
Using Synchronization Bits to Boost
Compression by Substring Enumeration

Danny Dub́e
Universit́e Laval, Canada

Email: Danny.Dube@ift.ulaval.ca

Abstract—A new lossless data compression technique called
compression via substring enumeration (CSE) has recently been
introduced. It has been observed that CSE achieves lower
performance on binary data. An hypothesis has been formulated
that suggests that CSE loses track of the position of the bits
relative to the byte boundaries more easily in binary data and
that this confusion incurs a penalty for CSE. This paper questions
the validity of the hypothesis and proposes a simple technique
to reduce the penalty, in case the hypothesis is correct. The
technique consists in adding a preprocessing step that inserts
synchronization bits in the data in order to boost the performance
of CSE. Experiments provide strong evidence that the formulated
hypothesis is true and they demonstrate the effectiveness of the
use of synchronization bits.

I. I NTRODUCTION

Recently, a new lossless data compression technique called
compression via substring enumeration (CSE) has been intro-
duced [1]. CSE compresses data by sending the number of
occurrences of every distinct substring of the data, enumer-
ating the substrings from the shortest to the longest. While
the first experiments do not demonstrate that CSE is the best
data compression technique yet, they show that it is already
competitive and that it is a very promising technique.

However, it has been noted that the performance of CSE
tends to be lower when it deals with binary data as opposed to
text-like data. An hypothesis has been formulated that suggests
that CSE, since it works at the bit level, is unaware of the
position of the substrings it manipulates with respect to the
byte boundaries. In other words, CSE is unaware of thephase
of the substrings. Indeed, CSE considers the data to be just a
string of bits and the substrings may start and end at arbitrary
bit positions. This bit-oriented point of view would happento
be a disadvantage for CSE since the statistics of the bits need
not be the same at every position inside of the bytes. Still, by
enumerating ever longer substrings, CSE manipulates sets of
substrings that would tend to be in the same phase. In the case
of binary data, there would be fewer clues in the original bytes
that would help CSE to separate substrings of different phases
and, consequently, CSE would have to make more predictions
on sets of mixed-phased substrings. Mixed-phased substrings,
when considered together, would have blended statistics which
would be more poorly predicted by CSE, leading to worse
compression. At least, this explanation is that of the given
hypothesis. We intend to test the validity of this hypothesis
and see whether we can alleviate the alleged problem of the
phase of the substrings.

In Section II, we review the basics of CSE and we present
in more details what the phase problem is supposed to be. In
Section III, we propose a simple method that attempts to lessen
the penalty incurred by losing track of the phase. This method
simply consists in addingsynchronization bits to the original
data to help CSE take the byte boundaries into account. The
effects of the proposed method are experimentally measured
in Section IV, using a variety of synchronization schemes.
Section V concludes the paper and mentions future work on
the phase problem and, more generally, on CSE.

II. COMPRESSION VIASUBSTRING ENUMERATION

A. Review of the Technique

CSE manipulates the data to compress as a string of bits.
We denote the data byD ∈ {0, 1}+ and the length of the data
by N = |D|. CSE’s compression essentially proceeds like the
following two embeddedfor loops:

For l := 1 to N do
For every distinctl-bit substringw of D do

Sendnumber of occurrences ofw in D

The data is considered to be circular and, as such, it is
possible to have substrings that wrap aroundD. We describe
the operations performed by CSE using a small example.
Let D = 01000001. Figure 1 illustrates the enumeration of
the substrings that is performed when compressingD. Note
that, for a given length, the substrings are enumerated in
lexicographic order, not in the order in which they appear inD.
It is the number of occurrences of a substring (e.g., the ‘4’
in ‘4×00’) and not the substring itself that needs to be sent
at each step.

This description of CSE looks wasteful as, except for a
very repetitiveD, there are apparentlyθ(N2) numbers that
must be sent in order to describeD. However, a practical
data structure is used by CSE and onlyO(N) numbers need
be sent, resulting in anO(N) time and space complexity
for CSE [1]. The original paper only includes a conjecture
stating that the used data structure does have linear size but
the conjecture has been proved independently and the proof
has yet to appear [2].

The original paper mentions many reasons why CSE is able
to effectively compress data [1]. In our opinion, the most
important reason is that the enumeration of the substrings of a
particular length provides a lot of information about the enu-
meration of the substrings that are one bit longer. CSE takes

Length Substrings
1 6×0 2×1
2 4×00 2×01 2×10
3 3×000 1×001 2×010 1×100 1×101
4 2×0000 1×0001 1×0010 1×0100 1×0101 1×1000 1×1010
5 1×00000 1×00001 1×00010 1×00101 1×01000 1×01010 1×10000 1×10100
6 1×000001 1×000010 1×000101 1×001010 1×010000 1×010100 1×100000 1×101000
7 1×0000010 1×0000101 1×0001010 1×0010100 1×0100000 1×0101000 1×1000001 1×1010000
8 1×00000101 1×00001010 1×00010100 1×00101000 1×01000001 1×01010000 1×10000010 1×10100000

Fig. 1. Substring enumeration for ‘01000001’.

into account the fact that a substringaw b, wherea, b ∈ {0, 1}
and w ∈ {0, 1}∗, is an extension of both substringsaw

andw b. The enumeration proceeds by predicting the number
of occurrences of thel-bit substrings0w 0, 0w 1, 1w 0, and
1w 1 at once, which all share a common(l − 2)-bit core w.
CSE takes the equations

Cv = Cv 0 + Cv 1 and Cv = C0 v + C1 v

into account when making its prediction, whereCu denotes
the number of occurrences of a substringu in D.

CSE has some (more or less tight) links to previous com-
pression techniques, namely to prediction by partial match-
ing [3], [4], antidictionaries [5], LZ77 [6], LZ78 [7], and the
Burrows-Wheeler transform [8].

B. The Problem with the Phase

In the experiments presented in the original paper [1], it
has been observed that CSE is not as competitive on binary
(or non-text) data as on text-like data. The authors posed the
hypothesis stating that CSE, viewing files as strings of bits,
suffers from unawareness of thephase, i.e. the position of
the bits of the substrings with respect to the boundaries of the
bytes. Indeed, all the benchmark files are made of bytes and the
CSE prototype abstracts away the concept of bytes and views
the files as eight-times longer strings of bits. Let us make an
illustration of the difficulties caused by the unawareness of the
phase and let us consider the case of executable code. Suppose
that we have the following two substrings with the same core:

a
2
0

3
1

4
1

5
1

6
0

7
0

8
1

1
0

2
0

3
b
4

c
7
0

8
1

1
1

2
1

3
0

4
0

5
1

6
0

7
0

8
d

1

where the indices indicate the phase of the bits. Note that
CSE isunaware of those indices. Given that these substrings
come from executable code, it might well be the case that
both substrings start in bytes that encode the opcodes of
machine instructions. Then, in such a case, bita could more
likely be part of the encoding of the operation performed by
an instruction while bitc could more likely be part of the
encoding of a register number used by another instruction. As
such, bita needs not necessarily follow the same statistical
distribution as bitc. A similar phenomenon is to be expected
for bits b and d. Now, note that CSE is unaware of the
phase inall data, not just in executable code. So why is it
hypothesized that binary data is especially problematic for
CSE? It is because text-like data would have the tendency to

include “clues” about the phase. For instance, (mostly) pure
ASCII text is such that (almost) all the bytes have their most
significant bit at zero. These zero bits tend to group same-
phase substrings together. For example, if we consider two
8-bit out-of-phase substrings each with their phase-1 bit at
zero:

a
6

a
7

a
8
0

1
a

2
a

3
a

4
a

5

b
3

b
4

b
5

b
6

b
7

b
8
0

1
b
2

and if we suppose that the other bits are purely random, then
these substrings have half the chances of being equal due to
the misalignment of the phase-1 zero bits. The longer the
considered substrings, the more the phase-1 zero bits reduce
the chances that the substrings are equal. Still, the zero bits
offer no guarantee that two substrings need to be in the
same phase, no matter how long the latter are. Nevertheless,
the hypothesis is that the mere tendency to have phases
matched for the substrings in text-like data helps CSE to
better compress text-like data. Note that the hypothesis does
not claim that CSE is mademore aware of the phase in any
way, it just claims that same-phase substrings tend to group
together when their length increases. In the case of binary
data, there typically is no such bit that is constant in every
byte. There might still exist clues that suggest the phase but
longer substrings need to be manipulated before they start to
share phase. Consequently, CSE makes poorer predictions on
a larger fraction of the substrings.

Making CSE aware of the phase or making sure that same-
phase substrings tend to (or are forced to) group together, no
matter the kind of data that is being compressed, could lead
to improvements. This idea is the one that is proposed in the
next section.

III. U SING SYNCHRONIZATION BITS

What we propose is to make CSE take into account, in
a way or another, the phase information. One could think of
countless ways to reach that goal. Here, we intend to study the
effects of a particularly simple scheme: adding a preprocessing
step that insertssynchronization bits in the data. The simplicity
lies in the fact that the original CSE technique needs not be
modified in any way. Moreover, the insertion (and removal) of
the synchronization bits is a very simple and cheap operation.
Denoting the CSE compressor byc, the decompressor, byd,
the synchronization bit adder, bys, and the synchronization
bit remover, byr, then the proposed method usesc ◦ s as
compressor andr ◦d as decompressor. Since the original CSE

technique is lossless and the combined operation of inserting
and removing the synchronization bits is also lossless, then
the proposed method remains lossless. More formally, since
both d ◦ c andr ◦ s are the identity function, thenr ◦ d ◦ c ◦ s

is also the identity function.

A. Synchronization Schemes

There is a large amount of work on synchronization
codes [9], [10], [11], [12]. In this work, we are not necessarily
interested in the state of the art on synchronization codes.
Rather, we only intend to use one of the simplest synchro-
nization schemes. Since we are interested in nothing more than
making the position of the bits inside of the bytes explicit,we
choose to insert synchronization bits on a per-byte basis. More
specifically, we are only interested in the insertion of fixed
bit paddings inside of the bytes. All of the synchronization
schemes that we consider can be characterized by9 bit strings,
w1, w2, . . . , w9 ∈ {0, 1}∗, and the following mapM on the
bytes:

M(b1 b2 . . . b8) = w1 b1 w2 b2 . . . w8 b8 w9,

whereb1 . . . b8 are the8 bits that form a byte. We say that a
particular scheme insertsk bits per byte if|w1 . . . w9| = k.
We also say that it is ak-bit synchronization scheme.

Arguably, the synchronization schemes that we choose to
consider are very simple. There exist more sophisticated
synchronization codes whose “performance” are superior.
However, the deliberate simplicity of the considered schemes
becomes an advantage in this work. There are two reasons for
this. First, a simple synchronization scheme obviously leads to
a simple implementation. Second, we must keep in mind that
the bit insertion is a preprocessing step and that the data in
which the synchronization bits are inserted is fed to the CSE
compressor. The compressor must now compress the original
data plus the synchronization bits. In that respect, we want
to avoid any sophistication in the synchronization scheme to
make sure that the patterns of the synchronization bits remain
easy for the compressor tolearn.

Note that our proposal of inserting synchronization bits is
a kind of gamble. Indeed, when we use ak-bit scheme, we
cause an expansion of the original file in the hope that the
resulting file can be turned into a compressed file that is even
smaller than when the original file itself is compressed. That
is, givenD, we turn it intos(D), which is k+8

8
times larger

thanD, in the hope that

|c(s(D))| < |c(D)|.

This is stronger than asking fors(D) to be more compressible
(in terms of compression ratio) thanD, i.e.

|c(s(D))|

|s(D)|
<

|c(D)|

|D|
,

which is trivial to achieve.

B. Reliable Synchronization

For any non-trivial synchronization scheme (i.e. one for
which |w1 . . . w9| > 0), the inserted bits become clues for
CSE to gather same-phase substrings when the latter get long
enough. However, while all schemes provide clues about the
phase, certain schemes are more informative than mere clues.
We say that a scheme providesreliable synchronization when,
for any two sufficiently long substrings, the latter can be equal
only if they share the phase. We say that a scheme itself is
reliable if it provides reliable synchronization. Given that we
are interested into synchronization with the byte boundaries
and that ak-bit scheme transforms any byte intok+8 bits, the
reliability criterion that we choose requires that two substrings
of at leastk+8 bits be different whenever they are on different
phases.1

Here is an example of a non-reliable scheme: the scheme
that inserts a ‘1’ bit at each end of the byte and a ‘0’ bit
between an even-phased bit and an odd-phased bit, when
the latter appear in that order. More precisely, the scheme
is characterized byw1 = w9 = 1, w3 = w5 = w7 = 0,
and w2 = w4 = w6 = w8 = ǫ. The fact that the scheme
is not reliable is demonstrated by the following two13-bit
substrings:

1 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0 0 0 0 1

in which the original bits have been underlined. The first
substring is directlyM(00110000). The second substring
is on a different phase: it starts with the5 last bits of a
transformed byte and continues with the8 first bits of the
next transformed byte. The substrings are clearly on different
phases and they are long enough (5 + 8 bits). Yet, they are
equal.

Now, here is an example of a reliable scheme. It is used in
the experiments that are presented in the next section. It adds a
‘0’ after the6th bit and ‘0111’ after the last. Figure 2 shows
that any two13-bit substrings (for the5 inserted bits) that
are on different phases must be different.2 The underscores
denote arbitrary original bits. The values of the latter do not
matter since the synchronization bits are sufficient to produce
bit mismatches.3

C. Learnability of the Synchronization Schemes

We mention above that we consider only simple synchro-
nization schemes because these are easy to learn for CSE. We

1In other words, once a reliablek-bit scheme has been applied, the fact
that two substrings are at least(k+8)-bits long and that they are on different
phases implies that the substrings are necessarily different. Naturally, the
reverse does not hold: even if two substrings of at leastk + 8 bits are on the
same phase does not mean that they are equal.

2In other words, by considering any two distinct rowsi and i′ (i 6= i′)
of the matrix, one can always find a columnj such that the entries(i, j)
and (i′, j) contain synchronization bits of opposite values.

3Since every row of the matrix is a rotation of the first one, it issufficient
to show that the first row is necessarily different from each row i′, for i′ > 1.
In each rowi′, the bit that causes a mismatch with the first row is typeset in
bold.

_ _ _ _ _ _ 0 _ _ 0 1 1 1
1 _ _ _ _ _ _ 0 _ _ 0 1 1
1 1 _ _ _ _ _ _ 0 _ _ 0 1
1 1 1 _ _ _ _ _ _ 0 _ _ 0
0 1 1 1 _ _ _ _ _ _ 0 _ _
_ 0 1 1 1 _ _ _ _ _ _ 0 _
_ _ 0 1 1 1 _ _ _ _ _ _ 0
0 _ _ 0 1 1 1 _ _ _ _ _ _
_ 0 _ _ 0 1 1 1 _ _ _ _ _
_ _ 0 _ _ 0 1 1 1 _ _ _ _
_ _ _ 0 _ _ 0 1 1 1 _ _ _
_ _ _ _ 0 _ _ 0 1 1 1 _ _
_ _ _ _ _ 0 _ _ 0 1 1 1 _

Fig. 2. Demonstration of the reliability of a5-bit scheme.

explain here what it means for CSE tolearn the synchroniza-
tion schemes. In its enumeration of the substrings from the
shortest to the longest, CSE quickly reaches lengths that are
great enough to have the considered sets of substrings to be
necessarily synchronized. Whenever CSE manipulates a set of
synchronized substrings and that the bits to predict at either
end of the core happen to be synchronization bits, then the
prediction is made “for free”, i.e. without any need for an
explicit transmission of information from the compressor to
the decompressor. We illustrate the process of a prediction
step in more details in the following.

For the sake of illustration, we consider the reliable synchro-
nization scheme of Figure 2. We use phases, or bit positions,
that range between1 and13. For instance, ‘0’ synchronization
bits appear at phases7 and 10 and ‘1’ synchronization
bits appear at phases11, 12, and 13. Let us consider the
substrings of length, say,23 bits that havew as their core.
Let S be the multiset of the occurrences of these substrings:
{a1 w b1, . . . , ak w bk}.4 At this step, we need to predict
the numbers of occurrencesC0w 0, C0w 1, C1w 0, andC1w 1,
given that the numbers of occurrencesCw 0, Cw 1, C0w, C1w,
andCw are already known. Note that we haveCw = k. With
its 21 bits, w is long enough to have all of its occurrences
synchronized; likewise for the substrings inS. Now, we
consider two cases: one where the leading bits of the substrings
appear at phase12 and one where the leading bits appear at
phase9.

Let us consider the case where the leading bits of the
substrings inS appear at phase12. Note that, in this case,
the leading bits happen to be synchronization bits. Since
the bits appearing at phase12 are ‘1’, then we have that
a1 = . . . = ak = 1. In other words, all the occurrences ofw

are preceded by ‘1’ (and none by ‘0’). This implies that the
equalitiesC0w = 0 andC1w = k must have been established

4We use amultiset instead of aset because we are interested in counting
the occurrences, not just in detecting their existence. A set would have at
most four elements sinceai, bi ∈ {0, 1}, for 1 ≤ i ≤ k. A multiset is a data
structure with the right degree of precision since, for the sake of the prediction
that is about to happen, we need to know the number of occurrences of the
substrings but not their relative order inD.

during the enumeration of the22-bit substrings. The fact that
C0w = 0 implies that C0w 0 = 0 and C0w 1 = 0. The
latter equalities imply thatC1w 0 = Cw 0 and C1w 1 = Cw 1.
Both the compressor and the decompressor can reach the
same conclusions without the need for any information to
be transmitted from the former to the latter. These necessary
conclusions follow from the fact thatC0w = 0.5 More related
to the matter of synchronization, such necessary conclusions
follow whenever the leading (or trailing) bits of the substrings
in S happen to be synchronization bits.

Let us consider the case where the leading bits of the
substrings inS appear at phase9. In this case, the leading
bits arenot synchronization bits. But what about the trailing
bits? They appear at phase5 (i.e. 22 positions more to the
right, modulo13), so they are not synchronization bits either.
In other words, both leading and trailing bits are original bits.
Consequently, there is no synchronization effect that forces
at least one ofCw 0, Cw 1, C0w, and C1w to be zero. Note
that there is nothing that prevents the four numbers to be zero
either; it all depends on the bits originally present inD. In
general, such a prediction step might require the transmission
of information from the compressor to the decompressor.

A transmission “for free” during an enumeration step hap-
pens each time CSE manipulates a multisetS where the corew
is long enough to be synchronized and the phase of either
the ais or thebis happens to be that of synchronization bits.
In many other circumstances, the transmission needs not be
“for free”: when none of theais or thebis have the phase of
synchronization bits; whenw is too short to be synchronized;
or when the synchronization scheme itself is not reliable inthe
first place. In the case of a reliable synchronization scheme,
we say that CSE pays a cost forlearning the synchronization
scheme only during the enumeration steps in which the core
is short. Once the manipulated substrings are long enough,
the description of the synchronization bits ceases to incurany
cost. In the case of non-reliable synchronization schemes,the
picture is less clear.

IV. EXPERIMENTS

In order to test the validity of the hypothesis about the
unknown-phase penalty incurred by CSE and also in order to
measure the effectiveness of our proposed technique, we make
some experimental comparisons. We measure the performance
of CSE when preprocessing the data usingk-bit schemes, for
various values ofk. We also include measurements on CSE
without any synchronization scheme and measurements on the
Burrows-Wheeler transform (BWT) [8], a variant of prediction
by partial matching called PPM*C [3], [4], and a technique
based on antidictionaries [5]. The measurements for both BWT
and PPM*C come from the paper that presents PPM*C [4].

The variant of CSE that we use in these experiments is
similar to the one that is the most competitive in the original
presentation of CSE [1]. It is a variant that learns how to
make predictions on the numbers of occurrences. However,

5A similar effect would happen in caseC1w = 0, Cw 0 = 0, or Cw 1 = 0.

k Synchronization Scheme
1 _ _ _ _ _ _ _ _ 0
2 _ _ _ _ _ _ _ _ 0 1
3 _ _ _ _ _ _ _ _ 0 1 1
4 _ _ _ _ _ _ _ _ 0 1 1 1
5 _ _ _ _ _ _ 0 _ _ 0 1 1 1

Fig. 3. Synchronization schemes used in the experiments.

the variant that we use here processes blocks of512 KB at
a time (i.e.222 bits per block), instead of1 MB. Some of
the benchmark files that we use do not fit in a single block.
Others become larger than a block once synchronization bits
are inserted. Dividing a file into multiple blocks reduces the
effectiveness of CSE. The set of benchmark files that we use
is the Calgary corpus [13].

We considered various synchronization schemes, picking a
particulark-bit scheme for eachk going from1 to 5. Whenk

is 5 or more, it becomes possible to obtain reliable synchro-
nization. Naturally, we chose a5-bit scheme that provides
reliable synchronization. For smaller values ofk, we (rather
arbitrarily) chose simplifications of the5-bit scheme. Figure 3
describes each of the schemes we picked. The underscores
denote the original bits that come from the transformed bytes.

Figure 4 presents the measurements we obtain on the
benchmark files. The column titles identifies the results for
BWT, PPM*C, antidictionaries, CSE without synchronization
bits, and CSE when a1- to 5-bit synchronization scheme is
used, respectively. In each row, the best results are indicated
in bold. Note that the measurements for BWT, PPM*C, and
antidictionaries on the filespaper3, . . . , paper6 do not
appear in the original papers [4], [5]. We mention these
benchmark files nevertheless since it is interesting to see the
effect of synchronization on the performance of CSE itself.

We observe that, except for a few files, the more numerous
the synchronization bits are, the better CSE performs. Also,
the insertion of any number of synchronization bits tends to
help, even when the obtained synchronization is not reliable.
We do not observe any dramatic improvement when reaching
the column labeledS-5, where reliable synchronization is used.
These results suggest that CSE is able to benefit from the use
of most synchronization schemes and that it does not seem
to have difficulty to learn the patterns of the synchronization
bits. In the case of the binary filesgeo, obj1, andobj2,
we observe that synchronization improves the competitiveness
of CSE, significantly reducing the gap between CSE and the
leaders. The filepic contains binary data too but it does
not benefit from synchronization. In fact,pic is a black-and-
white image whose information is already organized at the bit
level. There can be no benefit by making the byte boundaries
explicit and the inserted synchronization bits only turn into an
overhead for CSE.

V. CONCLUSION

This paper considered the hypothesized weakness of CSE
on binary data due to phase unawareness by CSE. The first

File BWT PPM Anti CSE S-1 S-2 S-3 S-4 S-5
bib 2.07 1.91 2.56 1.98 1.95 1.92 1.92 1.91 1.90

book1 2.49 2.40 3.08 2.39 2.38 2.37 2.39 2.42 2.43
book2 2.13 2.02 2.81 2.07 2.06 2.06 2.06 2.05 2.04
geo 4.45 4.83 6.22 5.35 5.21 4.98 4.81 4.70 4.63
news 2.59 2.42 3.42 2.52 2.49 2.46 2.45 2.51 2.55
obj1 3.98 4.00 4.87 4.46 4.53 4.43 4.32 4.24 4.17
obj2 2.64 2.43 3.61 2.71 2.69 2.59 2.53 2.49 2.47
paper1 2.55 2.37 3.17 2.54 2.51 2.48 2.47 2.46 2.44
paper2 2.51 2.36 3.14 2.41 2.39 2.38 2.38 2.37 2.36

paper3 — — — 2.73 2.70 2.69 2.68 2.67 2.65

paper4 — — — 3.20 3.16 3.13 3.13 3.10 3.07

paper5 — — — 3.33 3.29 3.27 3.24 3.22 3.19

paper6 — — — 2.65 2.61 2.58 2.56 2.55 2.52

pic 0.83 0.85 1.09 0.77 0.84 0.83 0.83 0.84 0.83
progc 2.58 2.40 3.18 2.60 2.58 2.54 2.52 2.50 2.48
progl 1.80 1.67 2.24 1.71 1.70 1.69 1.68 1.67 1.66

progp 1.79 1.62 2.27 1.78 1.76 1.73 1.71 1.70 1.68
trans 1.57 1.45 1.94 1.60 1.58 1.53 1.52 1.50 1.48

Fig. 4. Experimental results (in bits per character).

question was about whether CSE really incurs a penalty due to
phase unawareness when it deals with binary data. The second
question was whether inserting synchronization bits inside of
the data could improve CSE’s performance. The answer to
the first question was about half of what we expected, in
the sense that it was even more positive than we thought.
Indeed, CSE does incur a penalty due to the unawareness
of the bits phase. We can conclude this by measuring the
extent by which it is possible to improve compression by
doing nothing more than providing CSE with clues about
the phase. What we expected less was that CSE incurs a
penalty on almost all kinds of data; it is just that the severity
tends to be higher on binary data. We must concede that
the experimental results cannot be seen as aformal proof
that the hypothesis is true. Rather, it is more accurate to say
that they provide strong evidence in favor of the hypothesis.
This is because: the insertion of the synchronization bits
cannot reduce the entropy of the original data; the inserted
synchronization bits cannot hope to do more than act as phase
markers; and so it would be hard to justify a claim that
synchronization bits compensate for a CSE weakness other
than phase unawareness. The answer to the second question
is definitely positive. Inserting synchronization bits during a
preprocessing step does help CSE, even though the insertion
first causes the expansion of the data. We observed as a general
tendency that the more numerous the inserted synchronization
bits are, the more improved the compression performance is.
The use of a reliable synchronization scheme is not mandatory
in obtaining interesting improvements.

There are many other experiments that ought to be con-
ducted on the phase problem of CSE. First, we only tested
synchronization schemes that, at best, guaranteed synchro-
nization after13 bits, which is the length of a transformed
byte (8 bits plus5 synchronization bits). Since compression
tends to improve with the number of inserted synchronization

bits, it would be interesting to measure the effect of using an
even higher number of synchronization bits and guaranteeing
synchronization on even shorter substrings.

Second, the use of more sophisticated synchronization
schemes should be considered. This leads to a trade-off: ob-
taining better synchronization using fewer bits is an advantage
but it is countered by the risk that CSE might have more
difficulty to learn the synchronization bit patterns and the
compression performance might suffer from it.

Third, we should consider making direct modifications to
CSE to have it directly take the phase into account. For
example, CSE could usecolored bits, where one of8 colors
would be given to each bit according to its position inside
of a byte. Learning the coloring scheme (e.g. the fact that a
red bit would always be followed by an orange bit) should
incur very little compression overhead to CSE. Indeed, once
the substrings of length2 would have been described, there
would be no need to take the colors into account anymore. This
modification to CSE should be relatively simple to implement.

Fourth, another direct modification to CSE would consist
in describing the bit planes progressively: first, describing the
bit string s1 which is the collection of the most significant bit
of every byte; then,knowing s1, describing the bit strings2

which is the collection of the two most significant bits of every
byte; then,knowing s2, describing the bit strings3 which is
the collection of the three most significant bits; and so on.
This modification is likely to be much more complex.

Finally, there are other investigations to make on CSE that
are not necessarily related to the synchronization issue. These
include the prediction methods used by CSE (the best yet being
anad hoc learning process), a proof of the universality of CSE,
and the use of the fact that there is a Hamiltonian cycle that
runs through the set ofl-bit substrings, for eachl such that
1 ≤ l ≤ N . A more complete description of this future work
appears in the original paper [1].

ACKNOWLEDGMENT

We wish to thank the anonymous reviewers who contributed
to improve this paper by their helpful comments. This research
was funded by the Natural Science and Engineering Research
Council of Canada.

REFERENCES

[1] D. Dubé and V. Beaudoin, “Lossless data compression via substring
enumeration,” inProceedings of the Data Compression Conference,
Snowbird, Utah, USA, March 2010, pp. 229–238.

[2] H. Yokoo, “The compact substring tree has linear size,” Personal
communications, November 2009.

[3] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding
and partial string matching,”IEEE Transactions on Communications,
vol. 32, no. 4, pp. 396–402, 1984.

[4] J. G. Cleary and W. J. Teahan, “Unbounded length contextsfor PPM,”
The Computer Journal, vol. 40, no. 2/3, pp. 67–75, 1997.

[5] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi, “Datacom-
pression using antidictionaries,” inIEEE Special Issue on Lossless Data
Compression, 2000, pp. 1756–1768.

[6] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,”IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337–342, 1977.

[7] ——, “Compression of individual sequences via variable-rate coding,”
IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–536,
September 1978.

[8] M. Burrows and D. Wheeler, “A block sorting lossless data compression
algorithm,” Digital Equipment Corporation, Tech. Rep. 124, 1994.

[9] V. Bruyère, “A completion algorithm for codes with bounded syn-
chronization delay,” inProceedings of the International Colloquium on
Automata, Languages and Programming, Bologna, Italy, July 1997, pp.
87–97.

[10] L. V. Do and I. Litovsky, “On a family of codes with bounded
deciphering delay,” inProceedings of the International Conference on
Developments in Language Theory, Kyoto, Japan, September 2002, pp.
369–380.

[11] S. W. Golomb and B. Gordon, “Codes with bounded synchronization
delay,” Information and Control, vol. 8, pp. 355—-372, August 1965.

[12] R. A. Scholtz, “Codes with synchronization capability,” IEEE Transac-
tions on Information Theory, vol. 12, pp. 135–142, April 1966.

[13] I. Witten, T. Bell, and J. Cleary, “The Calgary corpus,”1987,
ftp://ftp.cpsc.ucalgary.ca/pub/projects/
text.compression.corpus.

