
Improving LZ77 Bit Recycling using All Matches
Danny Dubé

Université Laval, Canada
Email: Danny.Dube@ift.ulaval.ca

Vincent Beaudoin
Université Laval, Canada

Email: Vincent.Beaudoin.1@ulaval.ca

Abstract— There exist lossless compression techniques, such
as LZ77, that have the particularity that some original file may
be compressed in more than one way, e.g. by choosing other
matches than the closest longest ones only. The existence of
multiple encodings per original file causes redundancy, i.e. it
tends to make compressed files longer than necessary, on average.
Recently, a technique called bit recycling was introduced to help
reduce the redundancy caused by the multiplicity of encodings. It
has been used to improve LZ77 compression. It exploits the fact
that there often exists more than one longest match and it is called
longest-match bit recycling. This work presents a more general,
and more powerful, bit recycling technique that exploits shorter
matches also. We call the technique all-match bit recycling. Our
experiments demonstrate that at least 1 bit out of 11 resultsfrom
the multiplicity of encodings, in LZ77 compression.

I. I NTRODUCTION

When one thinks about general, lossless compression, one
often thinks about a compressor,CC, and a decompressor,DD,
that are functions from files to files (or sequences of characters
to sequences of characters) such that, for any fileF, DD(CC(F))
is F. However, the specification of a lossless compression tech-
nique often comes in two pieces: 1. what avalid compressed
file is; 2. what original fileDD shouldrecoverfrom a valid com-
pressed file. Note that such a specification does not describeCC
precisely. There may exist some original fileF for which there
are many corresponding compressed files, i.e.G1, . . . , Gn such
that DD(G1) = . . . = DD(Gn) = F. CC is free to mapF to any
Gi. Normally, we expectCC to select aGs that is among the
shortest. Still, no matterCC’s choice, it remains that everyGi is
valid and contributes to fill up the space of compressed files
too quickly. So a compression technique that allows multiple
encodings for most of the original files suffers from what we
call redundancy from the multiplicity of encodings.

In this paper, we take LZ77 as an instance of a compression
technique that is particularly prone to associate multiplecom-
pressed files to original files. We start by describing LZ77
schematically. Then, we come back to a technique, called
bit recycling, that aims at reducing the negative effects of
the multiplicity of encodings. The bit recycling techniques
presented earlier all exploit the existence of multiple longest
matches. We present a new bit recycling technique that is
more general and powerful and that exploits the existence
of all matches, longest or not. Finally, experiments that we
performed are described and commented.

II. BASICS OFLZ77

Let us denote the original file byF. LZ77 [15] is a lossless
data compression technique that works by communicating a

sequential description ofF. By “sequential”, we mean two
things: 1. the description is asequenceof messages; and 2.
F is described byCC from the start to the end. Each message
describes the next single, or few, characters ofF.

A message is of one of two kinds. It may be aliteral,
denoted by[c], which explicitly indicates that the next char-
acter isc. Otherwise, it is amatch, denoted by〈l, d〉, which
indirectly indicates that the nextl characters are a copy of
the l characters that appeard characters before inF. A
message of either kind is denoted byM . Typically, most of
the compression achieved by the technique comes from the
use of matches, as many characters may be described at once
by a single message.

We define the functionL that gives thelengthof a message.
L is defined this way:L([c]) = 1 andL(〈l, d〉) = l. Our pre-
sentation of LZ77 compression makes use of anencoding func-
tion, or code, C for messages.1 CC usesC to translate messages
into sequences of bits andDD usesC to translate sequences
of bits back into messages.C has to be a prefix-free code.
Typically,C is chosen so that the expected cost of the encoding
of a message is minimized. For instance,C may be built using
Huffman’s algorithm [8]. Thecost of a messageM , when
encoded byC, is the number of resulting bits, i.e.|C(M)|.2

We introduce a sketch of the implementation of the con-
ventional LZ77 technique. Figure 2 presents pseudo-code for
both CC andDD. The code is extremely simplified and most of
the details are omitted. At each step,CC searches for a longest
match (according toL). When no match is found, or when
no sufficiently long one is found, a literal is used instead.
When there exist many longest matches, theclosestone is
selected, i.e. the one with the smallestd. Note that a longest
match is searched for in the hope of describingF with as few
messages as possible. Also, the systematic selection of the
closestlongest match has a tendency to make short distances
more probable and helps to construct aC that makes the
expected cost of messages lower. For the sake of simplicity,
we suppose thatC remains constant during the compression
of F. Finally, the pseudo-code forCC explicitly manipulates the
output bit stream (or sequence)σ. The contents ofσ after the
last iteration can be seen as the compressed file.

In the pseudo-code forDD, the reverse operations are per-
formed. Bit streamσ is assumed to be initialized to the
compressed file. The “interpretation” consists in identifying

1The codeC must not be confused with the compressorCC. C is used to
encode individual messages only, whileCC is used to process whole files.

2Note that the length of a message has no direct relation to itscost.

the single or few characters that are described byMs and in
storing them in a buffer that accumulates the recovered parts
of F. The interpretation may also include a variety of other
operations.

Among the details that are omitted, there are the input ofF

by CC and the output ofF by DD, the method used byCC to look
up for matches, the wayCC andDD convene on the choice ofC,
the handling of the end ofF and that of the compressed file,
and the conventions about the minimal and maximal lengths
and distances. In our examples, we will consider that matches
have to be at least 3 characters long.

Figure 1 presents two short examples. In each one, a
different original fileF

ex
i is considered. Along with eachFex

i ,
we give all possible sequences of messages that describeFex

i ,
which we callparses. Note that the implementation of LZ77
presented in Figure 2 has no choice but to produce (and
consume) Parses 1a and 2a.

III. PARSES

In our study of all-match recycling, we need to be precise
about the positions inF thatCC andDD visit and where matches
and literals may be used. Let us define a few functions and
relations. We say that a messageM leapsfrom positionp to
position q, denoted byp

M
→ q, if M is a valid description of

the characters appearing at positionsp to q − 1, inclusively.
More specifically,p

[c]
→ p + 1 if the character at positionp is

c and p
〈l,d〉
→ p + l if the characters appearing at positionsp

to p + l − 1, inclusively, are identical to those appearing at
positionsp− d to p− d+ l− 1, inclusively. Clearly, ifp

M
→ q,

we have thatp + L(M) = q. A parse of F consists in a
sequence of messages,M0, . . . , Mn−1, and in a sequence
of positions,p0, . . . , pn, such thatp0 = 0, pn = |F|, and
pi

Mi→ pi+1, for 0 ≤ i ≤ n − 1. Most of the time, we omit
the positions when we present parses. Note that it also makes
sense to talk about a parse of a sequence of characters other
thanF, for instance, a prefix ofF. Finally, we will need to refer
to the set of messages leapingfrom a positionp and the set of
those leapingto a positionq. We denote these sets by~µ(p) and
~µ(q), respectively, and they can be defined formally as follows:

~µ(p) = {M | ∃q. p
M
→ q} and ~µ(q) = {M | ∃p. p

M
→ q}. Note

that M ∈ ~µ(p) if and only if M ∈ ~µ(p + L(M)).

IV. B IT RECYCLING AND PRINCIPLES

Bit recycling aims at reducing the negative impact of the
multiplicity of encodings present in a compression technique.
Instead of trying to eliminate or reduce the multiplicity itself,
bit recycling exploits it and extracts acompensationfrom it.

Example 1: Parse 1a: [a] [b] [c] [1] 〈3, 4〉 [2] 〈3, 4〉
Fex

1 : abc1abc2abc Parse 1b: [a] [b] [c] [1] 〈3, 4〉 [2] 〈3, 8〉
Parse 1c: [a] [b] [c] [1] 〈3, 4〉 [2] [a] [b] [c]
Parse 1d: [a] [b] [c] [1] [a] [b] [c] [2] 〈3, 4〉
Parse 1e: [a] [b] [c] [1] [a] [b] [c] [2] 〈3, 8〉
Parse 1f: [a] [b] [c] [1] [a] [b] [c] [2] [a] [b] [c]

Example 2: Parse 2a: [a] [b] [c] [1] [b] [c] [d] [2] 〈3, 8〉 [d]
F

ex
2 : abc1bcd2abcd Parse 2b: [a] [b] [c] [1] [b] [c] [d] [2] [a] 〈3, 5〉

Parse 2c: [a] [b] [c] [1] [b] [c] [d] [2] [a] [b] [c] [d]

Fig. 1. Examples of original files and the corresponding parses.

CC:
1. while description incompletedo
2. let Ms = clos. long. match;
3. emit(C(Ms));
where
4. procedure emit(w):
5. σ := σ · w;
6.
7.

DD:
1. while description incompletedo
2. let Ms = receive();
3. interpret Ms;
where
4. procedure receive():
5. let M , σ′ s.t. C(M) · σ′ = σ;
6. σ := σ′;
7. return M ;

Fig. 2. Conventional implementation of LZ77.

First, bit recycling exploits the capacity to establish implicit
communication betweenCC andDD. Implicit communication is
possible due to the multiplicity of encodings and may happen
when, at some point in the compression process, we have that:
1. CC has more than one option; and 2.DD is able to recognize
that situation. When both conditions are met,CC may choose
a particular option with the intent to mean something toDD,
as if it were making an eye wink toDD. The possibility of
CC to transmit information toDD through its choices can be
seen as aside-channelof communication. The side-channel
does not have an arbitrary capacity like the main channel,
which is the compressed file. Roughly speaking, the capacity
of the side-channel depends on how often both conditions are
met and on how many options are available each time. Note
that the realization of the existence of a side-channel due to
the multiplicity of longest matches predates the introduction
of bit recycling. The side-channel has been used in various
applications such as steganography (information hiding),au-
thentication, and error correction [1], [2], [9], [10], [11], [13].

Second, the particularity of bit recycling is that it tries to
transmit as many bits as possible through the side-channel
instead of the main channel. By doing so, it reduces the size
of the compressed files. “As many bits as possible” means “as
many as the side-channel can carry”.

Bit recycling is performed using arecycling code, say r.
WhenCC has to select one of many options andDD is aware of
these options,r is used to assign arecycled bit sequenceto
the options. Let us say that the options presented toCC are the
messagesM1, . . . , Mn. OptionMi, if selectable, is associated
to the recycled bit sequencer(Mi). If CC selectsMi, thenDD is
able to detect thatMi ∈ {M1, . . . , Mn} was selected byCC, and
recovers the recycled bit sequencer(Mi). We say thatr(Mi)
has been transmitted through the side-channel. Performingbit
recycling means thatDD addsr(Mi) to its input bit streamσ.
Because of that,CC cannot selectMi on a whim, but rather in
such a way that the addition ofr(Mi) to σ allowsDD to prop-
erly decode the rest ofF. Note that the entropy of the bits inσ
is virtually 1 sinceσ contains compressed data. Consequently,
the selection ofMi by CC is essentially a random process.

Using r is only part of the story. The rest of the story is
how to build an r and how to build it so that it improves
compression as much as possible. The construction of an
effective r has to consider thecost of the options. The cost
of an option is measured in bits. We collect a set of options
M1, . . . , Mn presented toCC along with their associated costs
in a cost function, that we denote byK. K(Mi) is the cost,
in bits, of selectingMi. K has to be defined on all options

and only on the options, i.e.Dom(K) = {M1, . . . , Mn}.
A valid recycling coder for K must obey two conditions.

First, r has to be defined on at least one option, i.e.∅ 6=
Dom(r) ⊆ Dom(K). Second,r has to be a prefix-free code.
We say that an optionMi is deemedworthy if Mi ∈ Dom(r).
Not all worthy options need be assigned the same number of
recycled bits, i.e.|r(Mi)| 6= |r(Mj)| is allowed. Note that
there is much freedom in the choice ofr.

Then we use the optimal recycling code constructor [6],
called R, to build r from K. The desiredr is R(K). R(K)
is a valid recycling code forK because it is defined onsome
options and because it is a prefix-free code.R(K) is also
optimal for K in the sense presented below.

Let r be a valid (but not necessarily optimal) recycling
code forK. Let us suppose thatMi is an option inDom(r).
We define theraw cost of Mi to be K(Mi). We define
the compensationfor Mi to be the number of recycled bits,
|r(Mi)|, assumingMi is selected. Thenet cost of Mi is
K(Mi) − |r(Mi)|. Due to the random nature of the bits
that need to be recycled,Mi has probability 2−|r(Mi)| of
being selected. So, theexpected costof recycling usingr
is the expected net cost of the options inDom(r), i.e.
∑

Mi∈Dom(r)(K(Mi) − |r(Mi)|)/2|r(Mi)|. We say thatr is
optimal if the expected cost of recycling usingr is minimal
among all valid recycling codes forK.

Due to lack of space, our explanations on the principles
of bit recycling are rather terse. We refer the reader to our
previous papers [5], [6] for more detailed explanations along
with examples. There are indications on how to build an
optimal recycling code but in an inefficient way [6]. Still, it
is possible to build an optimal recycling code for a set ofn
options inO(n) time. We plan to write a paper describing the
technique soon (i.e. in 2008).

V. B IT RECYCLING BASED ON LONGEST MATCHES

The bit recycling presented in previous work exploits only
a restricted form of multiplicity of encodings: that causedby
equivalentmessages. In the case of LZ77 compression, these
equivalent messages are the multiple longest matches available
to CC at some steps. In our example,Fex

1 may be described
by either Parse 1a or Parse 1b, ifCC is forced to use longest
matches only but has the liberty to choose arbitrarily among
them. The beginnings of both parses are identical but, at the
last step, either one of〈3, 4〉 and 〈3, 8〉 could be selected by
CC, provided both would be considered worthy. A bit would be
recycled byDD in the process. Since both messages describe
“abc”, we consider them to be equivalent. Note that a bit
recycling LZ77 technique based on the longest matches selects
a parse that goes through easily predictable positions, no
matter what particular matches are selected. Note also that,
in our example,Fex

2 can only be parsed according to Parse 2a,
because longest matches are selected eagerly.

In Figure 3, we present the pseudo-code for a bit recy-
cling implementation of LZ77 that exploits the multiplicity
of longest matches. Since this work has already been pre-
sented [4], [5], [6], [14], we only mention the key features.

CC:
1. while description incompletedo
2. let M = longest matches;
3. let Ms = ND-select inM ;
4. emit(C(Ms));
5. for all M ∈ M do
6. let K(M) = |C(M)|;
7. if R(K)(Ms) definedthen
8. recycle(R(K)(Ms));
9. else abort;

where
10. procedure emit(w):
11. if w = ǫ or ρ = ǫ then
12. σ := σ · w;
13. else if w = b · w′ and ρ = b · ρ′

14. /* where b ∈ {0, 1} */ then
15. ρ := ρ′;
16. emit(w′);
17. else abort;
18. procedure recycle(w):
19. ρ := w · ρ;

DD:
1. while description incompletedo
2. let Ms = receive();
3. interpret Ms;
4. let M = equiv. class ofMs;
5. for all M ∈ M do
6. let K(M) = |C(M)|;
7.
8. recycle(R(K)(Ms));
9.

where
10. procedure receive():
11. let M , σ′ s.t. C(M) · σ′ = σ;
12. σ := σ′;
13. return M ;
14.
15.
16.
17.
18. procedure recycle(w):
19. σ := w · σ;

Fig. 3. Implementation of a longest-match bit recycling technique.

In line 2, we see thatCC considers all longest matches to be
options, not just the closest one. In lines3 and4, it selects one
of them,Ms, and sends it. In lines2 to 4, DD is able to receive
Ms and to recover all the options. In lines5 and 6, both CC
andDD define the cost function for the options. Note the use
of R, in line 8, which constructs an optimal recycling code
from K. The rest of the pseudo-code allowsDD to recycle the
bit sequences transmitted implicitly through the side-channel
and it allowsCC to make the appropriate selections in order
to have DD recycle the “right” bit sequences. The use of
non-determinism inCC (ND-select on line 3), along with an
auxiliary bit streamρ, is pretty involved but, due to lack of
space, we refer the reader to previous papers [5], [6]. Non-
determinism is used only in order to make the presentation of
bit recycling easier but it is not strictly needed. A concrete
implementation may use another, more “realistic” tool.

VI. B IT RECYCLING BASED ON ALL MATCHES

A. Longest-match parses versus all-match parses

Let us illustrate how all-match parsing can account for
encodings that longest-match parsing cannot. Consider the
parses ofFex

2 in Example 2. Recall that longest-match bit
recycling can only consider Parse 2a. Considered globally,
Parse 2b seems to be “as longest-match oriented as” Parse 2a.
However, at position 8 (where the last “a” is located), longest-
match parsing is forced to choose〈3, 8〉 instead of[a].

Now, let us illustrate the challenges that an all-match bit
recycling technique faces. Suppose that, during the compres-
sion of Fex

2 , the “right” decisions forceCC to select Parse 2b.
Clearly, for the first 8 messages,CC does not have any choice
and no bit recycling happens.3 For the next message,CC has
a choice between〈3, 8〉 and [a]. This choice looks like an
opportunity for recycling. Note however that these messages
are not equivalent. According to our hypothesis,CC selects
[a] and sends it toDD. WhenDD receives[a], it learns about
“a” but it cannotdetect thatCC had two options. Fortunately,

3Technically, bit recycling does happen but only with empty bit sequences.

it does not mean that the opportunity for recycling is lost.
The opportunity is only postponed. WhenDD receives the next
message,〈3, 5〉, it learns about “bcd” and it is able to detect
that these 3 characters could have been described in either
Parse 2b’s or Parse 2c’s way. Consequently, a bit would be
recycled in the process, provided both descriptions would be
deemed worthy. But that is not the whole story, asDD also has
the capacity to detect that “abc” could have been described in
either Parse 2a’s or Parse 2c’s way, and that “abcd”, globally,
could have been described in any Parse 2x’s way.

The apparent “delay” observed inDD’s capacity to detect
recycling opportunities is a consequence of the principlesof
bit recycling: it is not sufficient forCC to have options,DD must
also have the capacity todetectthese options.

B. Grouping the prefixes of the parses together

After our illustration of all-match bit recycling, it might
seem unclear how and when bits could effectively by recycled.
Moreover, a technique that would try to manage the whole set
of possible parses is condemned to be too slow, as the number
of parses is simply gigantic for most files. To make the prob-
lem tractable, we take an approach where parses are “factored”
together. The approach is based ondynamic programming.

First, we consider the set of possible parses forprefixesof
F. Let Pp denote thep-character prefix ofF. Note thatP0 = ǫ
andP|F| = F. Note also that, if two parses ofPp, namely parse
M0M1 . . . Mk−1Mk and parseM ′

0M
′
1 . . .M ′

k−1M
′
k, have the

same last message (i.e.Mk = M ′
k), then the shortened parses

M0M1 . . . Mk−1 andM ′
0M

′
1 . . . M ′

k−1 are both parses ofPq,
whereq

Mk→ p.
Second, note that the sets of possible parses forP0, P1, . . . ,

P|F| can be obtained by induction. LetSp be the set of possible
parses forPp. Then we have thatS0 = {P0}, whereP0 is the
empty sequence of messages, and, forp > 0, we have that:

Sp =
{

PM | q
M
→ p andP ∈ Sq

}

.

Third, because theSp’s are too huge, instead of working
with them, we define the notion ofsummaryof Sp, calledSp.
A summarySp is a mathematical entity that acts asSp’s repre-
sentative. It has the capacity to produce a parse forPp, usually
by selecting one among many possibilities, and to associatea
recycled bit sequence to the particular choice that it makes.

Fourth, Sp’s construction starts by partitioningSp into
groups. A group contains the parses that have a particular
messageM ∈ ~µ(p) as theirlast message. We callM the label
of the group. Clearly, there is a one-to-one correspondence
between ~µ(p) (i.e. the labels) and the set of groups taken from
Sp. Note also that any parse in the group labeled byM has
the formPM , whereP ∈ Sq for positionq such thatq

M
→ p,

which means thatP is represented bySq.
Fifth, summarySp happens to be a recycling code that maps

options to recycled bit sequences. Here, the options are the
groups. When a given parse gets selected, the bit sequence
associated to its group gets recycled. More precisely, a parse
may get selected provided that the group to which it belongs
(the option which it is part of) is deemed worthy. The whole

CC:
1. p := 0;
2. while description incompletedo
3. let Ms = ND-select in~µ(p);
4. emit(C(Ms));
5. p := p + L(Ms);
6. for all M ∈ ~µ(p) do
7. let K(M) = cost(M);
8. if R(K)(Ms) definedthen
9. recycle(R(K)(Ms));

10. else abort;
where
11. procedure cost(M):
12. return E [p − L(M)] + |C(M)|;
13. procedure emit(w): . . .
21. procedure recycle(w): . . .

DD:
1. p := 0;
2. while description incompletedo
3. let Ms = receive();
4. interpret Ms;
5. p := p + L(Ms);
6. for all M ∈ ~µ(p) do
7. let K(M) = cost(M);
8.
9. recycle(R(K)(Ms));

10.
where
11. procedure cost(M):
12. return E [p − L(M)] + |C(M)|;
13. procedure receive(): . . .
21. procedure recycle(w): . . .

Fig. 4. Implementation of an all-match bit recycling technique.

construction ofSp consists in the following steps: each group
is taken as an option, each option is attributed a cost (using
a cost functionK), and thenSp is the recycling codeR(K).
There remains to determine the cost of an option. Let us take
a group ofSp labeled byM ∈ ~µ(p), whereq

M
→ p. The cost of

M ’s option is the cost of a parse ofPq plus|C(M)|. However,
the parse ofPq is produced bySq, which is itself a recycling
code, not a plain sequence of bits. It means that we do not have
a definitive cost for the parse produced bySq. Moreover, since
we do not know ahead of time which ofSp’s options will be
selected, we can only hope to obtain anexpected costfor Sp.
The expected cost for each summary is computed inductively
and stored in an arrayE . For each positionp, E [p] is the
expected cost ofSp. In fact, we compute onlyestimatesof
the expected costs with a precision up to the quarter of a bit.
We have thatE [0] = 0 becauseS0 represents a single, empty
parse. Forp > 0, we have that:

E [p] =
∑

M∈Dom(R(K))

(K(M) − |R(K)(M)|) / 2|R(K)(M)|,

where the cost functionK is defined in lines6 and 7 of
Figure 4.

C. The algorithms

Figure 4 presents the pseudo-code forCC and DD in an
implementation of an all-match recycling technique. Note that
the current position,p, is now updated explicitly. There is a
new functioncost that helps in computing the costs of the
options. Note howCC selectsMs from the current position
(where Ms leaps from) but recycles from the new position
(whereMs leaps to). This is becauseDD does not have access
to any other information than that contained inMs and its
predecessors. The interpretation operation performed byDD
includes the computation ofE ’s entries on the fly, as soon
as additional characters become known toDD.

VII. E XPERIMENTS

We evaluated the performance of the all-match recycling
technique by modifying the implementation of the Deflate
compression method [3] that is part of the popular compression
tool gzip [7]. We kept Deflate’s particular choices for the
size of the sliding window and for the bounds on the lengths

and distances. We slightly modified Deflate’s algorithm for
the construction of codes to ensure that every length and
distance can be encoded. Deflate’s normal behavior is to assign
a bit sequence only to the lengths and distances that it has to
encode. Because of bit recycling, other lengths and distances
might get chosen and so they must be made encodable as well.

We compared three compression techniques:gzip set to
maximal compression; a longest-match (L-M) bit recycling
technique; and the all-match (A-M) bit recycling technique
presented in this paper. Note that the results forL-M are not
exactly the same as those we presented in the 2006 paper [5].
The implementation used to obtain the results presented in that
paper does not use optimal recycling, while the one used here
does. The benchmarks used in our experiments are the files
contained in the Calgary corpus [12].

Figure 5 presents the results. The measurements are in bytes.
We can see that recycling over all the matches improves the
compression efficiency significantly more than recycling over
the longest matches only. It is particularly remarkable that, in
the case of the files for which longest-match recycling does not
bring much improvement, all-match recycling is able to obtain
a significant advantage. Also, note that the improvement that
all-match recycling achieves comes from the fact that it allows
itself to consider parses that are, in principle, more costly than
those considered by longest-match recycling. It constitutes one
additional evidence supporting our belief that recycling works
better when more options are offered to it, even if many or
most of the new options are more costly.

Taken all together, the benchmarks are 2.9% smaller when
compressed using longest-match recycling than when com-
pressed usinggzip. Using all-match recycling, they are 9.2%
smaller than usinggzip (excludingpic, this time).

Our prototype was not able to process the filepic. This
file is a binary image. A large part at the end of this file is
filled with the NUL character. WhenCC parses this part, it has
to consider more and more options as the sliding window fills
up with NUL characters. Eventually,everymatch that can be
expressed by the Deflate method is a valid match, i.e.〈l, d〉 is

Name Orig. Gzip L-M A-M
bib 111 261 34 900 33 829 31 757
book1 768 771 312 281 301 538 279 435
book2 610 856 206 158 199 906 185 321
geo 102 400 68 414 66 133 63 341
news 377 109 144 400 140 142 132 679
obj1 21 504 10 320 10 304 10 043
obj2 246 814 81 087 79 068 75 360
paper1 53 161 18 543 18 129 16 938
paper2 82 199 29 667 28 892 26 720
paper3 46 526 18 074 17 675 16 422
paper4 13 286 5 534 5 440 5 156
paper5 11 954 4 995 4 916 4 688
paper6 38 105 13 213 13 031 12 225
pic 513 216 52 381 51 440 N/A
progc 39 611 13 261 13 069 12 212
progl 71 646 16 164 15 704 14 509
progp 49 379 11 186 10 911 10 186
trans 93 695 18 862 18 420 17 477

Fig. 5. Experimental results.

part of ~µ(p) for all l andd allowed by Deflate.
In terms of speed, our prototype of all-match bit recycling is

very slow. The time it takes to process the benchmarks is about
two orders of magnitude longer than that taken bygzip. On
the other hand, the prototype of longest-match recycling isa
bit above an order of magnitude slower thangzip. We did
not put much effort to obtain fast prototypes. Note that, going
from gzip to the longest-match recycling prototype and then
to the all-match one, more and more of the code that is run is
code that has been rewritten by us. This factor contributes to
make the prototypes slower.

VIII. C ONCLUSION

We have presented, implemented, and tested a bit recycling
technique for LZ77 compression that exploits all matches. The
measured 9.2% reduction in the size of the compressed files
means that, when compressing some original file usinggzip,
about 1 bit out of 11 is produced only to indicate which parti-
cular compressed file has been selected among all possible
compressed files. Each of these eleventh bits encodes useless
information. Since our bit recycling technique cannot pretend
to recover all the bits wasted by the multiplicity of encodings,
it means that, in fact, even more bits are useless. This result
clearly indicates that, with LZ77 compression, the redundancy
solely caused by the multiplicity of encodings can be quite
high. It is so, even when using a high performance compressor
like gzip.

REFERENCES

[1] M. J. Atallah and S. Lonardi. Authentication of LZ-77 compressed data.
In Proc. of the ACM SAC, pages 282–287, Melbourne, Florida, USA,
March 2003.

[2] A. Brown. gzip-steg, 1994.
[3] P. Deutsch. Request for comments: 1051, 1996.

http://www.ietf.org/rfc/rfc1051.txt.
[4] D. Dubé and V. Beaudoin. Recycling bits in LZ77-based compression.

In Proc. of SETIT, Sousse, Tunisia, March 2005.
[5] D. Dubé and V. Beaudoin. Improving LZ77 data compression using bit

recycling. InProc. of ISITA, Seoul, South Korea, October 2006.
[6] D. Dubé and V. Beaudoin. Bit recycling with prefix codes.In Proc. of

DCC, page 379, Snowbird, Utah, USA, March 2007. Poster.
[7] J. L. Gailly and M. Adler. The GZIP compressor.http://www.gzip.org.
[8] D. A. Huffman. A method for the construction of minimum-redundancy

codes. InProc. of the Institute of Radio Engineers, volume 40, pages
1098–1101, September 1952.

[9] S. Lonardi and W. Szpankowski. Joint source-channel LZ’77 coding.
In Proc. of DCC, pages 273–282, Snowbird, Utah, USA, March 2003.

[10] S. Lonardi, W. Szpankowski, and M. Ward. Error resilient LZ’77 scheme
and its analysis. InProc. of ISIT, page 56, Chicago, Illinois, USA, 2004.

[11] S. Lonardi, W. Szpankowski, and M. Ward. Error resilient LZ’77 data
compression: Algorithms, analysis, and experiments.IEEE Trans. on
Information Theory, 53(5):1799–1813, 2007.

[12] I. Witten, T. Bell, and J. Cleary. The Calgary corpus, 1987. ftp://—
ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

[13] Y. Wu, S. Lonardi, and W. Szpankowski. Error-resilientLZW data
compression. InProc. of DCC, pages 193–202, Snowbird, Utah, USA,
March 2006.

[14] H. Yokoo. Lossless data compression and lossless data embedding. In
Proc. of the Asia-Europe Workshop on Concepts in Information Theory,
Jeju, South Korea, October 2006.

[15] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression.IEEE Trans. on Information Theory, 23(3):337–342, 1977.

