Constructing Optimal Whole-Bit Recycling Codes

Danny Dule Vincent Beaudoin
Département d’'informatique et degie logiciel Département d’'informatique et degie logiciel
Universié Laval, Canada Universié Laval, Canada
Email: Danny. Dube@ft. ul aval . ca Email: Vi ncent . Beaudoi n. 1@l aval . ca

Abstract—Bit recycling aims at improving the rates achieved to refer to the compressor and the decompressor, resggctive
by compression techniques, such as LZ77, that suffer from the \When transmitted fronC to D, the messages are encoded
redundancy caused by the multiplicity of the encodings. The using a prefix-free code thatC and D have agreed upon.

performance of bit recycling depends crucially on the recycling . .
codes that it uses. A recipe for the construction of optimal The LZ77 compression technique does not completely

recycling codes has been mentioned in previous work. However, SPecifies the way files are compressed in the sense that an
no efficient algorithm and proof of optimality were given. We original file F may have many corresponding compressed

present both here. files Gi,...,G, and any of these decompressesFtoThis
|. INTRODUCTION multiplicity of the compress_ed files cqntributes to fill up
) . . . i . the space of compressed files too quickly. A compression
Bit recycling aims at improving the rates achieved byschnique that allows multiple encodings for most of the
compression techniques, such as LZ77 [14], that suffer froé?iginal files suffers from what we call thesdundancy from
the redundancy caused by the multiplicity of the encodidgs [(o muiti plicity of the encodings. We also use the termparse

[6], [13]. Bit recycling takes the pragmatic approach of dey, refer 0 o particular sequence of messages for an original

tecting and exploiting the multiplicity in order to recovar e | 777 compression provides multiple encodings for a file
compensation instead of trying to eliminate the multipyici £ pacause it can pardgein multiple ways.

at the source (e.g., Kawabata’'s approach for LZ77 [8]). The | s paper, we only consider parses in which longest

performance of bit recycling depends crucially on the réogc 1\ ches are selected in a greedy fashion. Although parsing i
codes that it uses. For instance, flat recycling and prapaati g o5 are essentially orthogonal to bit-recycling code tcoas

recycling have been presented in previous papers. HOWeVRS, issues, we choose to consider greedily selected longes
neither bit recycling technique is optimal, even if propamal | -. 1 parses only, for reasons of simpliciBxample 1. In

recycling comes pretty close. A recipe for the constructibn Figure 1, although fil&<* could be parsed in 6 different ways,

optlmal rec_y(_:llng code_s has been ment|or_1ed In previous WogKe e exist two ways to parse it using greedily selecteddeng
Still, no efficient algorithm was given. Neither was any droo, tches

of optimality. We present both in this paper.
The paper is divided as follows. Sections I, Ill, and IV 1ll. DATA EMBEDDING VIA MATCH SELECTION

review the notion of multiplicity of the encodings, the alyil Many authors have observed that the multiplicity of the

to embed data in a compressed file when multiple encoding§eqdings offers an opportunity to open a side-channel of
exist, and bit recycling itself. Sections V and VI progreey .o munication fromC to D. Let us give an overview of

introduce the concepts needed to build recycling codes thaj, this is possible. When facing multiple longest matches
lead to optimal bit recycling and present an algorithm t@,d1>, ..., {l,d,), C may choose anyl, d;) and still describe

construct optimal recycling codes. Section VII containg thye samel characters of. For instance. in Example 1, the
proof that the codes built by the algorithm are indeed optima, ¢ message selected Bymay be (3, 4) or (3,8): in either

The paper ends with a discussion in Section VIII. case, 4bc’ gets described. When the longest matches ¢that

Il. MULTIPLICITY OF THE ENCODINGS is facing are(l, d1), ..., (I, dy), we say that hasn options.

LZ77 [14] is a lossless data compression technique thIn a conventional implementation of LZ77} does not pay

compresses a file, sa, by transmitting a description df é’litttentlon to' the p'artlcula(rl,di} that is chosen. However, in a
. o non-conventional implementation of LZ77D can be brought
in the form of asegquence of messages. A message is either

a literal, denoted by[z], which explicitly indicates that the :g r?g:fee 'g \:;?nli’:(\:/t/]hgl: flgz:?rI\emsztlztﬁmolStic?rzzg;rg)miid
next character isz, or a match, denoted by(l,d), which < 9 b€ op

indirectly indicates that the next characters are a copy Ofprogrammed to notice these eye winks. The eye winks are

the characters that appedrcharacters before iR.? Variable information and this information can take the form of bit

M ranges over messages of either kind. Also, we@usedD sequences. For mstance,_m Example 1, sele_ctmg ng’ a .
and (3,8) can be associated to an eye-wink (single-) bit

1This work was supported by NSERC of Canada. sequence, i.e0’ or * 1’, respectively. While only the codeword
2n this paper, we require matches to be at least 3-charagigr lo for (3, d) is explicitly transmitted, an additional bit isnplicitly

F{*: abclabc2abce Instant I: 0110101101001100010101. ..

Parse 1aia] [b] [c] [1] (3,4) [2] (3,4) Instant II: 01100010101. ..
Parse 1bia] [b] [c] [1] (3,4) [2] (3,8) Instant III: 10101100010101. . .
Fig. 1. Greedily selected longest-match parses. Fig. 2. lllustration of bit recycling.

transmitted. Naturally, when more than 2 options are abkila the technique which is the way (recycled) bit sequences are

bit sequences of more than 1 bit may be used. Wten associated to the options faced ByWe adopt a progressive

frequently makes eye winks, side-channdl is established approach where notions are introduced one after the other
betweenC andD. A complete transmission through the side- bp

channel isw = w . . . w,,, wherew; is due to thath eye wink. and definitions get refined in multiple steps. In this segtion

This side-channel has a limited capacity which is dependevyl? always presume that optiondy, ..., M, (n > 1) are

. . . available.
on occurrences of facing multiple options. More frequent) .) _
occurrences and occurrences with more numerous optiond€t US give adefinition of a recycling code. Arecycling
increase the capacity of the side-channel. code for a step durmg.compressmn consists in a function
The side-channel is general purpose and it may carry afijtt maps{/;}i., to bit sequences. Bit sequencg)/;) has
useful data. In previous work, it has been used for inforamati 10 be defined, foi <i <.
hiding, or steganography [2], for authentication [1], for error ~ Approach 1. Coder may associate fixed-length bit se-
detection or correction [9], and for bit recycling [4], [§],3]. quences to the options. This is one of the simplest of the
This last application is described in greater detail nexts | conventional encodings so we might as well try it in building
important to notice that, in any of these uses of the sid&ecycling codes. Taking into account the fact thanight not
channelC is not free to arbitrarily select matches among thlee a power of 2, we defing(;) to bei — 1 written in binary
available options. This is because specific informatiordeg¢e using & bits, wherek = [log, n]. Problem. This definition
be transmitted through the side-channel &ndbes not decide of a recycling code conflicts with the expected behavior of
what this information is. Since this information is made dip @it recycling. Let us present a counter-examiigample 3
bit sequences sent using eye winks, each eye wink has tolgg¢ » = 3 andr be defined asr(M;) = 00, (M) = 01,
made in such a way that the appropriate bits are sent throufid r(M3) = 10. If we consider the operations di's side,
the side-channel. Consequently, each time it faces meltipye have that, at the start of this step, the bit stream loddes i
matches,C has options, but it cannot select one arbitrarilyc(M;)-w; then,D decodesV/; and the bit stream looks like;
Instead, it has to select one that causes the appropriatéobitfinally, the bit sequence(1/;) gets recycled and the bit stream
be transmitted by the eye wink. now looks liker(M;) - w. But what happens if the resulting
bit stream needs to have the fomn-w? Lesson A recycling
IV. BIT RECYCLING code has to be a complete cod¥efinition: a complete code
Bit recycling is a technique that aims at reducing the size: > — {0,1}* is such that, for any infinite bit sequenee
of the compressed files. It uses the side-channel to transthiére exists a symboi in ¥ such thate = 7(s) - o’. This
as many bits of compressed data as possible, reducing iiggs us toredefine recycling code: it is a functionr that
size of the compressed file by doing &xample 2 Figure 2 maps{M;}"_, to bit sequences such that)/;) is defined,
illustrates the workings of a bit-recycling implementatidhe 1 < i < n, and r is a complete code.
figu_re shows th.e changes that happerDte input bit s'tream. Approach 2. Coder maps{M;}", to bit sequences of
At instant I, D is ready to decode a message. At instant lfgngth k, wherek = |log, n|, while making sure that alt-
a messagel/; has been decoded. Nex? realizes thatC pjt sequences are in the image nofClearly, r is complete.
had many options and that any 8f;, ..., M, could have proplem. Example 4 Letn = 3 andr be defined as(}M;) =
been sent. At instant ll, the bit sequence associated/fp r(Ms) = 0 andr(M;) = 1. When bit 0’ needs to be recycled,
say 101’ getsrecycled. D is then ready to decode the nexkither A7, or M, may be selected. So, in such circumstances,
message and possibly recycle bits again. there remain multiple encodings that are not exploited by bi

Note that the bits that get transmitted through the Sid?écycling. Lesson A recycling code ought to be a varying-
channel are compressed data bits, which means that theygth complete code.

are (\{irtually)_ random. It means that, in the context of bit At this point, we need of few additionalefinitions: in
recycling, options get selected by a random process. In ¢ Irticular, thenet cost of a match. Note that emitting a match
texts other than bit recycling, the embedded data need not ' :

dom i ; d i Id be doubtful t K . costs |c¢(M;)| bits; the compressed file grows. On the
random In nature and so It would be COubliLll 10 Maxe angy, o ang, recycling its associated bit sequesawes |r(M;)|
hypothesis about the selection probabilities of the option bits; the compressed file shrinks. Thet cost of match M;

V. CONSTRUCTION OF RECYCLING CODES s |¢(M;)| — |r(M;)|. Note that, whiler(M;) is under the

The previous sections shortly describe the workings of KiPntrol of the bit recycling technique(1;) is not. Due to the

recycling. However, there remains to describe a cruciai gar 'andomness oD's input bit stream, optiom/;’s probability
of being selected i@~ !"(M:)l, Finally, at some step, given a

3Note that the recycled hits could be used differently, s&.[1 recycling coder, we define thaxpected cost of the step using

function BUILD ([My, ..., M,]):
if n =1 then
return M,
else
let (M,t') = CuT(M,,_1, M,)
let K(M) = K(t)
let L = INSERT([My, ..., M, o], M)
let ¢t = BUILD (L)
if M appears irt then
return REPLACE(t, M,t')
else
return ¢
function CuT(M,, My):
let M = a new “placeholder” option
executea branch whose condition is satisfied
1. condition K (M,) + 2 < K(M,):
return (M, M,,) /I drop M,
2. condition K (M,) +2 > K(M,):
return (M, M, ® My) Il keep M,

Fig. 3. Optimal recycling code construction algorithm.

r as:

n

S 2 ((e(ady)| ~ 1 (M)

i=1

Input: [My, My, M3] M: M, t: M K(M,) =12
Input: [Mz, M,,] M: Mg t:My®M, K(Mg)=2
Input: [Mg]
Result: Mg

Result: My @ M,
Result: My @ M,

Fig. 4. Trace of the algorithm’s execution.

and buildingr asr(M;) = 0, r(Mz) = 1, which leads to an
expected cost of (12 — 1) + £(11 — 1) = 10.5. From this
point, there remain two tasks to be performed. First, we need
to provide an efficient algorithm to build optimal recycling
codes. Second, we need to prove that the algorithm effégtive
builds optimal recycling codes.

In the next section, we use an alternative representation of
the recycling codes: one using recycling treeseéycling tree
t for the options{M;}"_, is either a single leaf);, or an
internal node with two sub-trees, ®t,, provided that the sets
of options that appear ity andt. are disjoint. Note that there
is a one-to-one mapping between the recycling trees and the
valid recycling codes. We define tlegpected cost K (¢) of a
recycling treet as follows:

K(M;) = |e(M;)]
Kti®ty) = (K(t)+K(t2))/2-1

In order to improve the compression as much as possible, Riste that this definition is equivalent to one where the ex-
recycling should build am that minimizes the expected costpected cost (t) of a recycling treet would be the expected

Lessons Clearly, bit recycling has to take the costs of theost K (c) of the recycling code: to which ¢ corresponds.
options into account. Moreover, it is wasteful to have a recy

cled bit sequence that is the prefix of another. If we go back
to Example 4 and further suppose thetM;)| = |¢(Ms)| =

VI. CONSTRUCTION ALGORITHM
Figure 3 presents the pseudo-code of a linear-time algorith

c(Ms)], the expected cost would be reduced- ifvere rather that puilds optimal recycling codes. The main function is

defined as:(M;) = 00, (M) = 01, andr(Ms3) = 1.

BuiLD, which takes a list of options already ordered by cost

Approach 3. In previous work proportional recydling was (from the cheapest to the costliest) and retuns an optimal
proposed to build a goad([4]. Frequency2™1“(*l is assigned recycling tree. NSERT(L, M) inserts M in the ordered list
to M;, for 1 < i < n, and Huffman’s algorithm is used to build 7, of options and returns an ordered listeRACE(t, M, t')

r [7]. Example 5 Let {M;}?_, be such thatc(M;)| = 12,

replacesM by t' in t. Note that function OT has a non-

|C(M2)1\2= 1111: and |C(]1V5/3)| = 15. The assigned frequenciesgeterministic behavior wher (M,)+2 = K (M,). However,
are2™°, 277+, and2™"", respectively, ana would likely be non-determinism is used only to get an algorithm that encom-
r(My) = 00, (M) = 1, andr(M;) = 01. The expected cost passes any concrete (deterministic) implementation.

of the step isk(12 —2) + 3(11 - 1) + 1

(15 — 2) = 10.75.

The algorithm processes the options from the costliesteo th

Problem. A costly option like M3 is not compensated enoughcheapest. In each stepu€ decides whether the costliest one,
by its associated recycled bit sequence and it pushes {})¢ deserves to be dropped or joined to the second costliest
expected cost uf.esson There is no need to considall the one A7, ;. During the subsequent recursive calls, an artificial

available options in every step; too-costly options shcwed option 37 serves as a placeholder fof,,_; or M,_; ® M,,

dropped. Here, we need to review taefinitions. A recycling

respectively. After the recursive call3/ is replaced by the

code r maps a non-empty subset p#/; };., to bit sequences gyp-tree it stood for. Let us come back to Example 5. The

and it has to be a prefix-free (and complete) code.&pected

cost of a recycling coder, K(r), is:

S° 27O (e(a)| - r(M)])

i€Dom(r)

construction of a recycling code for these options procesds
depicted in Figure 4. Note that matdti; is indeed dropped
by the algorithm.

Vil. PROOF OF OPTIMALITY

Approach 4. (This is the optimal approach.) It consists Here, we establish the optimality of the recycling trees
in selecting the “right” non-empty subset of options and inomputed by BILD using five lemmas and a main theo-
building a proportional code for them. If we come back toem. But, first, we need a few definitions. We say that a

Example 5, optimal recycling is achieved by dropping;

list [My,...,M,] of options isordered if j < ¢ implies

K(M;) < K(M;). The notion ofdepth of a node in a making sure thad/, _, also appears on the lowest level. If not,
recycling tree is the usual one. Kevel in a recycling tree we proceed in a similar fashion by swapping it with an option
contains all the internal nodes and the leaves (optiond) tlwdher than)M,, that appears on the lowest level (by Lemmas 2
appear at a particular depth. Thawest level is the deepest and 4). The third step consists in making sure that ; and

one that is non empty. M, are the children of the same internal node. If not, we swap
In each of the lemmas, we Idt, = [My,...,M,] be an M, _, with the brother of A,, (by Lemma 3). O

ordered list of options ant] an optimal recycling tree fak,,. Theorem. Given an ordered list;, = [M;,...,M,] of
Lemma 1 Let ¢ be such thatM; appears int. For all ; options, BJILD returns an optimal recycling tree.

such thatl < j <4, M; also appears in. PROOF. We prove the theorem by induction en the

PROOF. Instead, let us suppose that we hasad j, with number of options. In the base case,= 1, there is only
J < 1, such thatM; appears irt but not M/;. If we replace one option,M;, and consequently only one possible recycling
M, by M; ® M; in t, we obtain a recycling tree fak;, that tree, M;, which is necessarily optimal. SinceuBD returns
is strictly cheaper tham, which contradicts the optimality of M;, it returns the optimal recycling tree. Now, let us consider

t, since: the case where > 1 and make the hypothesis thauRD
N _ _ returns an optimal recycling tree when given an ordered list
K (M) < EKEMZ)) + {,{(((‘XIIZ)))) % of options of lengthn — 1. The first step that is performed by
; (K (M) + K(MZ')) /21 BuUILD is to ask @WT to make a decision abowt,,_; and/,,.
B K(M-J® M) ! One of two decisions is made byuC: M, is either dropped
- J v [l or kept. Let us examine each case.

Lemma 2 Leti andj such thatM; and M; both appear First, let us consider the case where1Cdecides to drop
in ¢t. If M; appears on a strictly higher level thad;, then A7,. Note that K(M, ;) + 2 < K(M,). We have that
K(M;) < K(M;). M is a placeholder for’ = M,_,, K(M) = K(M,_,),

PROOF. Instead, suppose that(M;) > K(M;). Let d; L is some permutation ofM, ..., M, _,,M], andt is an
and d; be the depths of\/; and MM; in ¢, respectively. By optimal recycling tree fo.. Note that we say that is some
hypothesis,d; < d,. Let t' be the recycling tree obtainedpermutation of[Mj, ..., M,_», M] becauseM need not be
from ¢ by swappingM; and M;. Note that the bit sequencestrictly costlier thanM,,_,. Note also thatt is optimal for
associated to every option excelpl; and M; is the same in [, which has length — 1, by induction hypothesis. BLD
t andt'. If we compare the expected costs of the recyclingturns¢” which is identical tot except that the eventual
codes that correspond te andt’, we need only take the netappearance of\f in ¢ is replaced byM, _,. Clearly, t” is

costs ofM; and M; into account and we have that: optimal for [My, ..., M,_1]. We claim that” is also optimal
K(t) _K(t) for L;,. Now, suppose that’ is not and lett’”” be a recycling
tree for L;, such thatK (¢"") < K(t"). We need to consider

djc)l‘) two sub-cases: one whefd,, does not appear if”” and the
J other whereM,, does. If M,, does not appear iti”’, then we
d; 4 replace the eventual appearanceldf,_, in ¢/ by M and
_ (22 ; i{gMj)) ZI?(MvI){(—MK)(Ml)) > 0 we obtain a tree fol that costs less thah This contradicts
J ! ’ the optimality oft for L. On the other hand, ifif,, appears
This contradicts the optimality of O in¢”, so doesM,,_; (by Lemma 1). Since botfi/,, _; and
We omit the proofs of both following, trivial lemmas. M,, appear int’”” and they are (the) two costliest options, we
Lemma 3. Suppose thaf/; and M; both appear irt, for can modify the shape a@f” without changing its cost to make
i # j. If M; and M; appear on the same level in then them children of the same internal node (by Lemma 5). If we
swapping them does not change the cost of the tree. replaceM,,_1 ® M,, by M,,_; in ", we obtain a tree that is
Lemma 4. Suppose thaf\/; and M, both appear irt, for not costlier than’”’, because
i # j. If M; and M; have the same cost then swapping therﬁ(L ®M,) (K(My_1) + K(M,)) /2 — 1
does not change the cost of the tree.
. (K(Mn 1)+K(Mn—1)+2) /2_1
Lemma 5. If M,,_; and M,, both appear irt, then we can K(M,_1)
reshape without changing its expected cost and havg_, ’
and M,, be the children of the same internal node. and, by replacing\Z,,_; by M, we obtain a tree foL that is
PROOF. The reshaping process is performed in three stelpss costly thart. Contradiction.
The first step consists in making sure thid}, appears on the Second, let us consider the case whereTQlecides to
lowest level. If not, let us pick an optiof/; that appears on keep M,,. Note that K(M,_1) + 2 > K(M,). We have
the lowest level. We have tha (M) < K(M,,) becausd.;, that M is a placeholder fot’ = M, 1 ® M,, K(M) =
is ordered. Moreover, we have th&t M,,) < K(M;) because (K(M,_1)+ K(M,))/2 — 1, L is some permutation of
M,, appears on a strictly higher level thans; (by Lemma 2). [My,..., M, _», M], andt is an optimal recycling tree fok.
Since K(M,,) = K(M;), we can swap them (by Lemma 4)BuILD returnst” which is obtained by replacing the eventual
without changing the cost of. The second step consists irappearance o/ in t by M,,_; ® M,,. We claim thatt” is

= 27H(K(M;) —dy;) +27% (K (M) —
2 G (K (M) = dg) — 274 (K (M;)
= 274K (M;) +2-% K(M;)

v 1

optimal for L;,. Now, suppose that’ is not and lett’”’ be a options. In the context of bit-recycling LZ77 compression,
recycling tree forL;, such thatkK (¢"’) < K(t"). We need to it would be worthless to cache the recycling codes that our
consider three sub-cases: one whefg appears in””’, another algorithm builds since the exact same set of options would
whereM,,_, appears in”’ but notM,,, and the last one whererarely appear twice. Moreover, we do not observe a gradual
none of M,,_; and M,, appears int”’. In the first sub-case, evolution of the set of options or their costs that would make
since M,, appears int”’, M, _, appears too (by Lemma 1).an adaptive variant of our algorithm useful like an adaptive
We can modify the shape aof” without changing its cost Huffman’s algorithm in contexts where the statistics of the
to make M,,_, and M, the children of the same internalsymbols slowly evolve [10].
node (by Lemma 5). By replacing/,,_; ® M, by M, we As future work, we intend to develop a fast version of our
obtain a recycling tree fol that is as costly ag’”’, which algorithm, similar to the method for fast construction o$-di
contradicts the optimality of for L. In the second sub-case posable prefix-free codes [5]. The method would be faster onl
we can replace the ledff,,_, by M, _; ® M,, in ¢ without by a constant factor, not asymptotically, and would explwét
increasing its cost, because fact that the options have integer costs. Also, we intend to
K(Mo_y) (K(My_1) + K (M, 1) +2) /2 — 1 ma;ﬁsbit recycling compatible Wli<th ariéhtmetic el'ncoding][é'z
(K(M, 1)+ K(M.)) /2 — 1 paper and previous work on bit recycling, encoding
K(M @ M,) messages always _|nvol_/es seql_JenceSthf_)Ie b|t§ and re-

" no cycling, too. Adapting bit recycling for arithmetic encadi
and the remainder of the reasoning proceeds as in the fisgtuld allow recycledintervals (instead of bit sequences) to
sub-case. In the third sub-case, we immediately havetthat be tailored perfectly to the probabilities at hand, withthe
is a recycling tree for, and its cost is lower than that of constraint of using powers of two. The flexibility offered by
which contradicts the optimality of for L. [0 the arithmetic encoding setting would make the abandon of

costly options unnecessary. However, a difficulty is thagiaen
VI DISCUSSION AND FUTURE WORK scheme would rely on the use of arbitrary-precision numbers
We presented the multiplicity of the encodings using LZ7Tndeed, practical implementations of arithmetic encodisg
However, many other data compression techniques suffer fréixed-precision integers only. Arithmetic recycling wouidve
the same problem. For instance, Volf and Willems [11] preseto do the same.
a character-wis@redict-and-encode technique where not one
but two predictors compete to best predict the next characte
The encoding of each character consists in a flag that iredicat[] M. J. Atallahand S. Lonardi. Augmenting LZ-77 with authieation and
which predictor has been chosen followed by the encoding g‘rfggé%;g‘éfnf&ffﬁigg'éfg%‘"r;g‘ocz_a”d Computation: Practice
of the character using that predictor’s predictions. Thegws [2] A. Brown. gzi p- st eg, 1994.
that, although some space is lost by sending the flags, th@ J. G. Cleary and I. H. Witten. Data compression using adept
loss is more than compensated by the ability to let the gg‘gg%ggzggftgﬁmg matching EEE Trans. on Communications,
best predictor describe each character. As is obvious, thi§ D. Dubé and V. Beaudoin. Improving LZ77 data compression using bit
technique systematically offetsvo encodings per character, _ recycling. InProc. of ISTA, Seoul, South Korea, October 2006.
which makes it susceptible to benefit from bit recyciing, @th 15 - DU and . Beaudon. Fast consirucon of dsposatie profe
techniques showing the multiplicity of the encodings exist and its Applications, Kuala Lumpur, Malaysia, March 2008.
could be naturally devised. Variants of Prediction by Rérti [6] D. Dubé and V. Beaudoin. Improving LZ77 bit recycling using all
Matching (PPM) 3] with explicit escape characiers freqlen ; P, P o T Toone Of canada, sy 2008,
offer multiple encodings for characters because it is [bssi codes. InProc. of the Institute of Radio Engineers, volume 40, pages
to deliberately escape to a lower-order model even though a 1098-1101, September 1952. _ , ,
higher-level one could handle the characters. Similatlys [0 . Kwabata, Enumeratye implementaton of Lerpet 2 ot
possible to devise variants of dictionary-based technitiige [9] S. Lonardi, W. Szpankowski, and M. Ward. Error resili&@'77 data
LZ78 [15], in which the decisions to add new words in the compression: Algorithms, analysis, and experimer&EE Trans. on
dictionary or not are commur_1icated to the de_compressor i) Br"f%r."\“j‘itt'tz?.ngosri)é’fg’r(%):;Zgﬁ,;ilssg”diggkic Huffman coddmirnal
flags, creating multiple encodings for each emitted word. of the ACM, 34(4):825-845, October 1987.

The complexity of the algorithm that we present in thi§ll P A. J. \I/olfﬁ]nd F."I;)/I. J. VfVig%rgs. 3witc2i9nlg E’Séwf,le” t\r/]vcii;gssal
o . . i source algorithms. IfProc. of , pages 491-500, Marc .
paper is linear in the number of options. This is the San?PZ] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic codifor data

complexity as Huffman’s algorithm [7]. This is not surprigi compressionCommunications of the ACM, 30(6):520-540, June 1987.
as both algorithms essentially perform the same sequehtd E- Yokfooh- '-Af;_sslgss dat&b Cigpressign and If_JSSIIEfSS da_tack;i}:@- In
. . roc. of the a-curope r op on Concepts In Information eory,
of operauops gxcept that ours dro.ps opnon; (or symbols) Jeju. South Korea, October 2006.
under certain circumstances. The difference in cost doés N@j J. ziv and A. Lempel. A universal algorithm for sequehtitata
come from the algorithms themselves but in their uses. While ComPreSSE’”IEEE Tfansl- O”é”fom‘aﬂoﬂ Theoffyg 31_3(%)13?7—342' 1977.
, . . J. Ziv and A. Lempel. ompression of individual sequeneés
_HUﬁmanS algorithm may be used once to build a code th variable-rate coding.|EEE Trans. on Information Theory, 24(5):530—
is used for the encoding of a large number of symbols, ours 536, September 1978.

has to be used each time the compressor is facing multiple

v

REFERENCES

