
Arbitrarily Low Redundancy Construction

of Balanced Codes Using Realistic Resources

Danny Dubé

Department of Computer Science and Software Engineering, Université Laval

Quebec City, Quebec, Canada

Email: Danny.Dube@ift.ulaval.ca

Abstract—Recently, Dubé and Mechqrane presented a con-
struction technique to encode plain data into balanced codewords.
The construction is based on permutations, the well known
arcade game Pacman, and limited-precision integers. The re-
dundancy that is introduced by their construction is particularly
low. The results are noticeably better than those of previous
work. Still, the resources required by their technique remain
modest: there is no need for large lookup tables, no need to
perform costly calculations using large integers, and yet the time
and space complexity for encoding or decoding a block is linear.
Although their technique allows one to achieve the best per-block
redundancy, the per-block aspect of the technique prevents the
achievement of the optimal redundancy, in a global sense. In this
paper, we extend the technique so that we can achieve a better
redundancy than the best per-block one and arbitrarily approach
the optimal global redundancy.

I. INTRODUCTION

A. Balanced Blocks

A block B of M bits is said to be balanced if it contains

an equal number of zeros and ones. Note that M has to be an

even number. Applications of balanced codes are mentioned

in Subsection I-B. Transforming arbitrary input data into bal-

anced blocks is performed using an encoding function ‘Enc’.
Such an encoding necessarily introduces redundancy. Indeed,

only
(

M
M/2

)

of the 2M blocks of M bits happen to be balanced.

Let BM be the set of the M -bit balanced blocks.

In this work, we assume that the application imposes a

specific size M for the balanced blocks. Moreover, we assume

that the input data is binary and purely random. Finally, we

consider that only a strict balance is acceptable for our bal-

anced blocks. Other work sometimes adopts a looser definition

of balanced blocks; e.g., by allowing odd values for M .

Let Q be the size of each block of input data that gets

transformed into a balanced block. Then the encoding function

is Enc : 2Q → BM . Let Dec : BM → 2Q be the corresponding

decoding function. To ensure decodability, ‘Enc’ has to be

injective, which implies that 2Q ≤
(

M
M/2

)

. Let R = M − Q
be the number of bits of redundancy that ‘Enc’ introduces per

block. Obviously, the smaller R is, the better ‘Enc’ is. ‘Enc’

is a fixed-to-fixed code. Figure 1 shows lookup tables for two

different choices of M and Q.

B. Motivation

Balanced codes have many applications. They can be used

to detect unidirectional errors [1], to detect errors due to low-

frequency disturbances in magnetic storage [2], to reduce noise

in VLSI integrated circuits [3], and for many other purposes.

C. Previous Work

1) Lookup Tables: Mathematically, devising optimal func-

tions ‘Enc’ and ‘Dec’ is a trivial task. First, one determines Q

from M ; so we let Q be
⌊

log
(

M
M/2

)

⌋

.1 Second, one may

use enumerative coding to define ‘Enc’ (and ‘Dec’) [4]. To

do so, one enumerates the 2Q unconstrained input blocks in

lexicographic order and the first 2Q M -bit balanced blocks

also in lexicographic order and then lets ‘Enc’ be the one-to-

one mapping from the former to the latter. The mapping that

defines ‘Enc’ (and ‘Dec’) may be stored in a lookup table, like

those shown in Figure 1. Unfortunately, the strategies based

on such lookup tables are not practical because they do not

scale well. The size of lookup tables increases exponentially

with Q. For example, input blocks that are merely 1/16-th of

a kilobyte (Q = 512) would require a lookup table that has

much more entries than there are atoms in the universe.

2) Enumerative Coding via Calculations: Alternatively, the

same mapping may be implemented using a pair of procedures

that build, by calculations, the i-th balanced block when

presented the i-th input block, and vice versa. Unfortunately,

these procedures, which are based on calculations, require

the manipulation of large integers and this is costly in time.

The impracticality of enumerative coding has lead many

researchers to develop faster, approximate strategies.

3) Knuth’s Construction Technique: Knuth presented the

first practical construction technique for balanced blocks [5].

His technique is quite simple and it is based on the fol-

lowing observation: an arbitrary block w of bits can be

made balanced by inverting the bits in an appropriate prefix

of w. Let us denote by · the inversion operator; i.e. 0 = 1

and 1 = 0 and extend the operator so that it operates bitwise

on sequences. Given an arbitrary block w of even length Q,

Knuth’s technique consists in splitting w into a prefix u and

a suffix v, where 0 ≤ |u| < Q, such that u · v is balanced.

Knuth showed that such an appropriate prefix always exists.

Merely transforming input blocks that way would not make

a valid (i.e. reversible) ‘Enc’ function. The length |u| has

to be encoded somewhere in the transformed block. To do

so, Knuth’s technique recursively relies on a shorter balanced

1In this paper, all logarithms are to the base 2.

Input Balanced

00 0011

Input Balanced

01 0101

Input Balanced

10 0110

Input Balanced

11 1001

Input Balanced

0000 000111

0001 001011

0010 001101

0011 001110

Input Balanced

0100 010011

0101 010101

0110 010110

0111 011001

Input Balanced

1000 011010

1001 011100

1010 100011

1011 100101

Input Balanced

1100 100110

1101 101001

1110 101010

1111 101100

Fig. 1. Lookup tables for (a) Q = 2, M = 4 and (b) Q = 4, M = 6.

code. The codewords of the latter have length R, where R is

large enough to encode |u|; i.e.
(

R
R/2

)

≥ Q. Typically, R is

small enough to use a lookup table and avoid deeper recursion.

So Knuth’s technique encodes w by returning Enc(|u|) · u · v.

Knuth estimated the redundancy added by his technique to

be R ≈ logQ ≈ logM bits, which is about twice the optimal

one: M − log
(

M
M/2

)

≈ 1

2
logM .

4) Variants of Knuth’s Technique: Indeed, much research

has been conducted to reduce the redundancy of Knuth’s

algorithm. Weber and Immink noted that an input block w
may have multiple (between 1 and Q/2) adequate prefixes [6].

This freedom in selecting encodings is the cause for part

of the extra redundancy introduced by Knuth’s algorithm.

The same authors also noted that, in theory, this selection

freedom could be used to convey information and they showed

that, on average, the amount of information that could be

conveyed per block this way is ASF ≈ 1

2
logQ − 0.916 ≈

1

2
logM − 0.916 [7]. They devised a scheme that significantly

reduces the redundancy compared to Knuth’s algorithm. Still,

they did not succeed to fully exploit the selection freedom.

Al-Rababa’a et al. noticed that this selection freedom is a

good candidate for bit recycling [8]. Their technique achieved

a better improvement by transmitting almost ASF extra bits

per balanced block, on average.

5) Construction Using Permutations and Limited-Precision

Integers: Recently, Dubé and Mechqrane presented a com-

pletely different construction technique, after being brought

to the belief that it was not possible to improve variants of

Knuth’s technique further [9]. This new technique was primar-

ily inspired by the observation that, inside of any permutation

of the first M naturals, hides a balanced block of M bits.

The rest of the machinery used by the technique consists in

performing calculations similar to those of enumerative coding

but without ever manipulating large integers. Indeed, one of

the tools of the machinery is a special Pacman2 that consumes

and produces “pills of information”; see Section II.

D. Contributions

The contribution in this paper is made of two parts.

First, we improve the redundancy that is achieved by the

construction of balanced blocks, with respect to that of the

Dubé-Mechqrane technique. Note that the Dubé-Mechqrane

2The name is inspired by the well known PAC-MAN video game. The
trademark PAC-MAN is a property of BANDAI NAMCO.

Input Balanced

00000 0011·0011

00001 0011·0101

00010 0011·0110

00011 0011·1001

00100 0011·1010

00101 0011·1100

00110 0101·0011

00111 0101·0101

01000 0101·0110

01001 0101·1001

01010 0101·1010

Input Balanced

01011 0101·1100

01100 0110·0011

01101 0110·0101

01110 0110·0110

01111 0110·1001

10000 0110·1010

10001 0110·1100

10010 1001·0011

10011 1001·0101

10100 1001·0110

10101 1001·1001

Input Balanced

10110 1001·1010

10111 1001·1100

11000 1010·0011

11001 1010·0101

11010 1010·0110

11011 1010·1001

11100 1010·1010

11101 1010·1100

11110 1100·0011

11111 1100·0101

Fig. 2. Lookup table for Q = 5, N = 2, M = 4.

technique can be used to efficiently achieve the best possible

redundancy for a per-block encoding. However, we improve

the technique to approach the optimal redundancy in a global

sense; i.e. when transforming a large amount of input data into

a large number of balanced blocks. In order to illustrate our

strategy, we compare Figures 1(a) and 2. We first note that,

since a single balanced block of size 4 may only be one of

6 codewords, we can encode at most 2 (integral) input bits

into it; see Figure 1(a). On the other hand, if we consider

two balanced blocks of size 4 at once, the pair of codewords

can be any of 36 pairs. This selection freedom allows up to

5 (integral) input bits to be encoded into a pair of balanced

blocks. This leads to an average of 2.5 input bits per balanced

block; see Figure 2.

Second, we try to clarify the presentation of the technique,

which is based on permutations, Pacman, and limited-precision

integers. The authors of the previous technique, Dubé and

Mechqrane, received feedback from readers that indicated that

the technique was not presented clearly enough.

II. THE DUBÉ-MECHQRANE TECHNIQUE

The technique uses a variety of tools. In this section, we

introduce a minimal set of notions, just enough to describe

the contribution of the paper. The complete presentation of

the Dubé-Mechqrane technique includes the processes of ini-

tialization, termination, and decoding, as well as the notion of

valid programming. In order to save space, we skip these and

we refer the reader to the original paper [9].

A. The Main Encoding Algorithm

The operations performed by the encoding function ‘Enc’
of the Dubé-Mechqrane technique are pictured in Figure 3. An

invocation of ‘Enc’ takes w ∈ 2Q as input and emits B ∈ BM

as output. Note that ‘Enc’ holds a state which is preserved

from one invocation to the next. This implies that B is not built

from w alone; also, not all the information that w contains

gets transferred into B at once. During an invocation, the

information contained in w gets blended with the state that

was preserved in memory. This results in a blob of information

that then gets separated into B and a new state, which

PM split

mem

mem

HM/2

HM/2

w BH Π

π

π′

π

π′

η

η′

Fig. 3. Information flow inside of function ‘Enc’.

is saved in memory. ‘Enc’ manipulates permutations under

two representations: the conventional one and the indexed

one; see Subsections II-B and II-C. The first step during an

invocation consists in recovering the state π, π′ ∈ PM/2 from

memory and converting these permutations to the indexed

representation, giving η, η′ ∈ HM/2. The second step is

performed by Pacman, which transfers all the information

contained in w, η, and η′ to a new permutation H ∈ HM ;

see Subsections II-E and II-F. The third step converts H
to the conventional representation, giving Π ∈ PM . In the

final step, ‘split’ extracts B from Π, as well as two new

permutations π, π′ ∈ PM/2; see Subsection II-D. Figure 3

makes it clear that no permutations are ever input or output;

they are only part of the internal state of ‘Enc’. We point

out that all operations performed by ‘Enc’ are injective. Even

more: all operations except the one performed by Pacman are

bijective. The injectivity of the operations makes decoding

possible. Decoding has to proceed backwards.

B. Conventional Representation of Permutations

We denote a (conventional) permutation of n elements by

by (a1, . . . , an), where ai 6= aj whenever 1 ≤ i < j ≤ n.

We define Pn to be the set of permutations of {1, . . . , n}.

C. Indexed Representation of Permutations

The indexed representation indicates the relative position

of each of the numbers that appear in a permutation π ∈ Pn.

The leftmost position is 1. We use the term “relative” because

the indexed representation indicates, for each number a, the

position of a in the permutation that remains if we remove

the larger numbers a + 1, . . . , n from π. We denote an

indexed permutation η by 〈ι1, . . . , ιn〉, where 1 ≤ ιi ≤ i,
for 1 ≤ i ≤ n. That is, ι1 is necessarily 1, ι2 can be 1
or 2, ι3 can be 1, 2 or 3, and so on. Let Hn be the

set of indexed permutations with n indices. The conversion

of permutations from the conventional representation to the

indexed representation is performed using a family of bijective

functions, {Hn}
∞

n=1
, where Hn : Pn → Hn, which are

inductively defined as follows.

H1((1)) = 〈1〉
Hn((a1, . . . , ai−1, n, ai+1, . . . , an)) =

Hn−1((a1, . . . , ai−1, ai+1, . . . , an)) · 〈i〉

Note that we overload the operator ‘·’ to also denote the ex-

tension of a permutation. The reverse conversion is performed

Convent. Indexed

(1, 2, 3, 4) 〈1, 2, 3, 4〉
(1, 2, 4, 3) 〈1, 2, 3, 3〉
(1, 3, 2, 4) 〈1, 2, 2, 4〉
(1, 3, 4, 2) 〈1, 2, 2, 3〉
(1, 4, 2, 3) 〈1, 2, 3, 2〉
(1, 4, 3, 2) 〈1, 2, 2, 2〉
(2, 1, 3, 4) 〈1, 1, 3, 4〉
(2, 1, 4, 3) 〈1, 1, 3, 3〉

Convent. Indexed

(2, 3, 1, 4) 〈1, 1, 2, 4〉
(2, 3, 4, 1) 〈1, 1, 2, 3〉
(2, 4, 1, 3) 〈1, 1, 3, 2〉
(2, 4, 3, 1) 〈1, 1, 2, 2〉
(3, 1, 2, 4) 〈1, 2, 1, 4〉
(3, 1, 4, 2) 〈1, 2, 1, 3〉
(3, 2, 1, 4) 〈1, 1, 1, 4〉
(3, 2, 4, 1) 〈1, 1, 1, 3〉

Convent. Indexed

(3, 4, 1, 2) 〈1, 2, 1, 2〉
(3, 4, 2, 1) 〈1, 1, 1, 2〉
(4, 1, 2, 3) 〈1, 2, 3, 1〉
(4, 1, 3, 2) 〈1, 2, 2, 1〉
(4, 2, 1, 3) 〈1, 1, 3, 1〉
(4, 2, 3, 1) 〈1, 1, 2, 1〉
(4, 3, 1, 2) 〈1, 2, 1, 1〉
(4, 3, 2, 1) 〈1, 1, 1, 1〉

Fig. 4. Correspondence between the permutations in P4 and H4.

using the family of functions {Pn}
∞

n=1
, where Pn : Hn → Pn.

Figure 4 illustrates the correspondence between the conven-

tional permutations of P4 and the indexed ones of H4. As

an example, let us explain why the conventional permuta-

tion π = (3, 1, 4, 2) corresponds to the indexed permuta-

tion η = 〈1, 2, 1, 3〉; i.e. why η is H4(π). First, 4 is located in

the third position in π, so η = H3((3, 1, 2)) · 〈3〉. Second, 3 is

located in the first position in (3, 1, 2), so H3((3, 1, 2)) =
H2((1, 2)) · 〈1〉. Third, H2((1, 2)) = H1((1)) · 〈2〉. Finally,

H1((1)) = 〈1〉. So we conclude that η = 〈1, 2, 1, 3〉. An

interesting property of the indexed permutations is that every

index is independent from the others, which is not the case

with conventional permutations. This property is extremely

useful in the reconstruction of a large permutation from an

input block and two small permutations; see the Pacman

operation in Figure 3 as well as Subsection II-E.

D. Permutations and Balanced Blocks

Permutations have some relation to balanced codes. Let M
be an even integer. Let us suppose further that we have at

hand a permutation Π ∈ PM . Then we can extract a balanced

block B ∈ BM from Π by keeping the parity of the elements

of Π. Let us denote this operation by B = Π mod 2. For

example, if Π is (5, 4, 2, 7, 1, 8, 3, 6), then B = 10011010

can be extracted.

This extraction process can be put to good use in an

encoding procedure. If we could transform some input data

into a permutation like Π, then we would be able to extract

a balanced block B from Π, and B would carry some infor-

mation about that input data. However, these operations can

only hope to constitute a part of an encoding procedure. The

key word here is that B would only carry “some” information

about the input data. Most of the information about the input

data would remain in Π. Note that the remaining information

in Π cannot be discarded, in order to allow an eventual decoder

to recover the original input data.

Let us characterize the information that remains in Π once B
has been extracted. In order to do so, let us take the point of

view of the decoder and assume that B is known but not Π.

B describes the positions of the even and odd numbers inside

of Π. However, nothing is divulged about the order of the

even numbers relative to each other, neither regarding the odd

numbers. If the decoder were to receive the relative order

of the even numbers and that of the odd numbers, then the

w η η′ 7→ H
Before : b1 b2 b3 . . . bQ

〈

ι1, ι2, ι3, . . . , ιM/2

〉 〈

ι′1, ι′2, ι′3, . . . , ι′M/2

〉

7→
〈

�1,�2,�3, . . . ,�M 〉
During : b1 �2 b3 . . . bQ

〈

�1, ι2,�3, . . . , ιM/2

〉 〈

�1,�2, ι′3, . . . ,�M/2

〉

7→
〈

�1, ι′′2 , ι′′3 , . . . ,�M 〉
After : �1 �2�3 . . .�Q

〈

�1,�2,�3, . . . ,�M/2

〉 〈

�1,�2,�3, . . . ,�M/2

〉

7→
〈

ι′′1 , ι′′2 , ι′′3 , . . . , ι′′M 〉

Fig. 5. Progressive information transfer during the execution of Pacman’s programming.

decoder would hold full information about Π. These orders are

equivalent, up to renumbering, to permutations of M/2 ele-

ments. So there is a one-to-one mapping between permutations

like Π ∈ PM and triples like (B, π, π′) ∈ BM×PM/2×PM/2.

We define split : PM → BM ×PM/2×PM/2 as that bijective

function.

In the example of Π = (5, 4, 2, 7, 1, 8, 3, 6), we have

split(Π) = (B, π, π′), where B = 10011010, π =
(2, 1, 4, 3), and π′ = (3, 4, 1, 2). Note that π and π′ are

the renumberings of (4, 2, 8, 6) and (5, 7, 1, 3), respectively.

E. Rebuilding a Large Permutation from Small Permutations

Since the information that remains in π, π′ ∈ PM/2 should

not be discarded, it should be injected into a new Π ∈ PM .

The indexed representation of permutations is helpful, here.

Indeed, each index can be seen as a small and independent

piece of information.

Dubé and Mechqrane took inspiration from the famous

video game Pacman. The original Pacman character consumes

pills with the intent to accumulate points. In the Dubé-

Mechqrane setting, pills are small pieces of information and

Pacman not only consumes but also produces them. It does

so with the intent to transfer the information from η and η′,
plus w, into H . During the reconstruction of a large permuta-

tion, Pacman consumes all the indices of η and η′ and all the

bits of w and produces all the indices of H , in some order.

Figure 5 illustrates the process of transforming the information

that is contained in w ∈ 2Q and η, η′ ∈ HM/2 into the

information that is to be contained in H ∈ HM . There are

M + Q pills to consume—M/2 for η, M/2 for η′, and Q
for w—and M pills to produce—for H . Empty boxes depict

pills that have been consumed or pills that have yet to be

produced. Note that, since Q is chosen such that 2Q ≤
(

M
M/2

)

,

then Q + log(M/2)! + log(M/2)! ≤ logM !, which means

that there is enough capacity in H to accommodate for all the

information that is initially contained in w, η, and η′.
Pacman has a memory. Its memory enlarges when it con-

sumes a pill and its memory shrinks when it produces a pill,

as suggested by the pictures in Figure 6. In particular, if

Pacman consumes many indices in a row, its memory enlarges

considerably. It is preferable to have Pacman alternate between

consumption and production, preventing its memory to expand

too much.

We say that Pacman has a small memory. A small memory

is intended to hold a single value: an integer in the range 1,

. . . , σ, where σ ≥ 1. While the classical way of measuring the

size of a memory would consider it to be (log σ)-bits wide,

we choose to consider it to have size σ (units).

Consumption (Bi, Ei, or Oi): Production (Li):

Before : . . . bi . . .

After : . . . � . . .

Before : . . . � . . .

After : . . . ι′′i . . .

Fig. 6. Effect of the instructions on Pacman’s memory size.

When Pacman processes (i.e. either consumes or produces)

a pill, the value in Pacman’s memory gets modified. But, more

importantly, the size of Pacman’s memory also gets modified.

Let σ and σ′ be the sizes of Pacman’s memory before and

after processing a pill, respectively. When Pacman processes

a pill, it is the range of the pill that causes the change from σ
to σ′. The range of the pill is the number of different values

the pill may take. An input bit has range 2 and a permutation

index ιi (or ι′i or ι′′i) has range i. When Pacman consumes

a pill of range ρ, Pacman’s new memory size is σ′ = σ · ρ.

When Pacman produces a pill of range ρ, σ′ = ⌈σ/ρ⌉. We say

that the consumption of a pill introduces no redundancy while

the production of a pill may introduce redundancy, due to

the rounding operation. Note that σ′ is the minimal size such

that there exists an injective function of type {1, . . . , σ} ×
{1, . . . , ρ} → {1, . . . , σ′}, in the case of consumption, or

one of type {1, . . . , σ} → {1, . . . , σ′} × {1, . . . , ρ}, in the

case of production.

F. Pacman’s Programming

The same sequence P of operations for Pacman is used

each time ‘Enc’ is invoked. Sequence P is called Pacman’s

programming. A programming P is a sequence of 2 × M +
Q instructions. Each of the following instructions has to appear

exactly once in P:

• E1, . . . , EM/2 (for the consumption of an index of η),

• O1, . . . , OM/2 (for the consumption of an index of η′),
• B1, . . . , BQ (for the consumption of a bit of w), and

• L1, . . . , LM (for the production of an index of H).

The semantics of the instructions are described in the original

paper, as well as the notion of a valid programming [9].

III. IMPROVED CONSTRUCTION TECHNIQUE

Let us point out that C = log
(

M
M/2

)

is never an integer,

except for M = 2. So, in general, the best per-block encoding

that one can devise fixes Q to be ⌊C⌋. This means that the

best per-block encoding is generally suboptimal, in a global

sense, because Q < C. There is room for improvement, if

we abandon per-block encoding. In particular, it is possible to

choose a fraction that lies between the rounded capacity and

the real capacity of the balanced blocks, as follows: ⌊C⌋ ≤

Q/N ≤ C. Fraction Q/N , if we view it as an average number

of embedded input bits per block, is an improvement over the

best per-block encoding. Moreover, in principle, it is possible

to choose fractions that get arbitrarily close to the real capacity.

Fortunately, the existence of such a fraction is not just a

mathematical consideration. In fact, rewriting the inequality

on the right-hand side gives Q ≤ N · C, which suggests that

one should be able to embed Q bits of information inside of

a group of N balanced blocks. At least, it holds in terms

of theoretical encoding capacity. It also holds in terms of

effective encoding procedures, as we may extend the Dubé-

Mechqrane technique quite simply to implement these better

embedding rates. The encoding procedure now has to build

balanced blocks in groups of N . We redefine Pacman’s task

so that it now converts N pairs of small permutations, η1, η′1,

. . . , ηN , η′N , as well as the block w of input bits, into N large

permutations, H1, . . . , HN , in a way that is similar to that

depicted in Figure 5. We only need to adapt the instruction set

and then use the same machinery as in the Dubé-Mechqrane

technique to devise programmings in this new, generalized

setting. Most concepts remain identical as in the per-block

setting. The instruction set is extended and programming P

has to contain each of the following instructions exactly once:

• L1,1, . . . , LN,M (for each index of each of H1, . . . , HN),

• E1,1, . . . , EN,M/2, O1,1, . . . , ON,M/2 (similarly), and

• B1, . . . , BQ (unchanged, except for the value of Q).

IV. EXPERIMENTAL AND THEORETICAL RESULTS

In order to measure the redundancy R that we incur in

our encoders, we need to make some crucial distinctions. We

separate R into what we call the inherent redundancy RI

and the extra redundancy RX ; i.e. R = RI + RX . The

inherent redundancy comes from the fact that balanced blocks

of size M cannot carry as much as M bits of information

but rather only C = log
(

M
M/2

)

bits. The difference M − C
is the inherent redundancy RI . Redundancy R is the average

number of redundant bits in our encoding; i.e. R = M−Q/N .

The extra redundancy is the one that our encoding introduces

on top of the inherent redundancy; i.e. RX = R − RI .

Figure 7 shows results for balanced blocks of different sizes M
with different averages Q/N of embedded bits per block. For

each selection of the parameters M , Q, and N , a program-

ming PM,Q,N has been devised. The number indicated in the

column labelled with σmax is the maximal size of Pacman’s

memory that is reached during the execution of PM,Q,N . Note

that the experimental results show that we can reduce RX

significantly by handling not so large (N) groups of balanced

blocks. Moreover, note that the values of σmax guarantee

that conventional CPUs with 32-bit registers are more than

adequate to run implementations of our technique. This is the

case, despite the fact that the programmings that we devised

are not especially well optimized, in terms of σmax.

V. FUTURE WORK

As far as we know, devising a programming is NP-hard.

A programming P is better than another one, P′, if P allows

M C RI Q/N RX σmax

4 2.585 1.415 2/1 .585 2

5/2 .0850 8

18/7 .0135 80

8 6.129 1.871 6/1 .129 24

49/8 .00428 1,336

16 13.652 2.348 13/1 .652 32

27/2 .152 64

68/5 .0517 464

109/8 .0267 1,264

150/11 .0154 2,048

32 29.163 2.837 29/1 .163 288

204/7 .0201 5,312

64 60.669 3.331 60/1 .669 320

121/2 .169 1,164

182/3 .00195 142,928

128 124.194 3.806 124/1 .194 4,352

745/6 .0276 257,440

256 251.673 4.327 251/1 .673 5,632

503/2 .173 24,064

755/3 .00618 619,744

512 507.174 4.826 507/1 .174 78,816

3043/6 .00688 2,604,992

1,024 1,018.674 5.326 1018/1 .674 74,592

2037/2 .174 330,752

3056/3 .00723 8,071,168

Fig. 7. Balanced blocks along with various numbers of embedded bits.

Pacman to execute with a maximal memory size σmax that

is smaller than that, σ′

max, incurred by P
′. Devising a good

programming is a costly process; a fast procedure would

be desirable. Some theoretical foundations that underpin the

technique need to be made explicit and demonstrated; e.g., the

proof that valid programmings necessarily exist.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their valuable

comments.

REFERENCES

[1] S. J. Piestrak, “Design of self-testing checkers for unidirectional error de-
tecting codes,” Scientific Papers of the Institute of Technical Cybernetics

of the Technical University of Wroclaw, 1995.
[2] K. A. S. Immink, “Coding techniques for the noisy magnetic recording

channel: A state-of-the-art report,” IEEE Trans. on Communications,
vol. 37, no. 5, pp. 413–419, 1989.

[3] J. F. Tabor, “Noise reduction using low weight and constant weight coding
techniques,” CS and AI Lab, MIT, Tech. Rep. AITR-1232, May 1990.

[4] T. Cover, “Enumerative source encoding,” IEEE Trans. on Information

Theory, vol. 19, no. 1, pp. 73–77, 1973.
[5] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. on Information

Theory, vol. 32, no. 1, pp. 51–53, 1986.
[6] K. A. S. Immink and J. H. Weber, “Very efficient balanced codes,” IEEE

Journal on Selected Areas in Communications, vol. 28, no. 2, pp. 188–
192, 2010.

[7] J. H. Weber and K. A. S. Immink, “Knuth’s balanced codes revisited,”
IEEE Trans. on Information Theory, vol. 56, no. 4, pp. 1673–1679, 2010.

[8] A. Al-Rababa’a, D. Dubé, and J.-Y. Chouinard, “Using bit recycling to
reduce Knuth’s balanced codes redundancy,” in Canadian Workshop on

Information Theory, 2013, pp. 6–11.
[9] D. Dubé and M. Mechqrane, “Almost minimum-redundancy construction

of balanced codes using limited-precision integers,” in Canadian Work-

shop on Information Theory, Quebec City, Canada, June 2017.

