Improving LZ77 Bit Recycling using All Matches

Danny Dubé Vincent Beaudoin
Université Laval, Canada Université Laval, Canada
Email: Danny. Dube@ft . ul aval . ca Email: Vi ncent . Beaudoi n. 1@l aval . ca

Abstract— There exist lossless compression techniques, suchsequential description of. By “sequential”’, we mean two
as LZ77, that have the particularity that some original file may things: 1. the description is aequenc&)f messagesand 2.

be compressed in more than one way, e.g. by choosing other,f: is described byC from the start to the endEach message
matches than the closest longest ones only. The existence od ibes th t sinal f h ter€ of
multiple encodings per original file causes redundancy, i.eit escribes the next single, or 1ew, characters.o

tends to make compressed files longer than necessary, on azge. A message is _Of one Of two Kinds. It may beliteral,
Recently, a technique called bit recycling was introducedd help denoted by[c|, which explicitly indicates that the next char-

reduce the redundancy caused by the multiplicity of encodigs. It acter isc. Otherwise, it is amatch denoted by(l,d), which
has been used to improve LZ77 compression. It exploits the €& jngirectly indicates that the nextcharacters are a copy of

that there often exists more than one longest match and it isatled .
longest-match bit recycling. This work presents a more genal, the | characters that appeat characters before iF. A

and more powerful, bit recycling technigue that exploits slorter ~message of e_ither kir_‘d is denoted By. Typically, most of
matches also. We call the technique all-match bit recyclingOur the compression achieved by the technique comes from the
experiments demonstrate that at least 1 bit out of 11 resultrom yse of matches, as many characters may be described at once
the multiplicity of encodings, in LZ77 compression. by a single message.
|. INTRODUCTION We define the functioi. that gives thdengthof a message.
When one thinks about general, lossless compression, dhé d_efmed this wayZ([]) - 1andL((l, d)) = L. Qur pre-
often thinks about a compressd, and a decompressaR sentation of LZ77 compression makes use oéaocoding func-

that are functions from files to files (or sequences of charact.t'on' or code C for messages L usesC to translate messages

to sequences of characters) such that, for anyFi®(C(F)) into sequences of bits ar® usesC' to translate sequences

is F. However, the specification of a lossless compressiontecﬂﬁ-b'tsnbagk lntho messagr(]aél Eas to be g pref|><f-ftr1ee codzt
nique often comes in two pieces: 1. whavalid compressed 1YPIcally; C'Is chosen so that the expected cost of the encoding

file is; 2. what original fileD shouldrecoverfrom a valid com- of a message is minimized. For instancemay be built using

. P ; ffman’s algorithm [8]. Thecost of a messageV/, when
pressed file. Note that such a specification does not deicnbgiu X i o 5
precisely. There may exist some original fildor which there encoded byC, is the number of resulting bits, i.6C'(M)|.

: ; We introduce a sketch of the implementation of the con-
d dfilesGse..., G, h . : .
?r:ztrgazg)co:rrespini;?g c)or:onr ezsies frI:eStolem apF tosgﬁy ventional LZ77 technique. Figure 2 presents pseudo-code fo

bothC andD. The code is extremely simplified and most of
the details are omitted. At each st&psearches for a longest
géatch (according td’). When no match is found, or when
o sufficiently long one is found, a literal is used instead.
hen there exist many longest matches, thesestone is
selected, i.e. the one with the smalldstNote that a longest
ir(r)lﬁltch is searched for in the hope of describingith as few

technique that is particularly prone to associate multaien- messages as possible. Also, the systematic selectio_n of the
pressed files to original files. We start by describing Lz74/0sestlongest match has a tendency to make short distances
schematically. Then, we come back to a technique, callBPre probable and helps 1o construciCathat makes. thg :
bit recycling that aims at reducing the negative effects qupected cost of messages lower. For t.he sake of S|mpI|_C|ty,
the multiplicity of encodings. The bit recycling techniqsuewe Ssuppose thaf’ remains constant QU_nng the. compression
presented earlier all exploit the existence of multiplegiest of . Finally, the pseudo-code faf explicitly manipulates the

matches. We present a new bit recycling technique that Q4tPUL bit stream (or sequence) The contents ob after the

more general and powerful and that exploits the existen@'eslt |tterz]rat|on an bedsefeor;)asththe compressed tf.”e'
of all matches, longest or not. Finally, experiments that V\%e n de gieut o-code Tdb, the rzv::‘rs% ope_r? |I<_)nsdatre i)her-
performed are described and commented. ormed. bit streamo 1S assumed 1o be intialized 1o the

compressed file. The “interpretation” consists in ideritify
[I. BAsICS OFLZ77 L
.. . . The codeC' must not be confused with the compresgorC' is used to
Let us denOt_e the O”Q'_nal file bly. LZ77 [15] is a Ios_sles_s encode individual messages only, whileis used to process whole files.
data compression technique that works by communicating &Note that the length of a message has no direct relation oits

G;. Normally, we expecC to select aG; that is among the
shortest. Still, no mattef’s choice, it remains that evefy; is
valid and contributes to fill up the space of compressed fil
too quickly. So a compression technique that allows mutip
encodings for most of the original files suffers from what wi
call redundancy from the multiplicity of encodings

In this paper, we take LZ77 as an instance of a compress

; ibed\b ; C: D:
the Smgle or few characters that are describe yand In 1. while description incompletdo 1. while description incompletelo

storing them in a buffer that accumulates the recoveredpart 2. et a7, = clos. long. match 2. let M, = receive();

of F. The interpretation may also include a variety of other 3. emit(C(L)); 3. interpret M;
: where where
operations. . . . 4. procedure emit(w): 4. procedure receive):
Among the details that are omitted, there are the inplR of 5 .= 5. 4 5. let M, o st.C(M)-o = o,
by C and the output of by D, the method used b§ to look 6. 6. o=d%
up for matches, the wa§ andD convene on the choice df, £ 7. retun M;
the handling of the end df and that of the compressed file, Fig. 2. Conventional implementation of LZ77.

and the conventions about the minimal and maximal lengths
and distances. In our examples, we will consider that matche First, bit recycling exploits the capacity to establish iitip
have to be at least 3 characters long. communication betwee@ andD. Implicit communication is

Figure 1 presents two short examples. In each one,passible due to the multiplicity of encodings and may happen
different original file F¢* is considered. Along with eadff*, when, at some point in the compression process, we have that:
we give all possible sequences of messages that ded¢fibe 1. C has more than one option; and.is able to recognize
which we callparses Note that the implementation of LZ77that situation. When both conditions are métmay choose
presented in Figure 2 has no choice but to produce (aadparticular option with the intent to mean somethingo
consume) Parses la and 2a. as if it were making an eye wink t®. The possibility of
C to transmit information toD through its choices can be
seen as aide-channelbf communication. The side-channel

In our study of all-match recycling, we need to be precis#oes not have an arbitrary capacity like the main channel,
about the positions ift thatC andD visit and where matches which is the compressed file. Roughly speaking, the capacity
and literals may be used. Let us define a few functions aoéithe side-channel depends on how often both conditions are
relations. We say that a messa@@leapsfrom positionp to met and on how many options are available each time. Note
position ¢, denoted byp M q, if M is a valid description of that the realization of the existence of a side-channel due t
the characters appefmng at positigngo ¢ — 1, inclusively. the multiplicity of longest matches predates the introaurct
More specgﬁcally,p —>p+1 if the character at positiop is of bit recycling. The side-channel has been used in various
c andp =’ p+1[if the characters appearing at positioms applications such as steganography (information hidiag},
to p + 1 — 1, inclusively, are identical to those appearlng ahentication, and error correction [1], [2], [9], [10], [L]13].
positionsp —d to p — d + [— 1, inclusively. Clearly, ifp X q, Second, the particularity of bit recycling is that it tries t
we have thatp + L(M) = ¢. A parseof F consists in a transmit as many bits as possible through the side-channel
sequence of messagek/,, ..., M,_1, and in a sequenceinstead of the main channel. By doing so, it reduces the size
of Jefosmons ,D0s -+, Dn, SUCh thatpy = 0, p, = |F|, and of the compressed files. “As many bits as possible” means “as
pi — pit1, for 0 < i < n — 1. Most of the time, we omit many as the side-channel can carry”.
the positions when we present parses. Note that it also makeBit recycling is performed using eecycling code say r.
sense to talk about a parse of a sequence of characters otlieenC has to select one of many options aRds aware of
thanF, for instance, a prefix df. Finally, we will need to refer these optionsy is used to assign eecycled bit sequenc®
to the set of messages leapingm a positionp and the set of the options. Let us say that the options presente@ &oe the
those leapingo a positiong. We denote these sets fpyp) and messaged/,, ..., M,,. Option M, if selectable, is associated
1(q), respectively, and they can be defined formally as followsy the recycled b|t sequeneél;). If C selectsM;, thenD is

i(p)={M | 3q.p M q} andii(q) = {M | Ip. p M q}. Note able to detect that/; € { My, ..., M, } was selected b¢, and
that M € fi(p) if and only if M € u(p + L(M)). recovers the recycled bit sequem{eMi). We say that(M;)
has been transmitted through the side-channel. Perforhiing
recycling means thaD addsr(M;) to its input bit strean.

Bit recycling aims at reducing the negative impact of thBecause of thai? cannot selecfi/; on a whim, but rather in
multiplicity of encodings present in a compression techeiq such a way that the addition ofM;) to o allows D to prop-
Instead of trying to eliminate or reduce the multiplicitgetf, erly decode the rest df. Note that the entropy of the bits in
bit recycling exploits it and extracts @mpensatiofrom it. s virtually 1 sinces contains compressed data. Consequently,
the selection of\; by C is essentially a random process.

Ill. PARSES

IV. BIT RECYCLING AND PRINCIPLES

Example 1: Parse 1a: [a] [b] [c] [1] (3,4) [2] (3,4) . . .
Fex: abclabc2abe Parse 1b: [a] [b] [c] [1] (3,4) [2] (3,8) Using r is only part of the story. The rest of the story is
Parse 1c: [a] [b] [c] [1] (3,4) [2] [a] [b] [c] how to build anr and how to build it so that it improves
Eg:zg ﬂf E E E m {Z{ E E E g‘;? compression as much as possible. The construction of an
Parse 1. [a] [b] [c] [1] [a] [b] [c] [2] [a] [b] [c] effectiver has to consider theost of the options. The cost
Example 2: Parse 2a: [a] [b] [c] [t] [b] [c] [d] [2] (3,8) [d] of an option is measured in bits. We collect a set of options
Fi% abetbedzabed - Parse 2 E E E m m E E % E [%’ ‘Ei] @ M ... M, presented t& along with their associated costs

in a cost function that we denote byX. K(M;) is the cost,
Fig. 1. Examples of original files and the corresponding ggars in bits, of selectingM;. K has to be defined on all options

C: D:

. while description incompletelo

and only on the options, i.®om(K) = {M,..., M,}.

: . . 1. while description incompletelo 1

A valid recycling coder for K must obey two conditions. 2 et 77 — longest matches 2. let M, — receive();

First, » has to be defined on at least one option, fleZ 3. let M, = ND-select in17; 3. interpret M,;
s 4. emit(C(My)); 4. let M = equiv. class ofM;

Dom(r) C Dom(K). Secpnd;r has to be a prefix-free code. & forall M 2 i do c torall MeTrdo
We say that an optiont/; is deemedvorthyif M; € Dom(r). 6 et x(M1) = |C(M)); 6. let K(M)=|C(M);
Not all worthy options need be assigned the same number of if R(k)(31;) definedthen 7.)
recycled bits, i.e|r(M;)| # [r(M;)| is allowed. Note that J elggcg’&')er(tﬁ(fﬁ(*m)); 3. recyalR(K)(M,):
there is much freedom in the choice «af where where

Then we use the optimal recycling code constructor [6]30. procedure emit(w): 10. procedure /receive{>: /
called R, to build r from K. The desired- is R(K). R(K) 1+ v =corp=cthen 0 M s OM) o=
is a valid recycling code for because it is defined 8ome 13 eiseifw — b-w/ andp = by 13 retum M;
options and because it is a prefix-free cod®.K) is also 14 /< where b € {0,1} */ then 14,
optimal for K in the sense presented below. e (Zyj)_ =

Let » be a valid (but not necessarily optimal) recycling;7. eise abort 17
code forK. Let us suppose that/; is an option inDom(r). 18 procedure recyclgw): 18. procedure recyclew):
We define theraw cost of M; to be K(M;). We define 1% r:=w-» 19 o=w-0

the compensatiorfor A/; to be the number of recycled bits, Fig. 3. Implementation of a longest-match bit recyclinghtgique.

|r(M;)|, assumingM; is selected. Thenet costof M, is

K(M;) — |r(M;)|. Due to the random nature of the bitdn line 2, we see thaC considers all longest matches to be

that need to be recycledy/; has probability 2-1"(*)l of options, not just the closest one. In lif@and4, it selects one

being selected. So, thexpected cosbf recycling usingr of them, M, and sends it. In lineg to 4, D is able to receive

is the expected net cost of the options om(r), i.e. M, and to recover all the options. In linésand 6, both C

> M eDom(ry (K (Mi) = [r(M;)]) /2"l We say thatr is and D define the cost function for the options. Note the use

optimal if the expected cost of recycling usingis minimal of R, in line 8, which constructs an optimal recycling code

among all valid recycling codes fdx'. from K. The rest of the pseudo-code allo®sto recycle the
Due to lack of space, our explanations on the principlést sequences transmitted implicitly through the sidercte

of bit recycling are rather terse. We refer the reader to oand it allowsC to make the appropriate selections in order

previous papers [5], [6] for more detailed explanationsiglo to have D recycle the “right” bit sequences. The use of

with examples. There are indications on how to build amon-determinism inC (ND-selecton line 3), along with an

optimal recycling code but in an inefficient way [6]. Stilt, i auxiliary bit streamp, is pretty involved but, due to lack of

is possible to build an optimal recycling code for a sethof space, we refer the reader to previous papers [5], [6]. Non-

options inO(n) time. We plan to write a paper describing theleterminism is used only in order to make the presentation of

technigue soon (i.e. in 2008). bit recycling easier but it is not strictly needed. A coneret

implementation may use another, more “realistic” tool.
V. BIT RECYCLING BASED ON LONGEST MATCHES

The bit recycling presented in previous work exploits only ~ VI- BIT RECYCLING BASED ON ALL MATCHES

a restricted form of multiplicity of encodings: that caud®d A. Longest-match parses versus all-match parses

equivalentmessages. In the case of LZ77 compression, thes ot s illustrate how all-match parsing can account for
equivalent messages are the multiple longest matchesibleil oycodings that longest-match parsing cannot. Consider the
to C at some steps. In our example,* may be described parses ofFs* in Example 2. Recall that longest-match bit
by either Parse 1a or Parse 1b(ifis forced to use longest recycling can only consider Parse 2a. Considered globally,
matches only but has the liberty to choose arbitrarily amoRgy e 2 seems to be “as longest-match oriented as” Parse 2a.
them. The beginnings of both parses are identical but, at th%wever, at position 8 (where the last™is located), longest-

last step, either one aB, 4) and.<3,8> could be seliected bY match parsing is forced to choog 8) instead offa).

C, provided both would be considered worthy. A bit would be No, |et us illustrate the challenges that an all-match bit

recycled byD in_ the process. Since _both messages descripg:ycnng technique faces. Suppose that, during the cosnpre
“abc”, we consider them to be equivalent. Note that a bifion of Fsx, the “right” decisions force to select Parse 2b.
recycling LZ77 technique based on the longest matchestsele@ea”y, for the first 8 messageg, does not have any choice
a parse that goes through easily predictable positions, 894 no bit recycling happerisEor the next messag€, has
matter what particular matches are selected. Note also that.hoice between(3,8) and [a]. This choice looks like an
in our examplef5* can only be parsed according to Parse 2g,,6rtunity for recycling. Note however that these message
becausp longest matches are selected eagerly. _ are not equivalent. According to our hypothesi€, selects

In Figure 3, we present the pseudo-code for a bit recl; and sends it tdD. When D receives]al, it learns about
cling implementation of LZ77 that exploits the multipligit «_» put it cannotdetect thatC had two options. Fortunately,
of longest matches. Since this work has already been pre-

sented [4], [5], [6], [14], we only mention the key features. 3Technically, bit recycling does happen but only with empitysequences.

it does not mean that the opportunity for recycling is Iost.1 pi= 0 C: 1p—=o D:
The opportunity is only postponed. Wh&hreceives the next 2. while description incompletelo 2. while description incompletelo
message(3,5), it learns aboutBcd” and it is able to detect 3. let M, = ND-select inji(p); 3. let M, = receive();
that these 3 characters could have been described in eitter ij(gffﬁ)&[‘)_ P
Parse 2b’s or Parse 2c's way. Consequently, a bit would b for ail a7 ¢ a(p) do 6. forall M e ji(p) do
recycled in the process, provided both descriptions woeld b7. let K(M) = cos{(M); 7 let K (M) = cos{(d);
8
9

deemed worthy. But that is not the whole storyRslso has & T £(K)(M,) definedthen

recycle(R(K)(Ms)); recycle(R(K)(Ms));

the capacity to detect thaabc” could have been described in10, else abort 10,
either Parse 2a’s or Parse 2c’s way, and thaic4”, globally, \ﬂwre § an \ﬂwre J o
. : . procedure costM): . procedure costM):
could have been described in any Parsts 2vay. 12 retum Elp— LM + [C(M); 12 retum Ep—L(M)] + [C(M));
The apparent “delay” observed iP's capacity to detect 13 procedure emit(w): ... 13. procedure receive): . ..
recycling opportunities is a consequence of the principles 21 procedure recyclew): ... 21. procedure recyclgw): ...
bit recycling: it is not sufficient foC to have optionsD must Fig. 4. Implementation of an all-match bit recycling tejre.

also have the capacity fbetectthese options.

construction ofS, consists in the following steps: each group
. .)) .. . is taken as an option, each option is attributed a cost (using
After our illustration of all-match bit recycling, it might ; functionk), and thens, is the recycling coder(K)

:) , » .
seem unclear how and when bits could effectively by recycleghq e remains to determine the cost of an option. Let us take
Moreover, a technique that would try to manage the whole S:?broup ofS, labeled byM € 7i(p), whereg M ». The cost of
of possiblg parses is .cond.emned to be_z too slow, as the numpgpg option f)s the cost of a parse Bf; pIus|C(M.)|. However,
of parses is simply gigantic for most files. To make the proly parse oP, is produced byS,, which is itself a recycling
lem tractable, we take an approach where parses are “fattorg, qe not a plain sequence of bits. It means that we do not have
together. The approach is baseddymamic programming 5 gefinitive cost for the parse produceddy Moreover, since

First, we consider the set of pos§|ble parsespiefixesof o 45 not know ahead of time which S1,’s options will be
F. Let P, denote thep-character prefix oF. Note thatP; = ¢ selected, we can only hope to obtainetpected cosor S,.

andP g = F. Note also that, if two parses ?&; na}mely ParS€ The expected cost for each summary is computed inductively
MoM; ... My—1 My and parseVyM; ... M;_, My, have the 5 siored in an array. For each positiorp, &lp] is the

same last message (i.&l), = M), then the shortened parseg,y yecteq cost of,. In fact, we compute onlestimatesof

/ / !/
Mo M, . 'MMkfl and MoMj ... M;_, are both parses &g, e expected costs with a precision up to the quarter of a bit.

whereq = p.) We have that[0] = 0 becauseS, represents a single, empty
Second, note that the sets of possible parseBdfoP, ..., parse. Fop > 0, we have that:

P|r| can be obtained by induction. L&}, be the set of possible

B. Grouping the prefixes of the parses together

parses folP,,. Then we have tha, = { P,}, whereP, isthe E[p] = > (K(M) — |R(K)(M)]) / 2!BEQD]
empty sequence of messages, andpfor 0, we have that: MeDom(R(K))
S, ={PM|q M pandP e S;}. where the cost functior is defined in linesé and 7 of
Figure 4.

Third, because thé&,’s are too huge, instead of working
with them, we define the notion simmaryof S,, calledsS,. C. The algorithms
A summarys, is a mathematical entity that acts &ss repre- Figure 4 presents the pseudo-code fbrand D in an
sentativelt has the capacity to produce a parsefgr usually implementation of an all-match recycling technique. Nt t
by selecting one among many possibilities, and to assoaiatéhe current positionp, is now updated explicitly. There is a
recycled bit sequence to the particular choice that it makeshew functioncost that helps in computing the costs of the

Fourth, S,’s construction starts by partitioning, into options. Note howC selects)M, from the current position
groups A group contains the parses that have a particulaghere A/, leaps from) but recycles from the new position
messagé\! € i(p) as theirlast message. We calll thelabel (where), leaps to). This is becaug® does not have access
of the group. Clearly, there is a one-to-one correspondengeany other information than that contained i, and its
betweerji(p) (i.e. the labels) and the set of groups taken frofredecessors. The interpretation operation performedby
Sp. Note also that any parse in the group labeledMfyhas includes the computation af’s entries on the fly, as soon
the form PM, where P € S, for positiong such thaty — p, as additional characters become knowrfto
which means thaf is represented by,.

Fifth, summaryS, happens to be a recycling code that maps VII. EXPERIMENTS
options to recycled bit sequences. Here, the options are th&Ve evaluated the performance of the all-match recycling
groups. When a given parse gets selected, the bit sequeeohnique by modifying the implementation of the Deflate
associated to its group gets recycled. More precisely, agpacompression method [3] that is part of the popular compoessi
may get selected provided that the group to which it belongzol gzi p [7]. We kept Deflate’s particular choices for the
(the option which it is part of) is deemed worthy. The wholsize of the sliding window and for the bounds on the lengths

and distances. We slightly modified Deflate’s algorithm fagpart of i(p) for all [andd allowed by Deflate.
the construction of codes to ensure that every length andn terms of speed, our prototype of all-match bit recycliag i
distance can be encoded. Deflate’s normal behavior is tgrassiery slow. The time it takes to process the benchmarks istabou
a bit sequence only to the lengths and distances that it haswo orders of magnitude longer than that takengay p. On
encode. Because of bit recycling, other lengths and distanthe other hand, the prototype of longest-match recycling is
might get chosen and so they must be made encodable as vllabove an order of magnitude slower thgni p. We did

We compared three compression techniques: p set to not put much effort to obtain fast prototypes. Note thatngoi
maximal compression; a longest-matdhMl) bit recycling from gzi p to the longest-match recycling prototype and then
technique; and the all-matciA{M) bit recycling technique to the all-match one, more and more of the code that is run is
presented in this paper. Note that the resultsLfdl are not code that has been rewritten by us. This factor contributes t
exactly the same as those we presented in the 2006 paper ffijke the prototypes slower.
The implementation used to obtain the results presentduhin t
paper does not use optimal recycling, while the one used here
does. The benchmarks used in our experiments are the file¥Ve have presented, implemented, and tested a bit recycling
contained in the Calgary corpus [12]. technique for LZ77 compression that exploits all matchés T

Figure 5 presents the results. The measurements are in byf@asured 9.2% reduction in the size of the compressed files
We can see that recycling over all the matches improves thgans that, when compressing some original file uginigp,
compression efficiency significantly more than recyclingrov about 1 bit out of 11. is produced only to indicate which partl_-
the longest matches only. It is particularly remarkable,tia cular compressed file has been selected among all possible
the case of the files for which longest-match recycling dags ncompregsed fI.|eS. Each .of theseT eleventh bits encodes siseles
bring much improvement, all-match recycling is able to abtainformation. Since our bit recycling technique cannot gnet
a significant advantage. Also, note that the improvemertt tHg recover all the bits wasted by the multiplicity of encagsn
all-match recycling achieves comes from the fact that dved it means that, in fact, even more bits are useless. Thistresul
itself to consider parses that are, in principle, more gasen Clearly indicates that, with LZ77 compression, the redumoga
those considered by longest-match recycling. It constitone Solely caused by the multiplicity of encodings can be quite
additional evidence supporting our belief that recyclingrke high. It is so, even when using a high performance compressor
better when more options are offered to it, even if many §ke 9Zi p.
most of the new options are more costly. REFERENCES

Taken all toggther, the benchmarks arg 2.9% smaller Whﬁ]ﬁ M. J. Atallah and S. Lonardi. Authentication of LZ-77 cpressed data.
compressed using longest-match recycling than when com- |, proc. of the ACM SACpages 282—287, Melbourne, Florida, USA,
pressed usingzi p. Using all-match recycling, they are 9.2% March 2003.
smaller than usingzi p (excludingpi c, this time). _ % A gtre?J\{vsr::.hgZI'\l’erq-usetste?O’rlt?c?ni.rnents: 1051, 1996.

Our prototype was not able to process the ﬁiec This http://ww. ietf.org/rfc/rfcl051.txt.
file is a binary image. A large part at the end of this file is[4] D. Dubé and V. Beaudoin. Recycling bits in LZ77-basednpoession.
filled with the NUL character. Whei€ parses this part, it has I proe. :IniE\Ig Sousse, T#Bﬂ?ﬁn?i@fﬁgg compressising bit
to consider more and more options as the sliding window fillS recycling. InProc. of ISITA Seoul, South Korea, October 2006.
up with NUL characters. Eventuallgverymatch that can be [6] D. Dubé and V. Beaudoin. Bit recycling with prefix codds. Proc. of

: : : DCC, page 379, Snowbird, Utah, USA, March 2007. Poster.
expressed by the Deflate method is a valid matCh'<J’el'> IS [7] J.L. Galilly and M. Adler. The GZIP compresset.t p: / / www. gzi p. or g.

[8] D. A. Huffman. A method for the construction of minimuregundancy

VIIl. CONCLUSION

[Name || Orig. [Gzip | LM | AM | codes. InProc. of the Institute of Radio Engineergolume 40, pages
bi b 111 261| 34 900| 33829| 31757 1098-1101, September 1952.
book1 768 771| 312 281| 301 538| 279 435 [9] S. Lonardi and W. Szpankowski. Joint source-channel7ZZtoding.
book?2 610 856| 206 158| 199 906| 185 321 In Proc. of DCG pages 273-282, Snowbird, Utah, USA, March 2003.
geo 102 400| 68 414| 66 133| 63 341 [10] S. Lonardi, W. Szpankowski, and M. Ward. Error resitie@'77 scheme
news 377 109! 144 400| 140 142| 132 679 and its analysis. IfProc. of ISIT, page 56, Chicago, lllinois, USA, 2004.
obj 1 21504| 10320| 10304| 10043 [11] S. Lonardi, W. Szpankowski, and M. Ward. Error resili&Z’'77 data
obj 2 246 814| 81087 79 068| 75 360 compression: Algorithms, analysis, and experimenSEE Trans. on

Information Theory53(5):1799-1813, 2007.
[12] I. Witten, T. Bell, and J. Cleary. The Calgary corpus819ftp://—

ftp.cpsc.ucal gary. cal/ pub/ proj ects/text. conpression. corpus.

paper 1 53 161| 18543| 18 129| 16 938
paper 2 82 199| 29667| 28892 26720

paper3 || 46526 18074 17675 16422 [13] Y. Wu, S. Lonardi, and W. Szpankowski. Error-resilienfW data
paper4 | 13286 5534/ 5440 5156 compression. IProc. of DCG pages 193-202, Snowbird, Utah, USA,
paper 5 11954 4995 4 916 4 688 March 2006.

paper6 || 38105 13213 13031| 12225 [14] H. Yokoo. Lossless data compression and lossless dakedding. In
pic 513216| 52381 51440 N/A Proc. of the Asia-Europe Workshop on Concepts in InformaTibeory
progc 39611 13261 13069| 12212 Jeju, South Korea, October 2006.

progl 71646| 16 164| 15704| 14509 [15] J. Ziv and A. Lempel. A universal algorithm for sequahtidata
progp 49 379| 11186| 10911| 10 186 compressionlEEE Trans. on Information Theor23(3):337-342, 1977.

trans 93 695| 18 862| 18 420| 17 477

Fig. 5. Experimental results.

