
Constructing Optimal Whole-Bit Recycling Codes1

Danny Dub́e
Département d’informatique et de génie logiciel

Universit́e Laval, Canada
Email: Danny.Dube@ift.ulaval.ca

Vincent Beaudoin
Département d’informatique et de génie logiciel

Universit́e Laval, Canada
Email: Vincent.Beaudoin.1@ulaval.ca

Abstract—Bit recycling aims at improving the rates achieved
by compression techniques, such as LZ77, that suffer from the
redundancy caused by the multiplicity of the encodings. The
performance of bit recycling depends crucially on the recycling
codes that it uses. A recipe for the construction of optimal
recycling codes has been mentioned in previous work. However,
no efficient algorithm and proof of optimality were given. We
present both here.

I. INTRODUCTION

Bit recycling aims at improving the rates achieved by
compression techniques, such as LZ77 [14], that suffer from
the redundancy caused by the multiplicity of the encodings [4],
[6], [13]. Bit recycling takes the pragmatic approach of de-
tecting and exploiting the multiplicity in order to recovera
compensation instead of trying to eliminate the multiplicity
at the source (e.g., Kawabata’s approach for LZ77 [8]). The
performance of bit recycling depends crucially on the recycling
codes that it uses. For instance, flat recycling and proportional
recycling have been presented in previous papers. However,
neither bit recycling technique is optimal, even if proportional
recycling comes pretty close. A recipe for the constructionof
optimal recycling codes has been mentioned in previous work.
Still, no efficient algorithm was given. Neither was any proof
of optimality. We present both in this paper.

The paper is divided as follows. Sections II, III, and IV
review the notion of multiplicity of the encodings, the ability
to embed data in a compressed file when multiple encodings
exist, and bit recycling itself. Sections V and VI progressively
introduce the concepts needed to build recycling codes that
lead to optimal bit recycling and present an algorithm to
construct optimal recycling codes. Section VII contains the
proof that the codes built by the algorithm are indeed optimal.
The paper ends with a discussion in Section VIII.

II. MULTIPLICITY OF THE ENCODINGS

LZ77 [14] is a lossless data compression technique that
compresses a file, sayF, by transmitting a description ofF
in the form of asequence of messages. A message is either
a literal, denoted by[z], which explicitly indicates that the
next character isz, or a match, denoted by〈l, d〉, which
indirectly indicates that the nextl characters are a copy of
the l characters that appeard characters before inF.2 Variable
M ranges over messages of either kind. Also, we useC andD

1This work was supported by NSERC of Canada.
2In this paper, we require matches to be at least 3-character long.

to refer to the compressor and the decompressor, respectively.
When transmitted fromC to D, the messages are encoded
using a prefix-free codec that C andD have agreed upon.

The LZ77 compression technique does not completely
specifies the way files are compressed in the sense that an
original file F may have many corresponding compressed
files G1, . . . ,Gn and any of these decompresses toF. This
multiplicity of the compressed files contributes to fill up
the space of compressed files too quickly. A compression
technique that allows multiple encodings for most of the
original files suffers from what we call theredundancy from
the multiplicity of the encodings. We also use the termparse
to refer to a particular sequence of messages for an original
file. LZ77 compression provides multiple encodings for a file
F because it can parseF in multiple ways.

In this paper, we only consider parses in which longest
matches are selected in a greedy fashion. Although parsing is-
sues are essentially orthogonal to bit-recycling code construc-
tion issues, we choose to consider greedily selected longest-
match parses only, for reasons of simplicity.Example 1. In
Figure 1, although fileFex

1 could be parsed in 6 different ways,
there exist two ways to parse it using greedily selected longest
matches.

III. DATA EMBEDDING VIA MATCH SELECTION

Many authors have observed that the multiplicity of the
encodings offers an opportunity to open a side-channel of
communication fromC to D. Let us give an overview of
how this is possible. When facing multiple longest matches
〈l, d1〉, . . . , 〈l, dn〉, C may choose any〈l, di〉 and still describe
the samel characters ofF. For instance, in Example 1, the
last message selected byC may be〈3, 4〉 or 〈3, 8〉; in either
case, ‘abc’ gets described. When the longest matches thatC
is facing are〈l, d1〉, . . . , 〈l, dn〉, we say thatC hasn options.
In a conventional implementation of LZ77,D does not pay
attention to the particular〈l, di〉 that is chosen. However, in a
non-conventional implementation of LZ77,D can be brought
to notice it. In such an implementation,C is programmed
to make eye winks when facing multiple options andD is
programmed to notice these eye winks. The eye winks are
information and this information can take the form of bit
sequences. For instance, in Example 1, selecting one of〈3, 4〉
and 〈3, 8〉 can be associated to an eye-wink (single-) bit
sequence, i.e. ‘0’ or ‘ 1’, respectively. While only the codeword
for 〈3, d〉 is explicitly transmitted, an additional bit isimplicitly

Fex
1 : abc1abc2abc
Parse 1a:[a] [b] [c] [1] 〈3, 4〉 [2] 〈3, 4〉
Parse 1b:[a] [b] [c] [1] 〈3, 4〉 [2] 〈3, 8〉

Fig. 1. Greedily selected longest-match parses.

transmitted. Naturally, when more than 2 options are available,
bit sequences of more than 1 bit may be used. WhenC
frequently makes eye winks, aside-channel is established
betweenC andD. A complete transmission through the side-
channel isw = w1 . . . wm, wherewi is due to theith eye wink.
This side-channel has a limited capacity which is dependent
on occurrences ofC facing multiple options. More frequent
occurrences and occurrences with more numerous options
increase the capacity of the side-channel.

The side-channel is general purpose and it may carry any
useful data. In previous work, it has been used for information
hiding, or steganography [2], for authentication [1], for error
detection or correction [9], and for bit recycling [4], [6],[13].
This last application is described in greater detail next. It is
important to notice that, in any of these uses of the side-
channel,C is not free to arbitrarily select matches among the
available options. This is because specific information needs to
be transmitted through the side-channel andC does not decide
what this information is. Since this information is made up of
bit sequences sent using eye winks, each eye wink has to be
made in such a way that the appropriate bits are sent through
the side-channel. Consequently, each time it faces multiple
matches,C has options, but it cannot select one arbitrarily.
Instead, it has to select one that causes the appropriate bits to
be transmitted by the eye wink.

IV. BIT RECYCLING

Bit recycling is a technique that aims at reducing the size
of the compressed files. It uses the side-channel to transmit
as many bits of compressed data as possible, reducing the
size of the compressed file by doing so.Example 2. Figure 2
illustrates the workings of a bit-recycling implementation. The
figure shows the changes that happen toD’s input bit stream.
At instant I, D is ready to decode a message. At instant II,
a messageMi has been decoded. Next,D realizes thatC
had many options and that any ofM1, . . . , Mn could have
been sent. At instant III, the bit sequence associated toMi,
say ‘101’, gets recycled. D is then ready to decode the next
message and possibly recycle bits again.3

Note that the bits that get transmitted through the side-
channel are compressed data bits, which means that they
are (virtually) random. It means that, in the context of bit
recycling, options get selected by a random process. In con-
texts other than bit recycling, the embedded data need not be
random in nature and so it would be doubtful to make any
hypothesis about the selection probabilities of the options.

V. CONSTRUCTION OF RECYCLING CODES

The previous sections shortly describe the workings of bit
recycling. However, there remains to describe a crucial part of

3Note that the recycled bits could be used differently, see [13].

Instant I: 0110101101001100010101...
Instant II: 01100010101...
Instant III: 10101100010101...

Fig. 2. Illustration of bit recycling.

the technique which is the way (recycled) bit sequences are
associated to the options faced byC. We adopt a progressive
approach where notions are introduced one after the other
and definitions get refined in multiple steps. In this section,
we always presume that optionsM1, . . . , Mn (n > 1) are
available.

Let us give adefinition of a recycling code. Arecycling
code for a step during compression consists in a functionr
that maps{Mi}

n
i=1 to bit sequences. Bit sequencer(Mi) has

to be defined, for1 ≤ i ≤ n.

Approach 1. Code r may associate fixed-length bit se-
quences to the options. This is one of the simplest of the
conventional encodings so we might as well try it in building
recycling codes. Taking into account the fact thatn might not
be a power of 2, we definer(Mi) to bei−1 written in binary
using k bits, wherek = ⌈log2 n⌉. Problem. This definition
of a recycling code conflicts with the expected behavior of
bit recycling. Let us present a counter-example.Example 3.
Let n = 3 and r be defined as:r(M1) = 00, r(M2) = 01,
and r(M3) = 10. If we consider the operations onD’s side,
we have that, at the start of this step, the bit stream looks like
c(Mi)·w; then,D decodesMi and the bit stream looks likew;
finally, the bit sequencer(Mi) gets recycled and the bit stream
now looks liker(Mi) · w. But what happens if the resulting
bit stream needs to have the form11 ·w? Lesson. A recycling
code has to be a complete code.Definition: a complete code
r : Σ → {0, 1}∗ is such that, for any infinite bit sequenceσ,
there exists a symbols in Σ such thatσ = r(s) · σ′. This
brings us toredefine recycling code: it is a function r that
maps{Mi}

n
i=1 to bit sequences such thatr(Mi) is defined,

1 ≤ i ≤ n, and r is a complete code.

Approach 2. Code r maps{Mi}
n
i=1 to bit sequences of

length k, wherek = ⌊log2 n⌋, while making sure that allk-
bit sequences are in the image ofr. Clearly, r is complete.
Problem. Example 4. Let n = 3 andr be defined asr(M1) =
r(M2) = 0 andr(M3) = 1. When bit ‘0’ needs to be recycled,
eitherM1 or M2 may be selected. So, in such circumstances,
there remain multiple encodings that are not exploited by bit
recycling. Lesson. A recycling code ought to be a varying-
length complete code.

At this point, we need of few additionaldefinitions: in
particular, thenet cost of a match. Note that emitting a match
Mi costs |c(Mi)| bits; the compressed file grows. On the
other hand, recycling its associated bit sequencesaves |r(Mi)|
bits; the compressed file shrinks. Thenet cost of matchMi

is |c(Mi)| − |r(Mi)|. Note that, whiler(Mi) is under the
control of the bit recycling technique,c(Mi) is not. Due to the
randomness ofD’s input bit stream, optionMi’s probability
of being selected is2−|r(Mi)|. Finally, at some step, given a
recycling coder, we define theexpected cost of the step using

function BUILD([M1, . . . ,Mn]):
if n = 1 then

return M1

else
let (M, t′) = CUT(Mn−1,Mn)
let K(M) = K(t′)
let L = INSERT([M1, . . . ,Mn−2],M)
let t = BUILD(L)
if M appears int then

return REPLACE(t,M, t′)
else

return t
function CUT(Ma,Mb):

let M = a new “placeholder” option
executea branch whose condition is satisfiedin

1. condition K(Ma) + 2 ≤ K(Mb):
return (M,Ma) // drop Mb

2. condition K(Ma) + 2 ≥ K(Mb):
return (M,Ma ⊗ Mb) // keep Mb

Fig. 3. Optimal recycling code construction algorithm.

r as:
n

∑

i=1

2−|r(Mi)| (|c(Mi)| − |r(Mi)|) .

In order to improve the compression as much as possible, bit
recycling should build anr that minimizes the expected cost.
Lessons. Clearly, bit recycling has to take the costs of the
options into account. Moreover, it is wasteful to have a recy-
cled bit sequence that is the prefix of another. If we go back
to Example 4 and further suppose that|c(M1)| = |c(M2)| =
|c(M3)|, the expected cost would be reduced ifr were rather
defined asr(M1) = 00, r(M2) = 01, andr(M3) = 1.

Approach 3. In previous work,proportional recycling was
proposed to build a goodr [4]. Frequency2−|c(Mi)| is assigned
to Mi, for 1 ≤ i ≤ n, and Huffman’s algorithm is used to build
r [7]. Example 5. Let {Mi}

3
i=1 be such that|c(M1)| = 12,

|c(M2)| = 11, and |c(M3)| = 15. The assigned frequencies
are2−12, 2−11, and2−15, respectively, andr would likely be
r(M1) = 00, r(M2) = 1, andr(M3) = 01. The expected cost
of the step is1

4 (12 − 2) + 1
2 (11 − 1) + 1

4 (15 − 2) = 10.75.
Problem. A costly option likeM3 is not compensated enough
by its associated recycled bit sequence and it pushes the
expected cost up.Lesson. There is no need to considerall the
available options in every step; too-costly options shouldbe
dropped. Here, we need to review twodefinitions. A recycling
code r maps a non-empty subset of{Mi}

n
i=1 to bit sequences

and it has to be a prefix-free (and complete) code. Theexpected
cost of a recycling coder, K(r), is:

∑

i∈Dom(r)

2−|r(Mi)| (|c(Mi)| − |r(Mi)|) .

Approach 4. (This is the optimal approach.) It consists
in selecting the “right” non-empty subset of options and in
building a proportional code for them. If we come back to
Example 5, optimal recycling is achieved by droppingM3

Input: [M2,M1,M3] M : Mα t′: M1 K(Mα) = 12
Input: [M2,Mα] M : Mβ t′: M2 ⊗ Mα K(Mβ) = 21

2
Input: [Mβ]
Result:Mβ

Result:M2 ⊗ Mα

Result:M2 ⊗ M1

Fig. 4. Trace of the algorithm’s execution.

and buildingr as r(M1) = 0, r(M2) = 1, which leads to an
expected cost of12 (12 − 1) + 1

2 (11 − 1) = 10.5. From this
point, there remain two tasks to be performed. First, we need
to provide an efficient algorithm to build optimal recycling
codes. Second, we need to prove that the algorithm effectively
builds optimal recycling codes.

In the next section, we use an alternative representation of
the recycling codes: one using recycling trees. Arecycling tree
t for the options{Mi}

n
i=1 is either a single leaf,Mi, or an

internal node with two sub-trees,t1⊗t2, provided that the sets
of options that appear int1 andt2 are disjoint. Note that there
is a one-to-one mapping between the recycling trees and the
valid recycling codes. We define theexpected cost K(t) of a
recycling treet as follows:

K(Mi) = |c(Mi)|

K(t1 ⊗ t2) = (K(t1) + K(t2))/2 − 1

Note that this definition is equivalent to one where the ex-
pected costK(t) of a recycling treet would be the expected
costK(c) of the recycling codec to which t corresponds.

VI. CONSTRUCTION ALGORITHM

Figure 3 presents the pseudo-code of a linear-time algorithm
that builds optimal recycling codes. The main function is
BUILD , which takes a list of options already ordered by cost
(from the cheapest to the costliest) and returns an optimal
recycling tree. INSERT(L,M) insertsM in the ordered list
L of options and returns an ordered list. REPLACE(t,M, t′)
replacesM by t′ in t. Note that function CUT has a non-
deterministic behavior whenK(Ma)+2 = K(Mb). However,
non-determinism is used only to get an algorithm that encom-
passes any concrete (deterministic) implementation.

The algorithm processes the options from the costliest to the
cheapest. In each step, CUT decides whether the costliest one,
Mn, deserves to be dropped or joined to the second costliest
one,Mn−1. During the subsequent recursive calls, an artificial
option M serves as a placeholder forMn−1 or Mn−1 ⊗ Mn,
respectively. After the recursive calls,M is replaced by the
sub-tree it stood for. Let us come back to Example 5. The
construction of a recycling code for these options proceedsas
depicted in Figure 4. Note that matchM3 is indeed dropped
by the algorithm.

VII. PROOF OF OPTIMALITY

Here, we establish the optimality of the recycling trees
computed by BUILD using five lemmas and a main theo-
rem. But, first, we need a few definitions. We say that a
list [M1, . . . ,Mn] of options is ordered if j < i implies

K(Mj) ≤ K(Mi). The notion of depth of a node in a
recycling tree is the usual one. Alevel in a recycling tree
contains all the internal nodes and the leaves (options) that
appear at a particular depth. Thelowest level is the deepest
one that is non empty.

In each of the lemmas, we letLin = [M1, . . . ,Mn] be an
ordered list of options andt, an optimal recycling tree forLin.

Lemma 1. Let i be such thatMi appears int. For all j
such that1 ≤ j < i, Mj also appears int.

PROOF. Instead, let us suppose that we havei andj, with
j < i, such thatMi appears int but not Mj . If we replace
Mi by Mj ⊗ Mi in t, we obtain a recycling tree forLin that
is strictly cheaper thant, which contradicts the optimality of
t, since:

K(Mi) = (K(Mi) + K(Mi)) /2
≥ (K(Mj) + K(Mi)) /2
> (K(Mj) + K(Mi)) /2 − 1
= K(Mj ⊗ Mi).

Lemma 2. Let i and j such thatMi and Mj both appear
in t. If Mj appears on a strictly higher level thanMi, then
K(Mj) ≤ K(Mi).

PROOF. Instead, suppose thatK(Mj) > K(Mi). Let di

and dj be the depths ofMi and Mj in t, respectively. By
hypothesis,dj < di. Let t′ be the recycling tree obtained
from t by swappingMi and Mj . Note that the bit sequence
associated to every option exceptMi andMj is the same in
t and t′. If we compare the expected costs of the recycling
codes that correspond tot and t′, we need only take the net
costs ofMi andMj into account and we have that:

K(t) − K(t′)
= 2−di(K(Mi) − di) + 2−dj (K(Mj) − dj)

−2−di(K(Mj) − di) − 2−dj (K(Mi) − dj)
= 2−diK(Mi) + 2−dj K(Mj)

−2−diK(Mj) − 2−dj K(Mi)
=

(

2−dj − 2−di

)

(K(Mj) − K(Mi)) > 0.

This contradicts the optimality oft.
We omit the proofs of both following, trivial lemmas.
Lemma 3. Suppose thatMi andMj both appear int, for

i 6= j. If Mi and Mj appear on the same level int, then
swapping them does not change the cost of the tree.

Lemma 4. Suppose thatMi andMj both appear int, for
i 6= j. If Mi andMj have the same cost, then swapping them
does not change the cost of the tree.

Lemma 5. If Mn−1 andMn both appear int, then we can
reshapet without changing its expected cost and haveMn−1

andMn be the children of the same internal node.
PROOF. The reshaping process is performed in three steps.

The first step consists in making sure thatMn appears on the
lowest level. If not, let us pick an optionMi that appears on
the lowest level. We have thatK(Mi) ≤ K(Mn) becauseLin

is ordered. Moreover, we have thatK(Mn) ≤ K(Mi) because
Mn appears on a strictly higher level thanMi (by Lemma 2).
SinceK(Mn) = K(Mi), we can swap them (by Lemma 4)
without changing the cost oft. The second step consists in

making sure thatMn−1 also appears on the lowest level. If not,
we proceed in a similar fashion by swapping it with an option
other thanMn that appears on the lowest level (by Lemmas 2
and 4). The third step consists in making sure thatMn−1 and
Mn are the children of the same internal node. If not, we swap
Mn−1 with the brother of Mn (by Lemma 3).

Theorem. Given an ordered listLin = [M1, . . . ,Mn] of
options, BUILD returns an optimal recycling tree.

PROOF. We prove the theorem by induction onn, the
number of options. In the base case,n = 1, there is only
one option,M1, and consequently only one possible recycling
tree,M1, which is necessarily optimal. Since BUILD returns
M1, it returns the optimal recycling tree. Now, let us consider
the case wheren > 1 and make the hypothesis that BUILD

returns an optimal recycling tree when given an ordered list
of options of lengthn− 1. The first step that is performed by
BUILD is to ask CUT to make a decision aboutMn−1 andMn.
One of two decisions is made by CUT: Mn is either dropped
or kept. Let us examine each case.

First, let us consider the case where CUT decides to drop
Mn. Note that K(Mn−1) + 2 ≤ K(Mn). We have that
M is a placeholder fort′ = Mn−1, K(M) = K(Mn−1),
L is some permutation of[M1, . . . ,Mn−2,M], and t is an
optimal recycling tree forL. Note that we say thatL is some
permutation of[M1, . . . ,Mn−2,M] becauseM need not be
strictly costlier thanMn−2. Note also thatt is optimal for
L, which has lengthn − 1, by induction hypothesis. BUILD

returns t′′ which is identical tot except that the eventual
appearance ofM in t is replaced byMn−1. Clearly, t′′ is
optimal for [M1, . . . ,Mn−1]. We claim thatt′′ is also optimal
for Lin. Now, suppose thatt′′ is not and lett′′′ be a recycling
tree forLin such thatK(t′′′) < K(t′′). We need to consider
two sub-cases: one whereMn does not appear int′′′ and the
other whereMn does. IfMn does not appear int′′′, then we
replace the eventual appearance ofMn−1 in t′′′ by M and
we obtain a tree forL that costs less thant. This contradicts
the optimality of t for L. On the other hand, ifMn appears
in t′′′, so doesMn−1 (by Lemma 1). Since bothMn−1 and
Mn appear int′′′ and they are (the) two costliest options, we
can modify the shape oft′′′ without changing its cost to make
them children of the same internal node (by Lemma 5). If we
replaceMn−1 ⊗Mn by Mn−1 in t′′′, we obtain a tree that is
not costlier thant′′′, because

K(Mn−1 ⊗ Mn) = (K(Mn−1) + K(Mn)) /2 − 1
≥ (K(Mn−1) + K(Mn−1) + 2) /2 − 1
= K(Mn−1),

and, by replacingMn−1 by M , we obtain a tree forL that is
less costly thant. Contradiction.

Second, let us consider the case where CUT decides to
keep Mn. Note that K(Mn−1) + 2 ≥ K(Mn). We have
that M is a placeholder fort′ = Mn−1 ⊗ Mn, K(M) =
(K(Mn−1) + K(Mn)) /2 − 1, L is some permutation of
[M1, . . . ,Mn−2,M], andt is an optimal recycling tree forL.
BUILD returnst′′ which is obtained by replacing the eventual
appearance ofM in t by Mn−1 ⊗ Mn. We claim thatt′′ is

optimal for Lin. Now, suppose thatt′′ is not and lett′′′ be a
recycling tree forLin such thatK(t′′′) < K(t′′). We need to
consider three sub-cases: one whereMn appears int′′′, another
whereMn−1 appears int′′′ but notMn, and the last one where
none ofMn−1 and Mn appears int′′′. In the first sub-case,
sinceMn appears int′′′, Mn−1 appears too (by Lemma 1).
We can modify the shape oft′′′ without changing its cost
to make Mn−1 and Mn the children of the same internal
node (by Lemma 5). By replacingMn−1 ⊗ Mn by M , we
obtain a recycling tree forL that is as costly ast′′′, which
contradicts the optimality oft for L. In the second sub-case,
we can replace the leafMn−1 by Mn−1 ⊗Mn in t′′′ without
increasing its cost, because

K(Mn−1) = (K(Mn−1) + K(Mn−1) + 2) /2 − 1
≥ (K(Mn−1) + K(Mn)) /2 − 1
= K(Mn−1 ⊗ Mn),

and the remainder of the reasoning proceeds as in the first
sub-case. In the third sub-case, we immediately have thatt′′′

is a recycling tree forL and its cost is lower than that oft,
which contradicts the optimality oft for L.

VIII. DISCUSSION AND FUTURE WORK

We presented the multiplicity of the encodings using LZ77.
However, many other data compression techniques suffer from
the same problem. For instance, Volf and Willems [11] present
a character-wisepredict-and-encode technique where not one
but two predictors compete to best predict the next character.
The encoding of each character consists in a flag that indicates
which predictor has been chosen followed by the encoding
of the character using that predictor’s predictions. They show
that, although some space is lost by sending the flags, the
loss is more than compensated by the ability to let the
best predictor describe each character. As is obvious, this
technique systematically offerstwo encodings per character,
which makes it susceptible to benefit from bit recycling. Other
techniques showing the multiplicity of the encodings existor
could be naturally devised. Variants of Prediction by Partial
Matching (PPM) [3] with explicit escape characters frequently
offer multiple encodings for characters because it is possible
to deliberately escape to a lower-order model even though a
higher-level one could handle the characters. Similarly, it is
possible to devise variants of dictionary-based technique, like
LZ78 [15], in which the decisions to add new words in the
dictionary or not are communicated to the decompressor as
flags, creating multiple encodings for each emitted word.

The complexity of the algorithm that we present in this
paper is linear in the number of options. This is the same
complexity as Huffman’s algorithm [7]. This is not surprising
as both algorithms essentially perform the same sequence
of operations except that ours drops options (or symbols)
under certain circumstances. The difference in cost does not
come from the algorithms themselves but in their uses. While
Huffman’s algorithm may be used once to build a code that
is used for the encoding of a large number of symbols, ours
has to be used each time the compressor is facing multiple

options. In the context of bit-recycling LZ77 compression,
it would be worthless to cache the recycling codes that our
algorithm builds since the exact same set of options would
rarely appear twice. Moreover, we do not observe a gradual
evolution of the set of options or their costs that would make
an adaptive variant of our algorithm useful like an adaptive
Huffman’s algorithm in contexts where the statistics of the
symbols slowly evolve [10].

As future work, we intend to develop a fast version of our
algorithm, similar to the method for fast construction of dis-
posable prefix-free codes [5]. The method would be faster only
by a constant factor, not asymptotically, and would exploitthe
fact that the options have integer costs. Also, we intend to
make bit recycling compatible with arithmetic encoding [12].
In this paper and previous work on bit recycling, encoding
messages always involves sequences ofwhole bits and re-
cycling, too. Adapting bit recycling for arithmetic encoding
would allow recycledintervals (instead of bit sequences) to
be tailored perfectly to the probabilities at hand, withoutthe
constraint of using powers of two. The flexibility offered by
the arithmetic encoding setting would make the abandon of
costly options unnecessary. However, a difficulty is that a näıve
scheme would rely on the use of arbitrary-precision numbers.
Indeed, practical implementations of arithmetic encodinguse
fixed-precision integers only. Arithmetic recycling wouldhave
to do the same.

REFERENCES

[1] M. J. Atallah and S. Lonardi. Augmenting LZ-77 with authentication and
integrity assurance capabilities.Concurrency and Computation: Practice
and Experience, 16(11):1063–1076, 2004.

[2] A. Brown. gzip-steg, 1994.
[3] J. G. Cleary and I. H. Witten. Data compression using adaptive

coding and partial string matching.IEEE Trans. on Communications,
32(4):396–402, 1984.

[4] D. Dubé and V. Beaudoin. Improving LZ77 data compression using bit
recycling. InProc. of ISITA, Seoul, South Korea, October 2006.

[5] D. Dubé and V. Beaudoin. Fast construction of disposable prefix-free
codes. InProc. of the International Colloquium on Signal Processing
and its Applications, Kuala Lumpur, Malaysia, March 2008.

[6] D. Dubé and V. Beaudoin. Improving LZ77 bit recycling using all
matches. InProc. of ISIT, Toronto, ON, Canada, July 2008.

[7] D. A. Huffman. A method for the construction of minimum-redundancy
codes. InProc. of the Institute of Radio Engineers, volume 40, pages
1098–1101, September 1952.

[8] T. Kawabata. Enumerative implementation of Lempel-Ziv 77 algorithm.
In Proc. of ISIT, pages 990–994, Toronto, ON, Canada, July 2008.

[9] S. Lonardi, W. Szpankowski, and M. Ward. Error resilientLZ’77 data
compression: Algorithms, analysis, and experiments.IEEE Trans. on
Information Theory, 53(5):1799–1813, 2007.

[10] J. S. Vitter. Design and analysis of dynamic Huffman codes. Journal
of the ACM, 34(4):825–845, October 1987.

[11] P. A. J. Volf and F. M. J. Willems. Switching between two universal
source algorithms. InProc. of DCC, pages 491–500, March 1998.

[12] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression.Communications of the ACM, 30(6):520–540, June 1987.

[13] H. Yokoo. Lossless data compression and lossless data embedding. In
Proc. of the Asia-Europe Workshop on Concepts in Information Theory,
Jeju, South Korea, October 2006.

[14] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression.IEEE Trans. on Information Theory, 23(3):337–342, 1977.

[15] J. Ziv and A. Lempel. Compression of individual sequencesvia
variable-rate coding.IEEE Trans. on Information Theory, 24(5):530–
536, September 1978.

