗
k where the ai lie in H and the σi are subsets of H.

The demonstration pro
eeds in two steps. In the �rst step, we build a 
ontext-free

grammar G that generates Λ(a). In the se
ond step, we analyze this grammar and show

that the language it generates lies in Σ2.

2.1. Initial Observations

We begin by establishing some further notation and auxiliary lemmas whi
h are useful

in the sequel. In parti
ular our �rst obje
tive is to provide tools whi
h help identify the

set of winners over a given string.

If H is a 
onservative groupoid and a, b are elements of H then we say that a is

left-favorable to b if ab = b (i.e. a loses when pla
ed to the left of b) and that a is right-

favorable to b if ba = b (i.e. a loses when pla
ed to the right of b). Note of 
ourse that

for any a 6= b, it holds that a is right-favorable to b i� b is not left-favorable to a and

vi
e-versa. We de�ne the auxiliary fun
tions fL : H → 2H and fR : H → 2H that, given

a symbol b, return the symbols that are respe
tively left-favorable and right-favorable to

b. Formally fL(b) = {a ∈ H | a · b = b} and fR(b) = {a ∈ H | b · a = b}.
Let σ be a set of groupoid elements. We generalize our earlier de�nition of Λ by

setting Λ(σ) = {w ∈ H∗ | w 
an be bra
keted to give some a in σ}. We de�ne Λǫ(σ) =
Λ(σ) ∪ {ǫ}

3

Details 
an be found in e.g. [17, 11℄. A Σn senten
e over words begins with n alternating blo
ks of

quanti�ers (starting with an existential blo
k) that quantify over positions in the word. The quanti�er-

free part is built from predi
ates of the form Qax (interpreted as �position x in the word holds an a�) and


omparisons between positions x < y. For instan
e, the language A∗aA∗bA∗
dis
ussed in Se
tion 3.2

is de�ned by the Σ1 senten
e ∃x∃y x < y ∧ Qax ∧ Qby. On the other hand, the language A∗aaA∗
of

Proposition 20 
an be de�ned by the Σ2 senten
e ∃x∃y∀z x < y ∧Qax ∧Qay ∧ (x < z < y → ¬Qbz).
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Lemma 3. Let a ∈ H and u ∈ H∗
. Then, a ∈W (u) if and only if there is a fa
torization

u = vaw su
h that

• if |v| ≥ 1, then there exists p ∈ fL(a) ∩W (v);

• if |w| ≥ 1, then there exists q ∈ fR(a) ∩W (w).

An alternative formulation of this statement is that for any a ∈ H, the language Λ(a)
is equal to the 
on
atenation Λǫ(fL(a)) · {a} · Λǫ(fR(a)).

Proof.

(⇐)
Suppose that u = vaw and that s ∈ T (v) and t ∈ T (w) are su
h that s(v) = p and

t(w) = q with pa = a and aq = a. Consider the bra
keting for u given by (s(v)(at(w))).
It evaluates to (p(aq)) = (pa) = a and therefore a ∈ W (u) as 
laimed.

(⇒)
Pro
eed by indu
tion on |u|. For the base 
ase |u| = 1, note that if a ∈ W (u), then in

fa
t u = a and we trivially obtain a fa
torization u = ǫ a ǫ.
For the indu
tion step, suppose that a ∈ W (u) and |u| = k + 1. Consider a 
ontest

tree t in T (u) su
h that t(u) = a. Consider the left-
hild tL and the right-
hild tR of

the root of t. Let x, y be the strings su
h that u = xy and su
h that tL ∈ T (x) and

tR ∈ T (y). Sin
e tL(x)tR(y) = a and sin
e H is 
onservative, one of the following must

hold:

1. tL(x) = a and atR(y) = a (i.e. tR(y) ∈ fR(a));

2. tR(y) = a and tL(x)a = a (i.e. tL(x) ∈ fL(a)).

Assume that 
ase 1 holds (
ase 2 is handled symmetri
ally). Sin
e a ∈ W (x) and sin
e

|x| < |u| we know by indu
tion that x 
an be fa
torized as x = vaw su
h that there exist

p ∈ W (v)∩ fL(a) (or v is empty) and q ∈ W (w) ∩ fR(a) (or w is empty). (See Figure 2)

If w = ǫ then u = vay is a fa
torization with the properties required in the lemma's

x y

tL tR

a tR(y)

a

a

a

a

v w y

p q

tR

tR(y)

a

av w y

p q

tR

tR(y)

q′

a

a

Figure 2: Steps in the proof of Lemma 3.

statement. Otherwise u = vawy and we know that w and y 
an be bra
keted to obtain

q and tR(y) respe
tively. Sin
e both of these elements are in fR(a), their produ
t is also
in fR(a) so there exists q′ ∈ W (wy) ∩ fR(a) and we are done. �

Following the intuition behind this lemma, we say that an element a ∈ H is able

to beat a word u ∈ H∗
to its left (resp. to its right) if there exists b ∈ W (u) ∩ fL(a)
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p

r r

s s

p ǫ

p

p

r p

r

r

s r

s

p s

Figure 3: On the left, a favorable de
omposition tree for p in the Ro
k-Paper-S
issors groupoid. The

yield of this tree is rpsrps. By Lemma 3, p wins on this word. On the right, a 
ontest tree over rpsrps

built from the de
omposition at left.

(resp. b ∈ W (u) ∩ fR(a)). Moreover, a favorable de
omposition tree D for a ∈ H is a

binary tree labelled by H ∪ {ǫ} su
h that for all nodes a of D, if b is a left (resp. right)


hild of a, then b ∈ fL(a) ∪ {ǫ} (resp. b ∈ fR(a) ∪ {ǫ}). The yield λ(D) of D is an

inorder walk on D (see Figure 3). By Lemma 3, if D is a favorable de
omposition tree

for a, then a ∈ W (λ(D)). On the other hand, if a ∈ W (u), then there is a favorable

de
omposition tree D for a su
h that u = λ(D). It is important to distinguish 
ontest

trees and favorable de
omposition trees and Figure 3 gives an example of the 
ontrast.

Remark 4. Any subtree r of a favorable de
omposition tree D is a favorable de
omposi-

tion tree for its root.

Our proof of the main theorem relies on a generalization of Lemma 3.

Lemma 5. For any σ ⊆ H it holds that

Λ(σ) =
⋃

b∈σ

Λǫ(fL(b) ∪ σ) · {b} · Λ
ǫ(fR(b) ∪ σ).

Proof. Note that when σ is a singleton, the statement is exa
tly Lemma 3.

Let us �rst show the left to right 
ontainment.

Λ(σ) =
⋃

b∈σ

Λ(b)

⊆
⋃

b∈σ

Λǫ(fL(b)) · {b} · Λ
ǫ(fR(b)) (by Lemma 3)

⊆
⋃

b∈σ

Λǫ(fL(b) ∪ σ) · {b} · Λ
ǫ(fR(b) ∪ σ)

For the right to left in
lusion, we need to show that for any b ∈ σ we have Λǫ(fL(b)∪
σ) · {b} · Λǫ(fR(b) ∪ σ) ⊆ Λ(σ). Suppose w = xby with x ∈ Λǫ(fL(b) ∪ σ) and y ∈
Λǫ(fR(b) ∪ σ) and assume for now that x and y are non-empty. By de�nition of Λ there

exists some a ∈ W (x) with a ∈ fL(b) ∪ σ and some c ∈ W (y) with c ∈ fR(b) ∪ σ. Sin
e
W (abc) ⊆W (xby) it su�
es to show that W (abc) ∩ σ 6= ∅. If a and c both lie in σ then

W (abc) ⊆ σ and we are done. If a ∈ fL(b) and c ∈ σ then (ab)c = bc ∈ {b, c} ⊆ σ.
Symmetri
ally, if c ∈ fR(b) and a ∈ σ then a(bc) = ab ∈ {a, b} ⊆ σ. Finally if a ∈ fL(b)
and c ∈ fR(b) then (ab)c = bc = b ∈ σ.

The 
ase where x or y is empty 
an be handled just like the 
ase where a (resp. b)
lies in fL(b) (resp. fR(b)). �
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2.2. A Context-free Grammar for Λ(a)

We 
onstru
t, for a 
onservative groupoid H and any a ∈ H , a 
ontext-free grammar

generating Λ(a). This 
an be a
hieved in a number of ways but the following grammar

suggested by Lemma 5 is parti
ularly useful for our purpose. Let GH be the grammar

with the non-terminals N = {Sa} ∪ {Bσ | ∅ 6= σ ⊆ H} (with Sa as the initial non-

terminal) and the produ
tion rules

R = {Sa → Bσ′ aBσ′′ | σ′ = fL(a), σ
′′ = fR(a)}

∪ {Bσ → Bσ′ bBσ′′ | ∅ 6= σ ⊆ H, b ∈ σ, σ′ = σ ∪ fL(b), σ
′′ = σ ∪ fR(b)}

∪ {Bσ → ǫ | ∅ 6= σ ⊆ H}.

Lemma 6. Let GH be the grammar des
ribed above. For ea
h non-terminal Bσ it holds

that L(Bσ) = Λǫ(σ) and the language generated by GH is L(Sa) = Λ(a).

Proof. This is almost immediate from Lemma 5. Formally, we show that L(Bσ) ⊆
Λǫ(σ) for all σ by indu
tion on |u| for a u ∈ L(Bσ). If u = ǫ then by de�nition u ∈ Λǫ(σ).
If |u| = k+1 and u ∈ L(Bσ) then the �rst produ
tion used to derive u from Bσ is of the

form Bσ → Bσ′ bBσ′′
with σ′ = fL(b) ∪ σ and σ′′ = fR(b) ∪ σ. Therefore u = xby with

x ∈ L(Bσ′) and y ∈ L(Bσ′′ ). By indu
tion x ∈ Λǫ(σ′) and y ∈ Λǫ(σ′′) so u ∈ Λǫ(σ) by
Lemma 5.

To show L(Bσ) ⊇ Λǫ(σ) we again use indu
tion. For the base 
ase, note that ǫ ∈
L(Bσ) sin
e GH 
ontains the produ
tion Bσ → ǫ. If |u| = k + 1 then by Lemma 5

we have u = xby with b ∈ σ and x ∈ Λǫ(σ′) and y ∈ Λǫ(σ′′). By indu
tion we get

x ∈ L(Bσ′) and y ∈ L(Bσ′′) and thus u ∈ L(Bσ) using a derivation that starts with the

rule Bσ → Bσ′ bBσ′′
.

It is now obvious that sin
e the only rule for Sa is Sa → BfL(a) aBfR(a), Lemma 3

guarantees that L(Sa) = Λ(a). �

2.3. From the grammar to a Σ2 expression

Let H be a 
onservative groupoid with a some element of H and let L = Λ(a) ⊆ H∗
.

We are now ready to prove Theorem 2, and show that L is in fa
t in Σ2, i.e. it is a �nite

union of sets of the form σ∗
0a1σ

∗
1 · · ·anσ

∗
n, with ea
h ai ∈ H and σi ⊆ H .

Build from H the 
ontext-free grammar GH with the method of Se
tion 2.2; its initial

non-terminal is Sa. We say that a derivation δ is nonerasing if no produ
tion of the form

B → ǫ is used in it. An indu
tion on the length of δ shows that a nonerasing derivation

outputs a string Y (δ) = Bσ0
a1Bσ1

· · · anBσn
, where ea
h Bσi

is a non-terminal and ea
h

ai a terminal. We slightly abuse notation and use δ to denote both the derivation and

the 
orresponding derivation tree. Then, we also write Y (δ) to denote the output of a

tree δ, i.e. the left-to-right sequen
e of leaves of δ. Erasing the non-terminals in Y (δ)
we obtain a word w(δ) = a1 · · ·an. Repla
ing ea
h non-terminal Bσ in Y (δ) with σ∗

, we

obtain a regular expression for the language L(δ) = σ∗
0a1σ

∗
1 · · · anσ

∗
n ⊆ L.

Let ∆ denote the set of all nonerasing derivations from Sa; we have

⋃

δ∈∆

L(δ) ⊆ L = { w(δ) : δ ∈ ∆ } ⊆
⋃

δ∈∆

L(δ) (1)
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so that L is a union of sets of the form σ∗
0a1σ

∗
1 · · ·anσ

∗
n. The union in Equation 1 is

in�nite but we will prove that all but a �nite numbers of the terms L(δ) it 
ontains are
redundant. More spe
i�
ally, we say that a non-erasing derivation δ is dominated by a

non-erasing derivation δ′ if L(δ) ⊆ L(δ′). Note that if δ is a non-erasing derivation that


ontains γ as a subtree and if γ is dominated by some γ′ with the same root then the

tree δ′ obtained by repla
ing γ in δ by γ′ dominates δ.
We will de�ne a �nite set F ⊂ ∆ of non-erasing derivations su
h that every non-

erasing derivation in ∆ is dominated by one in F . Consequently, we will have L =
⋃

δ∈F L(δ), a �nite union. We prove this in a sequen
e of steps, where ea
h step uses a

parti
ular transformation on derivation trees. The su

essive transformations we present


onsist in 
ollapsing homogeneous subtrees, eliminating hi

up nodes, straightening paths

with multiple angles, and shortening paths that are too long. These transformations


ollaborate to redu
e any redundant tree δ ∈ ∆�in parti
ular, one whose depth is more

than 3|H |�into a tree δ′ ∈ F that dominates δ.
We say that γ is homogeneous for Bσ if Bσ is the only non-terminal involved in γ,

i.e. every node in the derivation tree is either labeled by Bσ or by a letter in σ. In

parti
ular we have w(γ) ∈ σ∗
and therefore L(γ) ⊆ σ∗

. We 
laim that every δ 
ontaining
a homogeneous subtree γ for Bσ is dominated by the derivation obtained by repla
ing γ
in δ by Bσ. By our earlier observation, it su�
es to establish that the tree γσ 
onsisting

of the single node labeled Bσ dominates γ. This is obvious sin
e L(γσ) = σ∗
. Therefore

any derivation δ is dominated by a δ′ with |δ| ≥ |δ′| and su
h that δ′ has no homogeneous

subtree.

The te
hnique we use in the rest of this proof and whi
h we 
all �re
ursive top-down

relabeling� is based on the following simple property of GH .

Proposition 7. For any two subsets σ ⊂ σ′
and any produ
tion Bσ → BρaBτ in the

grammar, there exists another produ
tion Bσ′ → Bρ′aBτ ′
with ρ ⊆ ρ′ and τ ⊆ τ ′.

This is immediate from the de�nition of GH and in fa
t we 
an be more pre
ise and

establish that ρ′ = ρ ∪ σ′
and τ ′ = τ ∪ σ′

.

Let δ be a nontrivial derivation tree, let Bσ, Bτ1 , b and Bτ2 be the root and its

sons, respe
tively, and let Y (δ) = B̺0
a1B̺1

· · · akB̺k
. The �rst produ
tion used in the


orresponding derivation is Bσ → Bτ1bBτ2 . By the proposition, for every superset σ′
of

σ, there exists a produ
tion Bσ′ → Bτ ′

1
bBτ ′

2
with τ1 ⊆ τ ′1 and τ2 ⊆ τ ′2. We 
an relabel

the nodes of δ, �rst repla
ing with Bσ′
, Bτ ′

1
, b and Bτ ′

2
the root and its sons, and then by

doing similar repla
ements re
ursively in a top-down manner. The result is a derivation

tree δ′ with root labelled Bσ′
, whose output is Y (δ′) = B̺′

0
a1B̺′

1
· · · akB̺′

k
, where ̺i ⊆ ̺′i

for every 0 ≤ i ≤ k, and therefore δ′ dominates δ.
We �rst apply this te
hnique to those derivations whi
h involve a produ
tion of the

form Bσ → BσbBσ, and therefore su
h that δ 
ontains the pattern v:

v : Bσ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇

Bσ b Bσ

We say that a node, as above, with the same label as its left- and rightmost 
hildren is

a hi

up node. We want to show that every tree δ 
ontaining a hi

up node is dominated

9



by one of equal or lesser size that is hi

up-free.

Let γ be a subtree of δ rooted at a hi

up node x su
h that no an
estor of x is a

hi

up node (i.e. we 
hoose γ to be as 
lose to the root of δ as possible). First note that
if all non-terminal labels in γ are also labeled Bσ then, by the homogeneous 
ase, γ 
an

be repla
ed by Bσ.

Otherwise, γ 
ontains a subtree u whi
h breaks away from homogeneity:

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇

u : Tσ b Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆

Tτ c Tχ

where Tσ, Tτ , Tχ are subtrees with roots Bσ, Bτ , Bχ respe
tively and where at least

one of τ 6= σ and χ 6= σ holds; the 
ase where the leftmost Bσ is expanded is symmetri
.

The output of this subtree is Y (u) = Y (Tσ)bY (Tτ )cY (Tχ).
We want to show that if the �rst break in homogeneity o

urs at depth i in γ, then

γ 
an be dominated by a γ′ of identi
al size and with Bσ as its root but where the �rst

break in homogeneity o

urs at depth i − 1. To do this, 
onsider u and reverse in the

derivation the order of produ
tions Bσ → BσbBσ and Bσ → Bτ bBχ, and apply our

top-down relabeling te
hnique to the left son of the root and its subtree; the result is a

subtree u′ whi
h dominates u:

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆

u′ : Bτ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

��   
❆❆

❆❆
❆❆

❆❆
c Tχ

T̺ b Tτ

where T̺ is obtained from Tσ by repla
ing the root by Bτ and using top-down relabeling.

Note that sin
e either σ 6= τ or σ 6= χ, the break in homogeneity has been moved up

to the root of u′ and by substituting u by u′ in γ, we obtain, as 
laimed, a γ′ in whi
h

the �rst break in homogeneity o

urs at depth i− 1. By iterating this 
onstru
tion i− 1
times, we obtain a γ′′ that dominates γ and has the same root Bσ but where the root is

not a hi

up anymore. Note that this pro
ess might 
reate new hi

ups in the subtree γ′′

but our 
onstru
tion 
an be iterated to eliminate these in turn. It is 
ru
ial to point out

that our relabeling always repla
es a Bσ by a Bσ′
where σ ⊆ σ′

so the depth of re
ursion

in our hi

up elimination pro
edure is at most |H |.
We have thus far shown that any non-erasing derivation is dominated by one of equal

or lesser size in whi
h no two sons of a node 
arry the same label as their parent. There

is still an in�nite number of trees to 
onsider sin
e trees 
an 
ontain a root-leaf path with

an arbitrarily long sequen
e of nodes labelled with the same non-terminal.
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Along su
h a sequen
e, we say that the path moves to the left (resp. right) from a

given node if the left 
hild (resp. right 
hild) of that node is labeled Bσ. We show below

that any subtree that begins with a Bσ path is dominated by one where the path is of

length at most two and in fa
t 
onsists of at most one move to the left followed by one

move to the right.

We say that a right Bσ-angle o

urs at a node if this node is a leftmost son and both

the node, its father and its rightmost son 
arry the same label Bσ (see pattern p in the

diagram below). We de�ne a left Bσ-angle dually (see pattern p′).

p p′

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆
Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❇❇

❇❇
❇❇

❇❇

Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❆❆

❆❆
❆❆

❆❆
c Tχ Tρ a Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❆❆

❆❆
❆❆

❆❆

Tρ a Tσ Tσ c Tχ

In the above, Tρ, Tσ and Tχ are trees with roots labeled Bρ, Bσ and Bχ respe
tively.

Seen as portions of a derivation tree, both patterns in this diagram have the same output

so that any derivation tree γ whi
h 
ontains p is dominated by the tree γ′ whi
h 
ontains

p′ instead of p (and vi
e versa). Observe that any other angle that may exist in γ is

una�e
ted.

Therefore if γ is a hi

up-free subtree rooted at Bσ, we 
an repeat this substitution

4

pro
ess until the Bσ path starting at the root 
ontains no more than one Bσ-angle and

we assume without loss of generality that it is a right angle. In other words, the path


onsists of a 
ertain number of moves to the left followed by a 
ertain number of moves

to the right. Suppose that the Bσ path begins by at least two moves to the left, i.e. we

are in the following 
on�guration:

Bσ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❇❇

❇❇
❇❇

❇❇

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇
c2 S2

Tσ c1 S1

where Tσ is a tree with root Bσ and S1, S2 are trees with roots Bχ1
, Bχ2

respe
tively and

where χ1, χ2 are both stri
t supersets of σ.

4

This substitution is reminis
ent of the tree rotations that are performed on AVL trees and other

balan
ed trees.
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This subtree is dominated by the following one

Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

�� !!
❈❈

❈❈
❈❈

❈❈

Tσ c1 Bχ1

}}④④
④④
④④
④④

��
  
❇❇

❇❇
❇❇

❇❇

S1 c2 S′
2

where S′
2 is the tree obtained by top-down relabeling S2 using the root Bχ1∪χ2

, following

Proposition 7. Note that, sin
e χ1 ∪ σ = χ1, we 
an safely atta
h the subtree S1 as the

leftmost 
hild of Bχ1
.

This shows that any subtree with a Bσ path starting at the root with i ≥ 2 moves

to the left 
an be dominated by a subtree where the Bσ path starts with i − 1 moves

to the left. Applying this argument i− 2 times, we obtain a subtree where the Bσ path

begins with one left move possibly followed by a sequen
e of right moves. A symmetri


argument shows that we 
an assume that the latter sequen
e 
onsists of at most one

right move.

By applying the above transformations repeatedly, we 
an dominate any derivation

tree by one of equal or smaller size whi
h is hi

up-free and where every Bσ path is of

length no more than 2. The set F of su
h trees is �nite sin
e they all have depth at

most 3|H | so this translates into a �nite Σ2 expression for the language generated by the

grammar. This 
on
ludes the proof of Theorem 2.

Example 8. To illustrate the above proof, let us go ba
k to the Ro
k-Paper-S
issors

game and 
onstru
t a regular expression for Λ(p) the set of words in {r, p, s}∗ on whi
h

Paper 
an win. The grammar generating Λ(p) is given by the rules:

Sp → B{r,p} pB{r,p}

B{r,p} → B{r,p} pB{r,p} | B{r,p,s} r B{r,p,s} | ǫ

B{r,p,s} → B{r,p,s} r B{r,p,s} | B{r,p,s} pB{r,p,s} | B{r,p,s} sB{r,p,s} | ǫ

Note that we 
an ex
lude the non-terminals B{r}, B{p}, B{s}, B{r,s}, B{p,s} whi
h are in

fa
t unrea
hable from Sp.

Every non-erasing derivation from Sp begins with Sp ⇒ B{r,p} pB{r,p}. In turn,

derivations from B{r,p} start with either B{r,p} ⇒ B{r,p} pB{r,p} or B{r,p} ⇒ B{r,p,s} r
B{r,p,s}. The �rst 
ase immediately 
reates a hi

up node and 
an therefore be dominated

and safely ignored. In the se
ond 
ase, one is left with two o

urren
es of B{r,p,s} but

any further derivation from these non-terminals must also 
reate hi

up nodes. We are

therefore left with a Σ2 expression 
ontaining only four useful terms 
orresponding to the

following non-erasing derivations.

Sp ⇒ B{r,p} pB{r,p}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p} pB{r,p,s} r B{r,p,s}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p,s} r B{r,p,s}pB{r,p}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p,s} r B{r,p,s} pB{r,p,s} r B{r,p,s}
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A

ordingly, Λ(p) is represented by the regular expression

(r|p)∗p(r|p)∗ | (r|p)∗p(r|p|s)∗r(r|p|s)∗ | (r|p|s)∗r(r|p|s)∗p(r|p)∗ |

(r|p|s)∗r(r|p|s)∗p(r|p|s)∗r(r|p|s)∗.

This expression basi
ally says that Paper 
an win on a string x if and only if x = upv
where both u and v either 
onsist only of Papers and Ro
ks or 
ontain a Ro
k. The same

language 
an be des
ribed more su

in
tly by the expression

[ p∗| (r|p|s)∗r(r|p|s)∗] p [ p∗| (r|p|s)∗r(r|p|s)∗].

3. Languages Re
ognized by Conservative Groupoids

We now know that languages re
ognized by 
onservative groupoids are regular. In

this se
tion we seek a more pre
ise 
hara
terization.

3.1. Conservative Semigroups

One starting point is to 
onsider 
onservative groupoids whi
h are also asso
iative,

i.e. semigroups for whi
h x · y ∈ {x, y}. In parti
ular, these satisfy x2 = x but we 
an

give an exa
t 
hara
terization.

Lemma 9. A semigroup S is 
onservative i� its set of elements 
an be partitioned into

k 
lasses C1, . . . , Ck su
h that

1. x · y = y · x = x whenever x ∈ Ci and y ∈ Cj for i < j;

2. x · y = x for all x, y ∈ Cj (left-zero) or x · y = y for all x, y ∈ Cj (right-zero) for

any j.

Proof. (⇐)

By de�nition, su
h a semigroup is 
onservative. Also, the operation de�ned above is

asso
iative. Indeed if x, y, z are three elements lying in the same 
lass Ci then (x ·y) ·z =
x · (y · z) = x if Ci is left-zero and (x · y) · z = x · (y · z) = z if Ci is right-zero. If x, y, z
are not in the same 
lass then asso
iativity follows be
ause the elements in the most

absorbing 
lass are the only ones that matter. Suppose for instan
e that x and z lie in

the same 
lass Ci while y lies in some Cj with i > j. Sin
e x · y = x and y · z = z we


learly have (x · y) · z = x · (y · z) = xz.
(⇒)

Conversely, suppose that S is a 
onservative semigroup. Let us re
all the de�nition

of Green's J -preorder noted ≤J . Let x, y ∈ S. We write x ≤J y if there exists α, β ∈ S
su
h that x = αyβ. Finally, let us remind that x J y is Green's J -equivalen
e relation

built with ≤J .

Let us denote the J -
lasses of S by C1, . . . , Ck. Firstly, x ≤J y or y ≤J x for all

x, y ∈ S sin
e S is 
onservative. Then, the J -
lasses are totally ordered by ≤J and we


an assume that C1, . . . , Ck are labelled su
h that Ci ≤J Cj i� i ≤ j.
(1). Let x ∈ Ci, y ∈ Cj su
h that i < j. Thus, xy ≤J x <J y and then, xy 6= y.

Sin
e S is 
onservative, xy = x. We 
an show yx = x in the same way.

(2). Let x, y ∈ Ci. We suppose that x 6= y, otherwise the result is 
learly true. Sin
e

x, y ∈ Ci, then x ≤J y and y ≤J x; i.e. there exist α, β, γ, ρ ∈ S su
h that x = αyβ and
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y = γxρ. Sin
e S is 
onservative, then we have one of α = x or β = x and one of γ = y
or ρ = y. This is equivalent to having one of xy = x or yx = x and one of yx = y or

xy = y. Note that we 
annot have xy = x and yx = x at the same time be
ause neither

of xy = y or yx = y would be true and that would 
ause a 
ontradi
tion. If we have

xy = x, then yx = y and the left element wins in both 
ases. If we have yx = x, then
xy = y and the right element wins in both 
ases.

�

This 
hara
terization 
an be translated into a des
ription of the languages re
ogniz-

able by 
onservative semigroups. For an alphabet A, 
onsider a partition C1, . . . , Ck ea
h

with an asso
iated dire
tion d1, . . . , dk with di ∈ {L,R,C} given in the following way:

• if Ci has at least two elements and is a left-zero, di = L;

• if Ci has at least two elements and is a right-zero, di = R;

• otherwise Ci has one element and di = C.

For a ∈ Cj with dj = L (resp. dj = R), de�ne the language La (resp. Ra) of words

with at least one a that 
ontain no o

urren
e of letters in 
lasses Ci with i < j and

where the �rst (resp. last) o

urren
e of a letter in Cj is an a. If dj = C, de�ne the

language Ca of words with at least one a that 
ontain no o

urren
e of letters in 
lasses

Ci with i < j.

Corollary 10. A language 
an be re
ognized by a 
onservative semigroup i� it is the

disjoint union of some La, Ra and Ca.

Note that the 
lass of languages re
ognized by 
onservative semigroups does not have

many 
losure properties. For instan
e, it is not 
losed under union or interse
tion: ea
h

of the languages A∗aA∗
and A∗bA∗


an be re
ognized but their union (or interse
tion)

has a synta
ti
 semigroup whi
h is not 
onservative.

3.2. Basi
 Properties of the Non-Asso
iative Case

The apparent absen
e of 
losure properties makes it di�
ult to provide a 
om-

plete 
hara
terization of languages re
ognized by non-asso
iative, 
onservative groupoids.

Moreover the de�nition of re
ognition by a groupoid allows a homomorphism h : A∗ →
H∗

that �translates� a word over the original alphabet into a string of groupoid elements

and this 
an be surprisingly powerful. Consider for instan
e the alphabet A = {a, b}
and the language K = A∗aA∗bA∗

. This language is not 
ommutative (i.e. there exist

x, y su
h that xy ∈ K and yx 6∈ K) yet it 
an be re
ognized by the ro
k-paper-s
issors

groupoid H = {r, p, s} whi
h is 
ommutative. Indeed, if one 
hooses the a

epting set

F = {p} and if h(a) = ps and h(b) = r then it is possible to show that w ∈ K i�

W (h(w)) ∩ F 6= ∅. Indeed if w 6∈ K then h(w) = rn(ps)m for some n,m ∈ N and by

Example 8, it is impossible for p to win su
h a word. Conversely, suppose that w ∈ K.

Consider the �rst p o

urring in h(w). On its left one �nds rn for some n ≥ 0 and on its

right there is at least one Ro
k be
ause w ∈ K. Therefore by Example 8, Paper is able

to win on h(w).
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In the rest of this se
tion we prove a number of results whi
h provide important insight

into the pla
e that languages re
ognizable by 
onservative groupoids o

upy within the

Straubing-Thérien hierar
hy.

We begin by four simple lemmas.

Lemma 11. The 
lass of languages re
ognized by 
onservative groupoids is 
losed under

inverse homomorphisms h : B∗ → A∗
from one free monoid to the other, i.e. if L ⊆ A∗


an be re
ognized by the 
onservative groupoid H then h−1(L) 
an also be re
ognized by

H.

Proof. This is a well-known straightforward 
onsequen
e of the de�nition of re
ognition

by a groupoid and does not depend on the fa
t that H is 
onservative. Indeed if L is

re
ognized using the mapping φ : A∗ → H∗
and the a

epting subset F then by setting

ψ = φ ◦ h we obtain a homomorphism from B∗
to H∗

and we have

W (ψ(x)) ∩ F 6= ∅ ⇔W (φ(h(x))) ∩ F 6= ∅ ⇔ h(x) ∈ L⇔ x ∈ h−1(L).

�

Corollary 12. Every language re
ognizable by a 
onservative groupoid lies in Σ2.

Proof. Suppose L ⊆ A∗
is re
ognizable by a 
onservative groupoid H using the homo-

morphism h : A∗ → H∗
and the a

epting subset F ⊆ H . By de�nition, L = h−1(Λ(F ))

and Λ(F ) lies in Σ2 by Theorem 2. It is known (see [13℄) that Σ2 is 
losed under inverse

homomorphi
 images. �

Lemma 13. If L ⊆ A∗
is re
ognizable by a 
onservative groupoid, then for any B ⊆ A

the language L ∩B∗
is also re
ognizable by a 
onservative groupoid.

Proof. Suppose L is re
ognized by the 
onservative groupoid H using the homomor-

phism h : A∗ → H∗
and a

epting subset F ⊆ H . De�ne H0 by adding a new absorbing

element 0 in H (i.e. 0x = x0 = 0 for all x ∈ H). Note that the groupoid H0 is still 
on-

servative. Now de�ne g : A∗ → H∗
0 by setting g(a) = h(a) if a ∈ B and g(a) = 0 if a 6∈ B.

For any w 6∈ B∗
, we therefore have a 0 o

urring in g(w) and thus W (g(w)) = {0}. On

the other hand if w ∈ B∗
then g(w) = h(w) and therefore L ∩B∗

is pre
isely the set of

words su
h that W (g(w)) ∩ F 6= ∅. �

Lemma 14. If L ⊆ A∗
is re
ognized by a 
onservative groupoid H then L = L+

(where

L+
denotes LL∗

).

Proof. Suppose L is re
ognized using h : A∗ → H∗
and a

epting subset F . Consider

a word of L+
i.e. x = x1 . . . xk with ea
h xi in L. We know that for ea
h i there

exists some ai ∈ F su
h that h(xi) 
an be bra
keted to get ai as the winner. Now

h(x) = h(x1) . . . h(xk) so W (h(x)) ⊇W (a1 . . . ak). Sin
e H is 
onservative and sin
e all

ai lie in F , the set W (h(x)) 
ontains at least one of the ai and x ∈ L. �

Let L be a language over A∗
. The synta
ti
 pre-order of L on A∗

is de�ned by setting

x <L y i� for all s, t ∈ A∗
it holds that syt ∈ L ⇒ sxt ∈ L. Note that <L is 
ompatible

with 
on
atenation in the sense that x <L y ⇒ uxv <L uyv for any x, y, u, v ∈ A∗
. This
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pre-order and the 
orresponding equivalen
e relation (x ≡L y if sxt ∈ L ⇔ syt ∈ L for

all s, t ∈ A∗
) are 
entral to algebrai
 automata theory. A theorem of Pin [12℄ states

that every positive variety of languages, i.e. every 
lass L of languages 
losed under

union, interse
tion, inverse morphi
 images (if K ⊆ A∗
is in L and h : B∗ → A∗

is a

homomorphism then h−1(K) ∈ L) and left and right quotients (if K ∈ L and a ∈ A then

a−1K ∈ L and Ka−1 ∈ L where a−1K = {x : ax ∈ K} and Ka−1 = {x : xa ∈ K})

an be 
hara
terized by a (possibly in�nite) set of de�ning identities of the synta
ti


pre-order. A formal treatment of identities 
an be found in [13℄ but the following two

examples are somewhat typi
al and parti
ularly relevant in our 
ontext. A language L
lies in Σ1 i� x <L ǫ for all x (see e.g. [15, 13℄). A language L lies in Σ2 i� there exists

some ω su
h that xωyxω <L x
ω
whenever the set of letters o

urring in x is equal to the

set of letters o

urring in y [15℄.

The synta
ti
 pre-order allows us to give a simple ne
essary 
ondition for re
ogniz-

ability by a 
onservative groupoid.

Lemma 15. If L ⊆ A∗
is re
ognized by a 
onservative groupoid then x2 <L x for all

x ∈ A∗
.

Proof. It su�
es to show that for any 
onservative groupoid H and any s, u, t ∈ H∗
it

holds that W (sut) ⊆W (su2t).
Suppose u = u1 . . . uk. Pi
k any element in W (u), i.e. �x some j su
h that uj

is a winner in u given the 
orre
t bra
keting. By Lemma 3, there exist 
ontest trees

τ ∈ T (u1 . . . uj−1) and τ ′ ∈ T (uj+1 . . . uk) su
h that τ(u1 . . . uj−1) = ℓ ∈ fL(uj)
and τ ′(uj+1 . . . uk) = r ∈ fR(uj). Now 
onsider the partial bra
keting of su2t =
su1 . . . uku1 . . . ukt given by

su1 . . . ujτ
′(uj+1 . . . uk)τ(u1 . . . uj−1)uj . . . ukt = su1 . . . ujrℓuj . . . ukt.

In turn, the latter 
an be bra
keted as

su1 . . . uj−1((ujr)(ℓuj))uj+1 . . . ukt = su1 . . . uj−1(ujuj)uj+1 . . . ukt

= su1 . . . ukt = sut.

In parti
ular W (sut) ⊆W (su2t). �

Corollary 16. The 
lass of languages re
ognized by 
onservative groupoids

1. is not 
losed under 
omplement

2. is not 
losed under union.

Proof.

1. We showed earlier that L = Σ∗aΣ∗bΣ∗
is re
ognizable by the Ro
k-Paper-S
issors

groupoid but Lemma 14 guarantees that its 
omplement Lc
is not re
ognizable by

a 
onservative groupoid. Indeed note that Lc

ontains the words a, b and ǫ so

(Lc)+ = {a, b}∗ 6= Lc
.

2. The language L1 = a{a, b}∗ 
an be re
ognized by the two element 
onservative

groupoid {x, y} where xy = x and yx = y. (This groupoid is in fa
t asso
iative.)

Similarly, L2 = {a, b}∗b 
an be re
ognized by a two element 
onservative groupoid.

Sin
e a ∈ L1 and b ∈ L2 we have a, b ∈ L1 ∪L2 and therefore ba ∈ (L1 ∪L2)
+
even

though ba 6∈ L1 ∪L2. By Lemma 14, this proves that L1 ∪L2 
annot be re
ognized

by a 
onservative groupoid. �
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Whether the 
lass of languages re
ognizable by 
onservative groupoids is 
losed under

interse
tion remains an open question.

Finally, the following lemma is useful for analyzing parti
ular sequen
es of groupoid

elements sin
e it shows that repetitions of a given element 
an be eliminated without


hanging the set of potential winners.

Lemma 17. Let H be a 
onservative groupoid and let a ∈ H. For any s, t ∈ H∗
we have

W (sat) =W (saat).

Proof. By Lemma 15, we have W (sat) ⊆W (saat) for all a ∈ H .

Let b ∈ W (saat). Let D be a favorable de
omposition tree for b su
h that λ(D) =
saat. Let a1 and a2 be the two instan
es of a. Without loss of generality, we 
an suppose

that a1 is a des
endant of a2 in D be
ause a1 and a2 are neighbours. Moreover, there

is a subtree r of D rooted at a1 su
h that saat = xλ(r)a2t. Let r′ be the left subtree

of a1 in r. Sin
e r is a favorable de
omposition tree for a, there exists a 
ontest tree

p ∈ T (λ(r′)a2) su
h that p(λ(r′)a2) = a2.
For this reason, we just need to show that b ∈W (xa2t). By repla
ing r by a leaf ǫ in

D, we get a favorable de
omposition tree D′
for b su
h that λ(D′) = xa2t = xat. Thus,

b ∈W (xat) ⊆W (sat). �

Lemma 17 says that for any 
onservative groupoid H , any h ∈ H and any s, t ∈ H∗

the language Λ(h) has the following property

sat ∈ Λ(h) ⇔ saat ∈ Λ(h).

This property is known as stutter invarian
e and has been extensively studied, in parti
-

ular in the 
ontext of automated veri�
ation (e.g. [8℄).

3.3. Pla
e in the Straubing-Thérien Hierar
hy

Our main theorem shows that if L 
an be re
ognized by a 
onservative groupoid then

L is in Σ2 but examples in Corollary 16 show that the 
onverse is not true. We begin

this se
tion by showing that ea
h L in Σ1 is re
ognizable by a 
onservative groupoid.

Lemma 18. Let A = {a1,1, . . . , a1,k1
, . . . , aℓ,1, . . . , aℓ,kℓ

} be some alphabet. (Let us stress

that the ai,j are all distin
t.) Then

A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗al,1A
∗ . . . A∗al,kl

A∗


an be re
ognized by a 
onservative groupoid.

Proof. Let Hi = {αi,1, βi,1, . . . , αi,ki
, βi,ki

} and let H =
⋃

1≤i≤l

Hi. We 
hoose the

homomorphism h : A → H∗
de�ned by h(ai,j) = αi,jβi,j and the a

epting subset

F = {β1,k1
, . . . , βl,kl

}. We de�ne the 
onservative operation on H by �rst de�ning it

within ea
h Hi:

• αi,jαi,k = αi,k;

• αi,jβi,ki
=

{

αi,j for all j 6= 1

βi,ki
if j = 1

17



• αi,jβi,k =

{

αi,j for all j ≥ k 6= ki

βi,k for all j < k 6= ki

• βi,jαi,k =

{

αi,k for all j < k − 1

βi,j for all j ≥ k − 1

• βi,jβi,k =

{

βi,j for all j ≥ k

βi,k for all j < k

The above rules spe
ify the multipli
ation within ea
h Hi. In the rules below, we

de�ne the other produ
ts and therefore assume i 6= r.

• αi,jαr,k = αr,k;

• αi,jβr,k =

{

βr,k if k 6= kr

αi,j if k = kr

• βi,jαr,k =

{

αr,k if j 6= ki

βi,j if j = ki

• βi,jβr,k =

{

βr,k if j 6= ki and k 6= kr

βi,j if j = ki or k = kr

Let us point out a few important properties of H . First, for any i, the element βi,ki

is weak when fa
ing an opponent on its left sin
e fL(βi,ki
) = {αi,1, βi,ki

}. It is however
strong when fa
ing an element on its right sin
e fR(βi,ki

) = H . Se
ondly, an element

αi,j loses on its right against any element outside of Hi with the sole ex
eption of the

βr,kr
. The same is true for any element βi,j with j 6= ki.

Claim (†). Let u = h(v) and |u| > 0. There is an αi,j in W (u).

Proof. By de�nition of h, the word u is a sequen
e of pairs αri,siβri,si . We begin by


onsidering the following partial bra
keting of u:

(αr1,s1βr1,s1)(αr2,s2βr2,s2) . . . (αrn,snβrn,sn).

The result within ea
h pair of bra
kets is of α type and so any further bra
keting will

produ
e a winner of α type. �

Claim.

w ∈ A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗al,1A
∗ . . . A∗al,kl

A∗
i� F ∩W (h(w)) 6= ∅.

Proof.

(⇒)
By hypothesis, h(w) = u1αi,1βi,1u2 . . . uki

αi,ki
βi,ki

uki+1. By the 
laim †, there exists

λℓ ∈ W (uℓ) for all 1 ≤ ℓ ≤ ki + 1 su
h that λℓ is of the form αi,j . Let tℓ be the 
ontest

tree over ea
h uℓ su
h that tℓ(uℓ) = λℓ.
18



Consider the following partial bra
keting of u1αi,1βi,1u2 . . . uki
αi,ki

βi,ki
uki+1

(t1(u1)αi,1)βi,1(t2(u2)αi,2) . . . (tki
(uki

)αi,ki
)(βi,ki

t(uki+1))

= (λ1αi,1)βi,1(λ2αi,2) . . . (λki
αi,ki

)(βi,ki
λki+1)).

Sin
e αi,jαr,k = αr,k for all i, j, r, k and βi,ki
αr,k = βi,ki

for any i, r, k, the latter partial

bra
keting evaluates to

αi,1βi,1αi,2βi,2 . . . αi,ki
βi,ki

.

It thus su�
es to show that βi,ki

an win on this string and this is a
hieved through

the following bra
keting:

(αi,1(βi,1(. . . (βi,ki−2(αi,ki−1(βi,ki−1αi,ki
))) . . .)βi,ki

).

(⇐)
By de�nition h(w) is a sequen
e of pairs αi,kβi,k whi
h we 
all 
ompanion pairs. Note �rst

that for any favorable de
omposition tree D, if λ(D) = sαβv where α, β are 
ompanion

letters, then either α is the rightmost node of the left subtree of the subtree rooted at β
in D or β is the leftmost node of the right subtree of the subtree rooted at α in D.

Suppose βp,kp
∈ W (h(w)) and let h(w) = sαp,kp

βp,kp
v where this o

urren
e of βp,kp

is the eventual winner. By Lemma 3, there exists a favorable de
omposition tree D for

βp,kp
. A perfe
t subtree D′

of D is a favorable de
omposition tree su
h that

• the root of D′
is βq,kq

for some q ∈ {1, . . . , l};

• βq,kq
is an an
estor of its 
ompanion element αq,kq

;

• any proper subtree D′′
of D′

is not a perfe
t subtree of D′
.

There is at least one perfe
t subtree in D be
ause if D does not have a perfe
t proper

subtree, then D itself is a perfe
t subtree. Therefore let D′
be a perfe
t subtree with

root of label βq,kq
. We observe the following fa
ts about D′

:

• αq,kq
is the rightmost node of the left subtree of βq,kq

sin
e αq,kq
is not the an
estor

of βq,kq
;

(⋆) D′
does not 
ontain another βz,kz

whi
h is the an
estor of its 
ompanion element

αz,kz
be
ause this would imply that D′

has a perfe
t proper subtree rooted at this

βz,kz
;

• αq,1 is the left 
hild of βq,kq
be
ause fL(βq,kq

) = {αq,1, βq,kq
} and by ⋆ the 
hoi
e

of βq,kq
is ex
luded;

• let 1 ≤ t < kq, then the right 
hild of αq,t 
an only be αq,t or βq,s with s ≤ t
be
ause the only other 
hoi
es in fR(αq,t) are of βz,kz

type and this 
annot happen

by ⋆;
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βq,kq

αq,1

. . .

αq,kq

ǫ

Figure 4: The stru
ture of the perfe
t subtree D′

• let 1 ≤ t < kq, then the right 
hild of βq,t 
an only be αq,t+1, βq,s or αq,s with

s ≤ t be
ause the only other 
hoi
es in fR(βq,t) are of βz,kz
type and this 
annot

happen by ⋆.

Now 
onsider the left subtree D′′
of βq,kq

with root αq,1 and 
onsider the rightmost

path in that subtree (see Figure 4). This sequen
e of labels starts at αq,1, ends at αq,kq

and by the above fa
ts it must therefore in
lude a subsequen
e αq,1, βq,1, αq,2, . . . , αq,kq
.

Thus, λ(D′) in
ludes the subsequen
e αq,1, βq,1, . . . , αq,kq
, βq,kq

, i.e.

λ(D′) ∈ H∗αq,1H
∗βq,1H

∗ . . .H∗αq,kq
H∗βq,kq

H∗,

so does λ(D), and this implies that

w ∈ A∗aq,1A
∗ . . . A∗aq,kq

A∗

by the de�nition of h. �

Theorem 19. Ea
h language in Σ1 is re
ognizable by a 
onservative groupoid.

Proof. Suppose L is in Σ1, i.e. that

L = B∗b1,1B
∗ . . . B∗b1,k1

B∗ ∪ . . . ∪B∗bℓ,1B
∗ . . . B∗bℓ,kℓ

B∗.

Lemma 18 establishes the theorem for the spe
ial 
ase where all the bi,j are distin
t. If

they are not distin
t, then let A = {a1,1, . . . , a1,k1
, . . . , aℓ,1, . . . , aℓ,kℓ

} be a new alphabet

in whi
h all ai,j are distin
t and de�ne

K = A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗aℓ,1A
∗ . . . A∗aℓ,kℓ

A∗.

Sin
e K is re
ognizable by a 
onservative groupoid, it is su�
ient by Lemma 11 to give

a homomorphism h : B∗ → A∗
su
h that h−1(K) = L. Suppose B = {c1, . . . , cq}. We

de�ne

h(cr) = a
δr,1,k1
1,k1

a
δr,1,k1−1

1,k1−1 . . . a
δr,1,1
1,1 a

δr,2,k2
2,k2

. . . a
δr,2,1
2,1 . . . a

δr,ℓ,kℓ
ℓ,kℓ

. . . a
δr,ℓ,1
ℓ,1

where δr,i,j = 1 if bi,j = cr and δr,i,j = 0 if bi,j 6= cr. Thus ai,j o

urs in h(cr) i� bi,j = cr.
Let us �rst show that h(L) ⊆ K. Suppose w ∈ L and without loss of general-

ity that w ∈ B∗b1,1B
∗ . . . B∗b1,k1

B∗
. Then b1,1b1,2 . . . b1,k1

is a subsequen
e of w and

h(b1,1)h(b1,2) . . . h(b1,k1
) is a subsequen
e of h(w). By de�nition of h the letter ai,j o
-


urs in h(bi,j) so a1,1a1,2 . . . a1,k1
is a subsequen
e of h(w) and thus h(w) ∈ K.
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Conversely, suppose h(w) 
ontains the subsequen
e a1,1a1,2 . . . a1,k1
. Ea
h a1,j in this

sequen
e 
omes from some h(cr) where b1,j = cr. A single h(cr) may 
ontain more than

one a1,j but note that these o

ur in de
reasing order with respe
t to j. Therefore these
a1,j must be the result of distin
t o

urren
es of letters in w and therefore w 
ontains

the subsequen
e b1,1 . . . b1,k1
and w ∈ L. �

Our results thus far show that the 
lass of languages re
ognizable by 
onservative

groupoids 
ontains Σ1 and is 
ontained in Σ2. We 
omplete this pi
ture by establish-

ing two partial results that 
larify the pla
e of this 
lass within the Straubing-Thérien

hierar
hy.

The 
lass of languages that lie both in Σ2 and in Π2 is well-studied and admits a long

list of logi
al, algebrai
 and 
ombinatorial 
hara
terizations [16℄. It is therefore natural

to ask if the 
lass of languages re
ognizable by 
onservative groupoids is 
ontained in Π2.

As the next example shows, this is in fa
t not the 
ase.

Proposition 20. The language {a, b}∗aa{a, b}∗ is re
ognizable by a 
onservative group-

oid. This language is known to lie outside Π2 (see e.g. [16℄).

Proof. Let w ∈ A∗
. Consider the groupoid H with the following multipli
ation table

1 2 3 4

1 1 2 1 1

2 2 2 3 4

3 1 3 3 4

4 4 2 3 4

with h(a) = 123, h(b) = 4 and F = {2}. We 
laim that w ∈ A∗aaA∗
if and only if

2 ∈W (h(w)).

(⇒)
If w ∈ A∗aaA∗

, then h(w) = x123123y with x, y ∈ H∗
. Consider the partial bra
keting

x12(31)(23)y = x1213y. We 
laim that the 2 in this word 
an win. Indeed, to its left one

�nds x1 and we need to show that x1 ∈ Λ(fL(2)). If we pi
k an arbitrary 
ontest tree t in
T (x) then (t(x)1) 6= 3 sin
e 31 = 1. Therefore (t(x)1) ∈ {1, 2, 4} = fL(2). Similarly, to

the right of 2 one �nds 13y. For any 
ontest tree s ∈ T (3y) we have (1(s(3y))) ∈ {1, 2}
sin
e 1 beats every element on its right ex
ept 2. Therefore 13y ∈ Λ(fR(2)) and by

Lemma 3 we have 2 ∈W (x123123y).

(⇐)
For any i, j ∈ {1, 2, 3, 4}, let Ai,j denote the set of strings whi
h begin with i, end with

j and are substrings of (1234)n for some n. For instan
e A3,2 = {3412, 34123412, . . . ,
34(1234)i12, . . .} and A2,3 = {23(4123)i|i ≥ 0}. In the following table, we 
ompute

upper bounds Vi,j for the set of elements that 
an win on some word in Ai,j . To 
ompute

su
h bounds, it su�
es to ensure that Vi,i 
ontains i and that for every i, j we have

Vi,j ⊇
⋃

k{st|s ∈ Vi,k, t ∈ Vk+1,j}. We 
laim that Table 1 provides the minimal solution

to these 
onstraints although it is su�
ient for our purposes to verify that it is a solution.
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1 2 3 4

1 {1,4} {1,2,3,4} {1,3,4} {1,4}

2 {4} {2,3,4} {3,4} {4}

3 {4} {2,3,4} {3,4} {4}

4 {4} {2,3,4} {3,4} {4}

Table 1: The set Vi,j upper bounds the set of elements that 
an win on a substring of (1234)n that

begins with i and ends with j.

Now suppose that 2 ∈ W (h(w)) but assume for the sake of 
ontradi
tion that w 6∈
A∗aaA∗

. Be
ause 2 wins on h(w), then w has at least one a. If it has exa
tly one a,
then h(w) ∈ h(b∗ab∗) = 4∗1234∗ and sin
e we are interested in W (h(w)), we 
an use

Lemma 17 and assume that the blo
ks of 4's are of length at most 1. If w has more than

one a then

h(w) ∈ h(b∗ab+ . . . b+ab∗) = 4∗1234+ . . . 4+1234∗.

By Lemma 17, we 
an remove repeated o

urren
es of 4 and simply assume that h(w) is
in 4∗1234 . . .12341234∗ with the initial and �nal blo
ks of 4 of length at most 1. Therefore
if 2 ∈W (h(w)) then 2 wins on a substring of (1234)n whi
h begins with 1 or 4 and ends

with 3 or 4 but this 
ontradi
ts the upper bounds Vi,j 
omputed in the pre
eding table.

�

Lemma 21. If L ⊆ A∗
is a language in Π1 that 
an be re
ognized by a 
onservative

groupoid then there exists B ⊆ A su
h that either L = B∗
or L = B+

.

Proof. If L ∈ Π1 then x >L ǫ for all x and this implies that x2 >L x for all x. On

the other hand, sin
e L 
an be re
ognized by a 
onservative groupoid then x2 <L x by

Lemma 15. Therefore x2 ≡L x for all x. In parti
ular yz ≡L yzyz and sin
e x >L ǫ
we get yzyz >L zy. Thus yz ≡L zy. It is well known that if L satis�es x2 ≡L x and

yx ≡L xy then x ≡L y whenever x and y 
ontain the same set of letters. Now let

B = {a ∈ A|a ∈ L}. Sin
e L = L+
by Lemma 14 we have B+ ⊆ L and if ǫ ∈ L we

further have B∗ ⊆ L. Suppose that there exists x ∈ L − B∗
. This means that x = ycz

for some c 6∈ B. By de�nition of B we have c 6∈ L but sin
e y >L ǫ and z >L ǫ we get

ycz >L c. However this shows that x 6∈ L, a 
ontradi
tion. Therefore L ⊆ B∗
. �

4. Con
lusion and Future Work

We have shown that 
onservative groupoids 
an only re
ognize regular languages.

Beaudry, Lemieux, and Thérien had previously exhibited a large 
lass of groupoids with

the same limitations [3, 2, 4℄ but our work is in
omparable to theirs and our methods are,

a

ordingly, quite di�erent. It is natural to ask whether our approa
h 
an be generalized

to �nd a wider 
lass of �weak� groupoids and an obvious target are the 0-
onservative
groupoids, that is groupoids H with a 0 element su
h that 0 · x = x · 0 = 0 for all x ∈ H
and x · y ∈ {x, y, 0} for all x, y ∈ H ; i.e. all non-
onservative produ
ts are 0.

Moreover, we have shown that the languages re
ognizable by 
onservative groupoids

in
lude all of Σ1 and are 
ontained in Σ2. We also established some ne
essary 
onditions
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for re
ognizability by 
onservative groupoids but the pi
ture is still in
omplete and leads

to some interesting open problems.

While we have shown that the 
lass of languages re
ognizable by 
onservative group-

oids is not 
losed under union or 
omplement, we still do not know if it is 
losed under

interse
tion. We 
onje
ture that it is not but note that Lemmas 14 and 15 
an be of no

help in proving this sin
e they are based on ne
essary 
onditions that are preserved by

interse
tion.

Another interesting question 
on
erns the optimality of our 
onstru
tions. With

A = {a} the language Ck = {at : t ≥ k} is in Σ1 sin
e it is represented by the expression

A∗aA∗aA∗ . . . aA∗
(with k as). The 
onstru
tion of Lemma 18 shows that Ck 
an be

re
ognized by a 
onservative groupoid of size 2k. Intuitively, one might expe
t that any


onservative groupoid requires size at least k to re
ognize Ck sin
e this language basi
ally


ounts up to k. But surprisingly it is possible to 
ount up to 6 with the following groupoid

that only has �ve elements.

1 2 3 4 5

1 1 2 1 1 5

2 2 2 3 4 2

3 1 3 3 3 5

4 4 2 3 4 5

5 5 2 3 5 5

We leave it as a (fun) exer
ise to 
he
k that if one sets h(a) = 12345 and F = {4}
then h−1(F ) = {at : t ≥ 6}, i.e. that W ((12345)t) 
ontains 4 if and only if t ≥ 6. We

do not have any non-trivial lower bounds for the optimal size of a 
onservative groupoid

re
ognizing Ck and our best upper bound is 2k (guaranteed by Lemma 18).
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