
The Universality and Linearity of Compression by

Substring Enumeration

Danny Dubé

Université Laval, Canada

Email: Danny.Dube@ift.ulaval.ca

Hidetoshi Yokoo

Gunma University, Japan

Email: yokoo@cs.gunma-u.ac.jp

Abstract—A new lossless data compression technique called
compression by substring enumeration (CSE) has recently been
introduced. Two conjectures have been stated in the original
paper and they have not been proved there nor in subsequent
papers on CSE. The first conjecture says that CSE is universal for
Markovian sources, provided an appropriate predictor is devised.
The second one says that CSE has a linear complexity both in
time and in space. In this paper, we present an appropriate
predictor and demonstrate that CSE indeed becomes universal
for any order-k Markovian source. Finally, we prove that the
compacted substring tree on which CSE’s linear complexity
depends effectively has linear size.

I. BACKGROUND ON CSE

A. Notation

Throughout the paper, we adopt the following conventions:

N denotes the set of natural numbers; ǫ denotes the empty

string; a and b denote bits; i, j, k, l, n, and p are in N; u, v,
and w are strings in {0, 1}∗; and | · | is used to obtain the

length of a string, or the size of a set, depending on the context.

The data that is sent to the compression by substring

enumeration (CSE) compressor is a binary string, denoted

by D, of length N bits [1].1 CSE assumes D to be circular,

and encodes it into the pair of its equivalence class of strings

under rotation and its rank, or lexicographic order, in the

class. In the literature, such an equivalence class of strings

is called a necklace [4]. We identify each necklace with the

lexicographically smallest string in its equivalence class. In

this paper, we concentrate only on the encoding of necklaces,

which is the core component of the CSE technique.

B. Occurrences

Of particular importance to CSE is the notion of occurrences

of a substring in D. It is not exactly the notion that is usually

adopted since CSE considers D to be circular.

First, we define the notion of occurrence of a substring at

a given position. We say that a substring w ∈ {0, 1}∗ occurs

at position p in D, denoted by w ∈p D, if:

∃u, v ∈ {0, 1}∗. ∃i ∈ N. uwv = D
i and 0 ≤ |u| = p < N,

where D
i denotes i copies of D concatenated together. Note

that we restrict the positions to lie in the range 0 to N − 1,
inclusively. Without this restriction, for any substring w such

that w ∈p D, we would also have w ∈p+N D, due to D’s

1Subsequent work on CSE appears in [2], [3] and [7].

circularity. The restriction is necessary to make the definition

of number of occurrences sensible, as seen below. Note also

that we put no restriction of the length of the substrings

themselves. In particular, w can be as short as ǫ. At the other

extreme, w can be longer than D.

Second, we define the notion of occurrence. We say that a

substring w occurs in D, denoted by w ∈ D, if there exists a

position p such that w ∈p D.

Third, we define the notion of number of occurrences. The

number of occurrences of a substring w in D, denoted by Cw,

is |{p ∈ N | w ∈p D}|. Obviously, we have that Cw > 0 if

and only if w ∈ D. This definition makes it clear that we

need the restriction on the possible positions of occurrences.

Otherwise, Cw could only be 0 or ∞. The following equations

are direct consequences of the definition of Cw.

Cǫ = N (1)

C0w + C1w = Cw = Cw0 + Cw1, ∀w ∈ {0, 1}∗ (2)
∑

w∈{0,1}n

Cw = N, ∀n ∈ N (3)

C. Compression by Substring Enumeration (CSE)

From Eq. (2) above, we can derive

C0w1 = C0w − C0w0,

C1w0 = Cw0 − C0w0,

C1w1 = Cw1 − C0w1,

which can be used to compute each quantity in the left-hand

sides from C0w0. We combine these equations with C0w0 ≥ 0,
C0w1 ≥ 0, C1w0 ≥ 0, and C1w1 ≥ 0 to yield

max(0, C0w − Cw1) ≤ C0w0 ≤ min(C0w, Cw0). (4)

When we already have C0w, Cw0, and Cw1, we can efficiently

transmit C0w0 using the above bounds. When predicting and

encoding C0w0, we refer to w as the core of 0w0. The size

of the set of possible values for C0w0 is given by

min(C0w, Cw0) − max(0, C0w − Cw1) + 1

= min(C0w, C1w, Cw0, Cw1) + 1. (5)

In particular, this means that, if min(C0w, C1w, Cw0, Cw1) =
0, then C0w0 is forced to take a unique value. We say that

1. Send N ; Send C0; Send rank(D);
2. For l := 2 to N do

3. For all w ∈ I(D) such that |w| = l − 2 do

4. Predict and Send C0w0;

Fig. 1. Pseudo-code for CSE’s compression algorithm

such a prediction is trivial and that core w is not interesting.

We denote by I(D) the set of interesting cores as follows.

U(D) = {w ∈ {0, 1}∗ | w0 ∈ D and w1 ∈ D} (6)

V (D) = {w ∈ {0, 1}∗ | 0w ∈ D and 1w ∈ D} (7)

I(D) = U(D) ∩ V (D) (8)

Note that when Cw ≤ 1, we necessarily have that w 6∈ I(D).
We can summarize these observations into the CSE com-

pression algorithm presented in Figure 1. The double for

loops of the algorithm suggest that up to Θ(N2) numbers of

occurrences might have to be transmitted from the compressor

to the decompressor. This is not the case. The number of the

numbers that CSE transmits is no more than the string length.

This is proved in Section IV.

II. PREDICTIONS IN CSE

The most important operation in CSE is the prediction

of the numbers C0w0 of occurrences. In earlier experiments,

three predictors have been used: a uniform predictor [1], a

predictor that learns how to efficiently predict C0w0 [1], and

a combinatorial predictor. Here, we present the uniform and

the combinatorial predictions.

A. Uniform Prediction

Uniform prediction simply consists in assigning the same

probability to each possible value of C0w0 (or to each value

of some other variable). This simple prediction can be used

every time we have a lower and an upper bound on the possible

values. Given the bounds established for C0w0 in Eq. (4), we

can uniformly predict C0w0 and encode its actual value using

lg (min(C0w, C1w, Cw0, Cw1) + 1) bits.

B. Combinatorial Prediction

Uniform prediction has the advantage of being simple.

However, it is too simplistic and, to the best of our knowledge,

it cannot make CSE universal. For example, if we have

C0w = C1w = Cw0 = Cw1 = 1000, then, intuitively, we
expect C0w0 ≈ 500 to be more probable than C0w0 ≈ 1000.

Combinatorial prediction assigns, to some legal value C0w0,

the probability pc(C0w0 | C0w, Cw0, Cw1), which is
(

Cw

C0w0, C0w1, C1w0, C1w1

)

∑min(C0w,Cw0)
C0w0=max(0,C0w−Cw1)

(

Cw

C0w0, C0w1, C1w0, C1w1

) ,

where C0w1, C1w0, and C1w1 should be seen as functions

of C0w0. This prediction is inspired by the following picture.

Imagine that the Cw occurrences of the core are interspersed

in D, without overlaps. Then any C0w0 occurrences of w might

be the ones that are preceded and followed by 0s; among the

remaining occurrences of w, any C0w1 of them might be the

ones that are preceded by a 0 and followed by a 1; and so on.

The expression for pc(C0w0 | C0w, Cw0, Cw1) can be

simplified. The numerator and the denominator can be trans-

formed into

(

Cw

C0w

)(

C0w

C0w0

)(

C1w

C1w0

)

and

(

Cw

C0w

)(

Cw

Cw0

)

,

respectively, leading to:

pc(C0w0 | C0w, Cw0, Cw1) =

(

C0w

C0w0

) (

C1w

C1w0

)

(

Cw

Cw0

) . (9)

A particularly interesting property of combinatorial pre-

diction is that the probability that is assigned to the joint

prediction of all the numbers C0vw0, for a given w, has a

very simple form. Indeed, we have the following:
∏

v∈{0,1}∗

pc(C0vw0 | C0vw, Cvw0, Cvw1) =

∏

v∈{0,1}∗

(

C0vw

C0vw0

)(

C1vw

C1vw0

)

(

Cvw

Cvw0

) =
1

(

Cw

Cw0

) . (10)

The closed form of the joint probability is obtained thanks to

the telescopic product. Only the denominator of the case v = ǫ
remains. Since we cancel the two factors of the numerator

of the probability for a particular v with the denominators

of probabilities for other, longer v′s, one might wonder if

we really get an equality here. In fact, apart from a finite

number of vs, all individual probabilities that are multiplied

together are equal to 1. Indeed, first note that when v is

long enough (e.g., when |v| ≥ N), we have that Cvw ≤ 1,
which causes vw 6∈ I(D).2 Then note that, for vw 6∈ I(D),
combinatorial prediction assigns probability 1 to the single

legal value of C0vw0.

C. Optimal Switch from Uniform to Combinatorial

The prediction that we propose here combines uniform

prediction and combinatorial prediction. Given some length l,
CSE ought to use uniform prediction for C0w0 when |w| < l
and combinatorial prediction otherwise. In order to determine

the optimal threshold where to switch from uniform to com-

binatorial prediction, universal CSE has to evaluate the cost

of predicting and encoding each C0w0 using each prediction

method. It then has to select the length lopt that minimizes

the overall cost of prediction and encoding. We define lopt

as arg minl′
(
∑

l<l′ υl

)

+
(

∑

l≥l′ γl

)

, where υl and γl are

the costs of predicting and encoding the l-bit cores using the

uniform and combinatorial prediction methods, respectively:

υl =
∑

w∈I(D)∩{0,1}l

Ku(C0w0); γl =
∑

w∈I(D)∩{0,1}l

Kc(0w0);

2This reasoning holds provided D is non-repetitive. If D happens to be
repetitive, a similar but slightly more complicated reasoning gives us the
guarantee that vw 6∈ I(D) when v is long enough.

(see Section III-E for the definitions of Ku and Kc). Conse-

quently, we propose to replace line 4 in Figure 1 by:

If |w| < lopt then

Predict and Send C0w0 uniformly

Else

Predict and Send C0w0 combinatorially;

III. PROOF OF UNIVERSALITY

A. Markovian Source

The universality of CSE is proved for an order-k Markovian

source X. Note that the proof does not require the implemen-

tation of CSE to depend on k or on its existence.

We denote by Xi, for i ≥ 0, the ith random variable of X

and the subsequence of the source random variables from Xi

to Xj by Xj
i . We define the source probability distribution p(i)

on the strings of length i as

p(i)(w) = Pr(Xi−1
0 = w), for w ∈ {0, 1}i.

Since X is an order-k Markovian source, p(k+1) completely

characterizes X. Indeed, for i < k + 1, p(i) can be recovered

using the consistency rule:

p(i)(w) = p(i+1)(w0) + p(i+1)(w1);

and, for i > k+1, p(i) can be recovered thanks to the finiteness

of the order of X:

p(i)(awb) = p(i−1)(aw) ∗ p(i−1)(wb)/p(i−2)(w).

Since X is an order-k Markovian source, its entropy can

be expressed in various forms, in particular as its kth-order
entropy:

H(X) = lim
n→∞

H(Xn
1)/n

= H(Xk+1 | X1 . . . Xk)

= −
∑

wa∈{0,1}k+1

p(k+1)(wa) lg
p(k+1)(wa)

p(k)(w)
.

B. Empirical Probability Distributions

Given D, we define the empirical probability distribu-

tions p̃
(i)
D

on the strings of length i as

p̃
(i)
D

(w) = CD, w /N, for w ∈ {0, 1}i.

Note that we add D as a subscript to Cw to indicate that CD, w

is obtained from D. This is because, below, we need to obtain

numbers of occurrences from strings other than D. The p̃
(i)
D

probability distributions obey the consistency rule.

Based on the empirical probability distributions, we define

the empirical kth-order entropy of D as

H̃(D) = −
∑

wa∈{0,1}k+1

p̃
(k+1)
D

(wa) lg
p̃
(k+1)
D

(wa)

p̃
(k)
D

(w)
.

C. Empirical Probability Distributions of Random Strings

Both the empirical probability distributions and the em-

pirical kth-order entropy have been presented for D, which

is a specific N -bit string. However, we can also use them

on an N -bit random string XN−1
0 and get the empirical

probability distributions p̃
(i)

X
N−1

0

and the empirical kth-order

entropy H̃(XN−1
0). Note that these probability distributions

and this entropy, respectively, are random variables. In other

words, the outcomes of random variable H̃(XN−1
0) are spe-

cific entropies and each specific entropy has some probability

of occurrence.

Random probability distribution p̃
(k+1)

X
N−1

0

, by its very nature,

cannot be equal to the source probability distribution p(k+1),

since the latter is a specific probability distribution while the

former is a random variable whose outcomes are specific

probability distributions. Unfortunately, E
[

p̃
(k+1)

X
N−1

0

]

, even if

it is a specific probability distribution, is not necessarily equal

to p(k+1) either. One of the reasons is that the empirical prob-

ability distributions are based on numbers of occurrences, and

these include occurrences of substrings that wrap around D.

Consequently, these substrings are not generated by consec-

utive random variables of X; e.g. there is a substring that is

generated by XN−1
N−4X8

0 .

However, the empirical probability distribution random vari-

ables have the tendency to become more similar to the source

probability distribution when we let N grow. Let us be

more precise. We are especially interested in the probability

distributions of substrings of k + 1 bits. So we have

lim
N→∞

p̃
(k+1)

X
N−1

0

= p(k+1) almost surely.

We omit the proof. As a consequence, and because entropy is

a continuous function, we also have

lim
N→∞

H̃(XN−1
0) = H(X) almost surely.

D. Typical Set of Strings

The convergence of the empirical entropy of the random

strings toward the entropy of the source allows us to define a

typical set. Let us define A
(N)
δ , the set of typical binary strings

of length N :

A
(N)
δ =

{

D ∈ {0, 1}N
∣

∣

∣

∣

∣

∣
H̃(D) − H(X)

∣

∣

∣
< δ

}

.

A
(N)
δ is such that Pr

(

XN−1
0 ∈ A

(N)
δ

)

> 1 − δ, and we can

choose any δ > 0, provided we choose N large enough.

E. Various Cost Functions

We define a few cost functions, which we use to bound the

size of the codewords for the strings compressed by CSE.

It is possible to encode a natural number n using O(lg n)
bits, even if we have no a priori upper bound on n. For

instance, we can do so using Elias gamma coding [5]. The

size of the codeword for n ∈ N is KN(n).
Let Ku(X) be the cost of encoding the outcome of a random

variable X with n possible outcomes when assigning these a

KCSE(D)

= KCSE|lopt
(D)

≤ KCSE|k(D)

= KN(N) + Ku(C0) + Ku(rank(D))

+
∑

w∈{0,1}∗

|w|<k

Ku(C0w0) +
∑

w∈{0,1}∗

|w|≥k

Kc(0w0) (11)

≤
∑

w∈{0,1}∗

|w|≥k

Kc(0w0) + α1 lg N (12)

=
∑

w∈{0,1}k

∑

v∈{0,1}∗

Kc(0vw0) + α1 lg N

=
∑

w∈{0,1}k

∑

v∈{0,1}∗

− lg

(

C0vw

C0vw0

)(

C1vw

C1vw0

)

(

Cvw

Cvw0

) + α1 lg N

=
∑

w∈{0,1}k

lg

(

Cw

Cw0

)

+ α1 lg N (13)

=
∑

w∈{0,1}k

lg
Cw!

Cw0!Cw1!
+ α1 lg N

≤
∑

w∈{0,1}k

lg
CCw

w

CCw0

w0
CCw1

w1

+ α1 lg N (14)

=
∑

w∈{0,1}k

[

−Cw0 lg
Cw0

Cw

− Cw1 lg
Cw1

Cw

]

+ α1 lg N

Fig. 2. Upper bound for both typical and atypical cases

uniform probability distribution. Naturally, Ku(X) ∈ O(lg n).
In the sequel, we keep n implicit since all such costs will be

upper-bounded by lg N .

Let Kc(0w0) be the cost of encoding the value C0w0

combinatorially, knowing C0w, Cw0, and Cw0:

Kc(0w0) = − lg pc(C0w0 | C0w, Cw0, Cw1).

Note that we write Kc(0w0), not Kc(C0w0), because C0w0 is

only a natural number (e.g., 5) which would not allow us to

unambiguously identify the related strings 0w, w0, and 1w
and their respective C0w, Cw0, and C1w.

We denote by KCSE|n(D) the cost of compressing D using

CSE and by forcing the prediction to switch from uniform to

combinatorial when cores are n bits long or more. Finally, we

denote by KCSE(D) the cost KCSE|lopt
(D).

F. An Upper Bound on the Cost

Figure 2 presents the beginning of a derivation for an upper

bound that suits both typical and atypical cases. Eq. (11)

directly follows from CSE’s algorithm in Figure 1, as modified

in Section II-C. Eq. (12) gathers all the costs that are loga-

rithmic. In Eq. (13), we use the telescopic product presented

in Section II-B. Eq. (14) is simple to prove.

G. Cost in the Typical Case

Assuming D ∈ A
(N)
δ , we derive the following.

∑

w∈{0,1}k

[

−Cw0 lg
Cw0

Cw

− Cw1 lg
Cw1

Cw

]

+ α1 lg N

= N
∑

w∈{0,1}k

[

−
Cw0

N
lg

Cw0

Cw

−
Cw1

N
lg

Cw1

Cw

]

+ α1 lg N

= N H̃(D) + α1 lg N

≤ N (H(X) + δ) + α1 lg N

H. Cost in the Atypical Case

Assuming D 6∈ A
(N)
δ , we derive the following.

∑

w∈{0,1}k

[

−Cw0 lg
Cw0

Cw

− Cw1 lg
Cw1

Cw

]

+ α1 lg N

=
∑

w∈{0,1}k

Cw

[

−
Cw0

Cw

lg
Cw0

Cw

−
Cw1

Cw

lg
Cw1

Cw

]

+ α1 lg N

=
∑

w∈{0,1}k

Cw h

(

Cw0

Cw

)

+ α1 lg N (15)

≤
∑

w∈{0,1}k

Cw + α1 lg N (16)

= N + α1 lg N

Eq. (15) uses the entropy h(·) of a binary random variable,

which is then bounded above by 1 in Eq. (16).

I. Overall Cost of Encoding with CSE

Combining the costs in the typical and atypical cases, with

their respective probabilities, we get the following average

cost:

E
[

KCSE(XN−1
0)

]

≤ (N (H(X) + δ) + α1 lg N) + δ (N + α1 lg N)

By letting N grow as much as needed, we bound the cost per

symbol of CSE arbitrarily close to H(X).

lim
N→∞

E
[

KCSE(XN−1
0)

]

N
= H(X)

IV. CSE’S LINEAR COMPLEXITY

The original paper [1] mainly considers non-repetitive (ape-

riodic) strings. For a non-repetitive string D, the size of the

associated necklace is equal to the string length N . In other

words, all the N rotations of non-repetitive D are different

from each other. In the BWT-transformed matrix [6], in which

all the rotations of D are lexicographically arranged as rows,

the rows are all different, and every pair of adjacent rows share

a prefix of length between 0 and N − 1. If we represent such

Fig. 3. The compacted substring tree (CST) for ‘01000001’

a prefix by w, we have both w0 and w1 in D. This leads us

to the following, which refers to Eq. (6).

Lemma 1: For any non-repetitive D of length N , we have

|U(D)| = N − 1.

Proof: Let wi denote the longest prefix that is shared by the

ith and (i+1)st rows of the (sorted) BWT matrix of D. There

exist N − 1 different wi’s since the matrix has N rows. The

length of every wi is shorter than N . This means that both

wi0 and wi1 occur in D, and therefore, the lemma is proved.

If we read D in the reverse direction and apply Lemma 1,

we have the following.

Lemma 2: For any non-repetitive D of length N , we have

|V (D)| = N − 1.

Note that the double for loops of the CSE algorithm transmit

C0w0 only for w ∈ I(D). Thus, from Lemmas 1 and 2, we

confirm that the number of those numbers the loops emit is

no more than N − 1. The implementation of CSE uses a data

structure called the compacted substring tree (CST) [1]. The

authors of [1] conjectured that the CST for a non-repetitive D

always has 2N − 1 nodes, and used it as a ground for linear

implementation.

In the CST, the path from the root to each node represents

a substring w, and the node stores the value of Cw. Since

identical subtrees are linked by a backward arc, the CST is

not strictly a tree but a graph with cycles. Figure 3 presents

an example of CST, in which backward arcs are depicted with

dashed lines. We here prove the conjecture [1] that the CST

for a non-repetitive D always has 2N − 1 nodes.

We refer to normal arcs, depicted with solid lines in the

figure, which go from a level-L node to a level-(L +1) node,

as forward arcs. We represent the node corresponding to a

substring w by nw. The labels only on the forward arcs of

the path from the root to a node nw constitute a substring w.

When we are about to create a node nw, if we already have

a node nx such that Cx = Cw for w = bx (b ∈ {0, 1}), then
we must not build nw and rather add a backward arc from its

parent to nx [1]. Using the way for the construction of CST,

we can immediately prove the following.

Lemma 3: For a string w, if 0w does occur and 1w does

not occur in D, then a node n0w does not exist in the CST.

Proof: Since 0w ∈ D and 1w 6∈ D, we have C0w = Cw

from Eq. (2). In this case, n0w is not built and, instead, a

backward arc is added to nw.

Lemma 4: For a string w, if both 0w and 1w occur in D,

then a node n0w exists in the CST for D.

Proof: Since C0w > 0 and C1w > 0, we have Cw = C0w +
C1w > C0w. In this case, there exists a node n0w in the CST.

We combine the above two lemmas into the following

theorem for further reference.

Theorem 1: In the CST corresponding to D, there exists a

node n0w if and only if both 0w and 1w occur in D. Similarly,

there exists a node n1w if and only if 0w ∈ D and 1w ∈ D.

Now, let us prune backward arcs from a CST to obtain

a real tree. We still use the same term “CST” to refer to a

CST without backward arcs. Let t0 and t1 be subtrees rooted

at n0 and n1, respectively, in a CST without backward arcs.

Note that only backward arcs are deleted from CST and no

change has been made on the nodes of the CST. Thus, we now

establish the following theorem.

Theorem 2: In the CST without backward arcs correspond-

ing to a non-repetitive D of length N , the subtrees t0 and t1
are isomorphic, both of which have N − 1 nodes.

Proof: It follows directly from Theorem 1 that the subtrees

t0 and t1 are isomorphic. We use again the same theorem with

Lemma 2 to conclude that each of t0 and t1 have N−1 nodes.

Corollary 1: The CST corresponding to a non-repetitive D

of length N has 2N − 1 nodes.

Corollary 2: The numbers of nodes on the same level of

subtrees t0 and t1 of the CST corresponding to a non-repetitive

D are equal to one another.

V. RELATED WORK

In this paper, we showed universality of CSE when the

source is Markovian. A stronger result, which establishes the

universality of CSE for stationary and ergodic sources is to

appear about at the same time as ISIT 2011 [7].

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers whose com-

ments contributed to improve this paper.

REFERENCES

[1] D. Dubé and V. Beaudoin, “Lossless data compression via substring
enumeration,” in Proceedings of the Data Compression Conference,
Snowbird, Utah, USA, March 2010, pp. 229–238.

[2] D. Dubé, “Using synchronization bits to boost compression by substring
enumeration,” in Proceedings of the International Symposium on Infor-

mation Theory and its Applications, Taichung, Taiwan, October 2010.
[3] ——, “On the use of stronger synchronization to boost compression

by substring enumeration,” in Proceedings of the Data Compression

Conference, Snowbird, Utah, USA, March 2011.
[4] F. Ruskey and J. Sawada, “An efficient algorithm for generating necklaces

with fixed density,” SIAM Journal of Computation, vol. 29, no. 2, pp.
671–684, 1999.

[5] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 194–203,
March 1975.

[6] M. Burrows and D. Wheeler, “A block sorting lossless data compression
algorithm,” Digital Equipment Corporation, Tech. Rep. 124, 1994.

[7] H. Yokoo, “Asymptotic optimal lossless compression via the CSE tech-
nique,” in Proceedings of the International Conference on Data Com-

pression, Communication and Processing, Palinuro, Italy, June 2011.

