
International Symposium on Information Theory and its Applications, ISITA2006
Seoul, Korea, October 29–November 1, 2006

Improving LZ77 Data Compression using Bit Recycling

Danny DUBÉ† and Vincent BEAUDOIN‡

Département d’informatique et de génie logiciel
Université Laval

(Québec) G1K 7P4, Canada
E-mail: Danny.Dube@ift.ulaval.ca† Vincent.Beaudoin.1@ulaval.ca‡

Abstract

Many data compression techniques allow for more than
one way to encode the compressed form of data. In
particular, this is the case for the LZ77 technique and
its derivatives, where matches can often be described
in more than one way. The very existence of multi-
ple encodings for the same data acts as a side-channel
through which additional information can be conveyed
from the compressor to the decompressor, and so, for
free. We show that this side-channel can be used to
carry parts of the compressed file itself, thereby short-
ening the latter, and improving compression ratios. We
call our technique bit recycling and show how it applies
to Huffman encoding. We present it as a way to im-
prove LZ77 compression and demonstrate it through
many experiments. One of these experiments has al-
ready been presented but the new ones take better
advantage of recycling. The experiments show that
we can improve compression efficiency significantly and
tend to point to a method with which bit recycling is
most profitable.

1. Introduction

Different compression techniques typically perform
differently on particular data. Often, the differences
in the performances are explained by saying that some
technique models data more accurately than another
one. However, the fitness of the model to the data is not
necessarily the only factor that influences compression
efficiency. A technique tends to lose some efficiency by
allowing particular data to have numerous different en-
codings. Indeed, the more there exist ways to encode
the same data, the lengthier these encodings tend to
be, thus having an adverse effect on compression effi-
ciency. Fortunately, we show that the multiplicity of
encodings exhibited by a compression technique need
not necessarily ruin its competitiveness. Part of the
loss in compression efficiency can be recovered through
what we call bit recycling.

Our research on recycling is applied to the LZ77
compression technique [13]. LZ77 compression is a well
known lossless technique and it is widely used in pop-
ular tools. In particular, the Deflate method that is
included in gzip, among others, is an efficient deriva-
tive of LZ77 compression [3, 5]. Of particular interest
to us, LZ77 compression has a very high tendency to
allow for multiple encodings of the same data.

The rest of the paper is organized as follows. Sec-
tion 2 presents a few basic definitions. Section 3 high-
lights the essential concepts of conventional LZ77 com-
pression. Section 4 gives an intuitive idea of how the
compressor and the decompressor may exchange more
information without transmitting more bits. Section 5
presents bit recycling. Section 6 presents the raw ex-
perimental results and Section 7 gives details about the
six experiments and comments on the results they pro-
vide.

2. Background

A coding function f : S → {0, 1}∗ translates any
symbol taken from set S into a sequence of bits. We
sometimes refer to coding functions as codes and to
f(s) as the codeword for symbol s.

On some occasions, we will use function Huffman :
(S → IR

>0) → (S → {0, 1}∗) as the conventional code
construction technique proposed by Huffman [6] that
takes symbols along with their respective occurrence
counts and that returns an optimal encoding function
for the symbols. Note that the “occurrence counts”
need not really be counts. They could be scaled by any
strictly positive factor and the same code would still
be built by ‘Huffman’.

We will also use function ‘flat’ as a function that
builds codes that assign encodings of (almost) equal
lengths to all symbols. Although it could be defined
directly and more efficiently, we prefer to define it sim-
ply as:

flat({s1, . . . , sk}) = Huffman({(s1, 1), . . . , (sk, 1)}).

1. while not end of input do
2. 〈l, d〉 := find best match;
3. if l < lmin then
4. emit C1([next input byte]);
5. else
6. emit C1(〈l, ·〉);
7. emit C2(d);

where
8. procedure emit w:
9. σ := σ · w;

10. return;
11.

Compressor

1. while end not signaled do
2. msg := receive C1;
3. if msg = [c] then
4. store c;
5. else let 〈l, ·〉 = msg
6. d := receive C2;
7. store copy of 〈l, d〉;

where
8. procedure receive C:
9. let msg, σ′ s.t. C(msg) · σ′ = σ;

10. σ := σ′;
11. return msg;

Decompressor

Figure 1: Essentials of the LZ77 compressor and decompressor.

3. Conventional LZ77 Compression

Figure 1 presents an abstract version of the com-
pressor and decompressor algorithms of the LZ77 tech-
nique. In its simplest form, the LZ77 technique con-
sists in a serial description of some original file using
a sequence of messages, where each message is either a
literal byte [c] or a match 〈l, d〉. Message [c] explicitly
tells the decompressor that the next byte of the origi-
nal file is c. Message 〈l, d〉 tells the decompressor that
the next l bytes of the original file are exact copies of
the already described bytes located d bytes before the
current position.

Let us briefly comment on the algorithms. First of
all, the transmission of a message proceeds in one or
two steps: the first step is used to inform the decom-
pressor either that the message is one particular literal
byte ([c]) or that the message is a match of a particu-
lar length (〈l, ·〉); in the case of a match, a second step
is used to indicate the distance d to that match. Sec-
ond, we allow the use of Huffman encoding (or some
other encoding) through the use of coding functions
C1 and C2, one for each step. The coding functions
allow a particular LZ77 compression technique to opti-
mize compression. Third, we explicitly refer to the bit
stream that forms the communication channel between
the compressor and the decompressor as variable σ.

On the other hand, things that both algorithms of
Figure 1 do not mention include: the input operations
performed by the compressor; the output operations
performed by the decompressor; the match-searching
method; buffering issues; and additional control-related
messages communicated through the bit stream, such
as signals for the end of data or the transmission of
new coding functions C1 and C2. While these things
are important in the design of an efficient compression
technique, they can be considered orthogonal to the
matter at hand. We simply ignore them throughout
the paper.

Finally, there remains the question of what is con-
sidered to be a best match. Since compression is ob-
tained mostly through the use of matches, it is natural
to favor matches that are as long as possible. In this
work, we also choose to seek longest matches. However,
note that this choice does not lead to a well-defined
notion of best match, in general. What many tech-
niques choose to select are the closest longest matches
(a choice that does lead to a well-defined notion of best
match). The rationale behind this choice is that favor-
ing shorter distances tends to skew the statistics on
distances and the bias can then be exploited by the
coding function C2. In this work, we choose not to do
the same.

4. Multiplicity of Encodings and Side-Channels

Instead of systematically selecting the closest long-
est match, we exploit the multiplicity of longest mat-
ches to do a directly meaningful choice among the var-
ious distances. By having the compressor to choose
carefully among multiple distances and the decompres-
sor to notice these choices, implicit transmission of in-
formation becomes possible through what can be seen
as a side-channel. But let us present these ideas more
clearly.

Generally speaking, multiplicity of encodings and
the implicit communication that derives from it can be
explained as follows. Let us consider the compressed
file abstractly as a sequence of messages m1, . . . , mn

Now, suppose that for many of these messages, there
are one or more alternatives, i.e. different messages
that refer to different copies of the same data. Let
us denote by {mi,1, . . . , mi,ki

} the set of alternatives
for message mi, including mi itself. With the alterna-
tives so expressed, it becomes clear that a compressed
file is any sequence m1,j1 , . . . , mn,jn

such that ∀ 1 ≤
i ≤ n. 1 ≤ ji ≤ ki. Since there are

∏n

i=1 ki different

1. while not end of input do
2. 〈l, {d1, . . . , dk}〉 := find best matches ;
3. if l < lmin then
4. emit C1([next input byte]);
5. else
6. emit C1(〈l, ·〉);
7. ND-let i ∈ {1, . . . , k};
8. emit C2(di);
9. recycle R({d1, . . . , dk}, C2)(i);

where
10. procedure emit w:
11. if w = ε or ρ = ε then
12. σ := σ · w;
13. else if w = b · w′ and ρ = b · ρ′

14. /* where b ∈ {0, 1} */ then
15. ρ := ρ′;
16. emit w′;
17. else
18. error;
19. return;
20. procedure recycle w:
21. ρ := ρ · w;
22. return;

Compressor

1. while end not signaled do
2. msg := receive C1;
3. if msg = [c] then
4. store c;
5. else let 〈l, ·〉 = msg
6. d := receive C2;
7. store copy of 〈l, d〉;
8. 〈l, {d1, . . . , dk}〉 :=
9. find copies of 〈l, d〉;

10. let i ∈ {1, . . . , k} s.t. di = d;
11. recycle R({d1, . . . , dk}, C2)(i);
where
12. procedure receive C:
13. let msg , σ′ s.t. C(msg) · σ′ = σ;
14. σ := σ′;
15. return msg ;
16.
17.
18.
19.
20. procedure recycle w:
21. σ := w · σ;
22. return;

Decompressor

Figure 2: Essentials of the recycling compressor and decompressor.

but equivalent compressed files, choosing one of them
carries

∑n

i=1 log2(ki) bits of information. This is the
amount of information that the side-channel is able to
transport. Although we just measured the capacity of
the side-channel by considering the compressed file as
a whole, transportation capacity is generated on a per-
message basis.

The idea of a side-channel has been presented and
used on many occasions. It has been used in a tool
that directly allows one to hide a secret file inside of
a (sufficiently large) compressed file [2]. More specific
applications of the hidden information include authen-
tication of compressed documents [1] and embedding of
error-correction codes inside of the compressed docu-
ments to make them resilient in case of transmission or
storage errors [8, 9, 7, 12]. All these techniques exploit
the multiplicity of the longest matches except for the
first tool which instead chooses to occasionally shorten
a match by one byte. Note that, in the latter case,
the exploitation of the multiplicity does not exactly fit
our model of “sequences of messages with equivalent
alternatives”. All the techniques aim at performing in-
formation hiding (or an application that uses it) and
at keeping the format of compressed files unchanged
so that a regular decompressor can still rebuild the
original files without ever noticing that additional in-
formation was present. In general, steganography (the
more exact term for information hiding) can also be
accomplished using other means than the selection of

encodings for compressed files and can be used in many
other applications. We refer the reader to a survey on
steganography by Petitcolas et al. [10].

As a different application, we propose to use the
side-channel to reduce the size of compressed docu-
ments. The idea is to remove some bits from the com-
pressed document and to send them through the side-
channel instead. Note that, by doing so, we resolutely
change the format of compressed files and only adapted
decompressors may now be able to rebuild the original
files. This application extends work presented in 2005
in a paper by the authors [4]. That paper presented
the principle of recycling applied to LZ77 compression
along with the results of an experiment performed us-
ing a modification of the gzip tool. That experiment
is the one we call Experiment 1, here. Five additional
experiments have been conducted since.

5. LZ77 Compression with Recycling

In Figure 2, we present modified compression and
decompression algorithms that perform bit recycling.
The two main differences are that potentially many
best matches are considered and that extra machin-
ery takes care of recycling. Recycling is more easily
explained by inspecting the behavior of the decom-
pressor. Once the decompressor has learned exactly
what match 〈l, d〉 has been transmitted (line 6), it finds
out about the bytes that it describes (line 7), so it
can determine the whole set of distances {d1, . . . , dk}

Name Original Gzip Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

bib 111 261 34 900 34 305 34 445 34 049 33 859 33 943 33 863
book1 768 771 312 281 301 955 308 261 303 925 301 695 303 092 301 888
book2 610 856 206 158 202 430 203 369 201 592 200 547 200 456 200 165
geo 102 400 68 414 66 542 68 020 67 286 66 347 66 343 65 889
news 377 109 144 400 142 808 142 395 141 181 140 709 140 565 140 418
obj1 21 504 10 320 11 147 10 366 10 428 10 405 10 315 10 314
obj2 246 814 81 087 84 289 79 782 80 043 79 825 79 208 79 179
paper1 53 161 18 543 18 783 18 382 18 360 18 232 18 180 18 147
paper2 82 199 29 667 29 401 29 354 29 157 29 027 28 977 28 933
paper3 46 526 18 074 18 198 17 916 17 860 17 764 17 717 17 689
paper4 13 286 5 534 5 986 5 500 5 482 5 460 5 446 5 440
paper5 11 954 4 995 5 467 4 959 4 951 4 935 4 917 4 922
paper6 38 105 13 213 13 783 13 191 13 150 13 124 13 048 13 055
pic 513 216 52 381 54 257 52 023 52 303 52 040 51 742 51 621
progc 39 611 13 261 13 852 13 104 13 082 13 176 12 974 13 097
progl 71 646 16 164 16 653 15 942 15 923 15 848 15 782 15 771
progp 49 379 11 186 11 787 11 047 11 104 11 041 10 957 10 943
trans 93 695 18 862 19 340 18 658 18 641 18 518 18 490 18 454

Figure 3: Sizes of the benchmark files when left uncompressed, when compressed using gzip set to maximal
compression, and when compressed using each of the six prototypes.

among which the compressor could have chosen (line 8),
and so it is able to identify the option number i such
that d = di (line 10). Finally, the recycled bit string
R({d1, . . . , dk}, C2)(i) is added in front of the input bit
stream σ (line 11). R is the recycling function. It first
takes a set of distances and the coding function for dis-
tances. Then, R({d1, . . . , dk}, C2) acts as a code for
numbers in 1, . . . , k. After augmenting the bit stream,
the decompressor proceeds with the reception of the
next message. Note that the latter may well be decoded
from a mixture of recycled and explicitly transmitted
bits.

On the compressor side, unfortunately, things do
not go as smoothly. The problem is that the compres-
sor has to choose what distance it should use (line 7),
which has an effect on the bits that get recycled by
the decompressor, which will contribute on the encod-
ing of the next messages. However, when it chooses,
the compressor does not yet know what messages it
will transmit next. Consequently, the algorithm uses a
non-deterministic choice. The correctness of this choice
is later checked by the ‘emit’ procedure. An auxiliary
bit stream ρ is used to hold the “predictions” of the
compressor about the future. Conceptually, the bits
put in ρ are those that are implicitly sent through the
side-channel instead of explicitly through σ.

Let us examine the effect of the length of the recy-
cled codewords on the choices made by the compressor.
If one inspects the workings of the recycling compres-
sion algorithm, one soon realizes that the probability
that some option i gets chosen depends on the length
of the corresponding recycled bit sequence. The longer
the recycled bit sequence, the smaller the chances for

option i. Equivalently, the shorter the recycled bit se-
quence, the higher the chances for option i. If one
makes the reasonable assumption that the compressed
bit stream is a random-like sequence, then option i,
whose corresponding recycled bit sequence wi is |wi|-bit
long, has probability 2−|wi| of being chosen. It means
that, by assigning recycled codewords of same length
to all options, any distance to a best match has an
equal chance of being chosen, no matter the cost of en-
coding it.1 In order to introduce some kind of penalty
for the distances that are more costly, these should be
assigned longer recycled bit sequences. Although the
assignment of a longer recycled bit sequence may at
first glance look more like a reward than a penalty, the
“rewarded” option inevitably suffers the consequence
of being chosen more rarely.

6. Experimental Results

Before we describe each experiment in detail, we
invite the reader to take a look at the experimental re-
sults and we make some general comments. Figure 3
presents the measurements obtained by compressing
each benchmark file using gzip set at maximal com-
pression and using each prototype. The files are those
found in the Calgary Corpus [11], which is commonly
used as a benchmark. Each prototype has been im-
plemented as a compressor/decompressor pair to make
sure that the original files could always be recovered

1For the sake of simplicity, we ignore the issue of the lengths

of the encodings varying by 1 when the number of symbols is not

a power of two.

correctly and that our measurements are not the de-
ceptively happy consequence of a buggy compressor.

Due to the need to manipulate sets of distances,
the prototypes are slower than gzip. The slowdown is
roughly the same for all prototypes. Compressing the
whole set of benchmark files takes about twice as long
using one of the prototypes than using gzip.

7. Description of the Prototypes

Figure 4 presents a (pretty terse) summary of the
six prototypes used in our experiments. In order to
interpret its contents, some tools and notions have to
be introduced first.

Three elements vary among the prototypes: the
function C2 that encodes distances, the notion of best
matches, and the recycling function R. The other el-
ements of the compression and decompression algo-
rithms do not change; in particular, function C1. The
possible values of each of three changing elements are
presented below.

We need to briefly present the method normally
used by gzip to build its function C2. The Deflate
algorithm used in gzip performs compression block by
block. It first parses the contents of a block into a
sequence of not-yet-encoded messages, where some are
literal bytes and the others are closest longest matches.
Gzip determines C1 based on the set of collected literal
bytes and the set of collected lengths and, more impor-
tant for us, it determines C2 based on the set of col-
lected distances. When some distances do not appear
into the latter, gzip simply does not provide an encod-
ing for them, i.e. C2(d) is undefined for such a distance
d. In the context of recycling, where potentially any
longest match may be referred to, such incompleteness
in the definition of C2 reduces the number of options.

There are three different codes for distances that
are used by the prototypes. The first one, C flat

2 , assigns
flat encodings to the distances and it is defined for all
distances, i.e.:

C flat

2 = flat({1, . . . , dmax}).

The second one, Cgzip

2 , is the usual encoding function for
distances chosen by gzip. The third one, C full

2 , is sim-
ilar to Cgzip

2 except that it is defined everywhere. It is
obtained by tweaking the statistics collected by gzip’s
parse by levying a “tax” on the occurrence counts of
the popular distances and redistributing it in order to
artificially increase the counts for the never-occurring
distances.

There are three definitions of “best matches” that
are used by the prototypes. All three definitions agree
on the fact that only longest matches are acceptable

Exp. # C2 Eligible distances R

1 C flat

2 all distances Rflat

2 Cgzip

2 “short” distances Rflat

3 Cgzip

2 encodable distances Rflat

4 C full

2 all distances Rflat

5 Cgzip

2 encodable distances R∝

6 C full

2 all distances R∝

Figure 4: Description of the six prototypes.

but they disagree on what is considered to be an eli-
gible distance to a longest match. The first definition
considers any distance to be eligible. The second one
only considers as eligible a distance that Cgzip

2 can en-
code. The third one is even more restrictive: a distance
is considered as eligible if Cgzip

2 can encode it and its
encoding is no longer than that of the distance to the
closest longest match.

There are two recycling functions that are used by
the prototypes. The first one, Rflat, builds flat codes,
i.e.:

Rflat({d1, . . . , dk}, C2) = flat({1, . . . , k}).

In other words, the number of bits that one expects to
recycle does not depend on the particular distance that
gets chosen. The other recycling function, R∝, builds
what we call proportional codes. It behaves roughly as
if it were defined this way:

R∝({d1, . . . , dk}, C2) =
Huffman({(1, 2−|C2(d1)|), . . . , (k, 2−|C2(dk)|)}).

Intuitively, we can say that Rflat tends to level the num-
ber of recycled bits, for any choice of distance, while
R∝ tends to level the net cost of the transmission, for
any choice of distance.

We may now proceed with the description of each
prototype. Note that we refer to the prototype that is
used in experiment i as Prototype i.

Prototype 1 completely ignores gzip’s encoding of
the distances and uses C flat

2 . This makes all distances
eligible. Flat recycling is used. Note that, in this par-
ticular case, proportional recycling would produce a
similar encoding for recycled bit sequences. We chose
to encode distances flatly based on the assumption that
recycling would tend to scatter the chosen distances
evenly between 1 and dmax. This assumption turned
out to be naive as the documents to compress typically
are locally similar or have some other spatial regularity.
Consequently, there is some profit to make by Huffman-
encoding the distances and, by choosing not to do so,
we damage the compression efficiency up to the point

that, most of the time, it more than ruins any gain that
recycling could have brought.

Prototype 2 is a reaction to our observations on the
performance of Prototype 1. We choose to use Cgzip

2

and, to make sure alternate distances chosen because of
recycling do not cause the compression to deteriorate,
we deem only “short” distances to be eligible. Flat
recycling is used. Compression efficiency of Prototype 2
was hardly comparable with that of Prototype 1: it
improves for some files while it deteriorates for others.
At this point, it was not clear if the highly selective
criterion for eligible distances did not rule out too many
options for recycling.

Consequently, Prototype 3 differs from the previous
one only by the fact that all distances to which gzip

normally gives an encoding are now considered eligible
for recycling. That modification did improve compres-
sion on most files while deteriorating it only slightly on
the others. The lesson that we learned was: by offering
it more options, recycling is able to bring a greater ben-
efit even though the additional options are more costly
to encode. Given this lesson, could recycling bring fur-
ther improvement in compression efficiency if it had the
freedom to consider even distances that gzip does not
know how to encode?

Prototype 4 does exactly that and encodes distances
using C full

2 . That makes all distances to longest matches
eligible. Recycling is still made using flat codes. Re-
sults show that compression improves on almost all
files. Once again, giving more options to the recycling
pays off even if the introduction of the formerly ig-
nored distances could only make the encodings for the
formerly considered ones to become lengthier.

Since flat recycling chooses distances to longest
matches regardless of their cost, it may cause some
compression inefficiency. To make prototypes more “re-
sponsible”, Prototypes 5 and 6 are made identical to
Prototypes 3 and 4, respectively, except that Rflat is
replaced by R∝. In each case, proportional recycling
improves the compression efficiency over flat recycling.
This was the second lesson: recycling should be done
proportionally. Results obtained in experiment 6 show
that all files are better compressed using Prototype 6
than using gzip set at maximal compression.

Acknowledgements

We wish to thank the anonymous referees whose com-
ments helped to improve this paper. This work has
been funded by NSERC of Canada.

References

[1] M. J. Atallah and S. Lonardi. Authentication of
LZ-77 compressed data. In Proceedings of the 18th
ACM Symposium on Applied Computing, pages
282–287, Melbourne, Florida, USA, mar 2003.

[2] A. Brown. gzip-steg, 1994.

[3] P. Deutsch. Request for comments: 1051, 1996.
http://www.ietf.org/rfc/rfc1051.txt.

[4] D. Dubé and V. Beaudoin. Recycling bits in
LZ77-based compression. In Proceedings of the
Conférence des Sciences Électroniques, Technolo-
gies de l’Information et des Télécommunications
(SETIT 2005), Sousse, Tunisia, mar 2005.

[5] J. L. Gailly and M. Adler. The GZIP compressor.
http://www.gzip.org.

[6] D. A. Huffman. A method for the construction
of minimum-redundancy codes. In Proceedings of
the Institute of Radio Engineers, volume 40, pages
1098–1101, sep 1952.

[7] S. Lonardi and W. Szpankowski. Joint source-
channel LZ’77 coding. In Proceedings of the
IEEE Data Compression Conference, pages 273–
282, Snowbird, Utah, USA, mar 2003.

[8] S. Lonardi, W. Szpankowski, and M. Ward. Error
resilient LZ’77 scheme and its analysis. In Proceed-
ings of IEEE International Symposium on Infor-
mation Theory (ISIT’04), page 56, Chicago, Illi-
nois, USA, 2004.

[9] S. Lonardi, W. Szpankowski, and M. Ward. Er-
ror resilient LZ’77 data compression: Algorithms,
analysis, and experiments. (Under submission),
2006.

[10] F. A. P. Petitcolas, R. J. Anderson, and M. G.
Kuhn. Information hiding—a survey. Proceedings
of the IEEE, 87(7):1062–1078, jul 1999.

[11] I. Witten, T. Bell, and J. Cleary. The Calgary
corpus, 1987.
ftp://ftp.cpsc.ucalgary.ca/pub/projects/

text.compression.corpus.

[12] Y. Wu, S. Lonardi, and W. Szpankowski. Error-
resilient LZW data compression. In Proceedings
of the IEEE Data Compression Conference, pages
193–202, Snowbird, Utah, USA, mar 2006.

[13] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions
on Information Theory, 23(3):337–342, 1977.

