A Demand-Driven Adaptive Type Analysis

Danny Dubé and Marc Feeley
Département d’'Informatique et Recherche Op érationelle
Université de Montréal

{dube,feeley } @IRO.UMontreal.CA

Abstract (let ((f (lambda (a b) (cons 1 (car 2 a) b))
(i (lambda (c) c)))

Compilers for dynamically and statically typed languages ensure (let (((lambda (d) (3l)

safe execution by verifying that all operations are performed on ap- (car 4 (f (f (cons 55 |0)

propriate values. An operation as simplecas in Scheme and _(cons 6 6 () ,

hd in SML will include a run time check unless the compiler can (71 (cons g 8 (oi "))

prove that the argument is always a non-empty list using some type Figure 1. A Scheme program under analysis

analysis. We present a demand-driven type analysis that can adapt

the precision of the analysis to various parts of the program being .) .)

compiled. This approach has the advantage that the analysis efforfyZer is to determine various attributes of the program so that the
can be spent where it is justified by the possibility of removing a transformer can decide which optimizations are possible and worth-
run time check, and where added precision is needed to accuratelyvhile. To avoid missing optimization opportunities the analyzer
analyze complex parts of the program. Like #efa our approach typically computes a very large set of attributes to a predetermined
is based on abstract interpretation but it can analyze some impor-€vel of detail. This wastes time because the transformer only uses
tant programs more accurately than khefa for any value ok. We a small subset of these attributes and some attributes are more de-

have built a prototype of our type analysis and tested it on various tailed than required. I_/Ioreover t_he t_ran_sformer may require a level
programs with higher order functions. It can remove all run time of.detall for some attributes which is higher than what was deter-
type checks in some nontrivial programs which osp and the Y mined by the analyzer.

combinator. .) o
Consider a compiler for Scheme that optimizes callsato by re-

moving the run time type check when the argument is known to be
a pair. The compiler could use the 0-cfa analysis [8, 9] to compute
for every variable of a program the (conservative) set of allocation
points in the program that create a value (pair, function, number,

Categories and Subject Descriptors

D.3.4 [Programming Language$: Processors-eompilers, opti-

mization etc) that can be bound to an instance of that variable. In the pro-
gram fragment shown in Figure 1 the 0-cfa analysis computes that
General Terms only pairs, created bgons 1 andcons s, can be bound to instances
of the variablea and consequently the transformer can safely re-
Languages move the run time type check in the calldar 5.
Keywords Note that the 0-cfa analysis wasted time computing the properties

of variableb which are not needed by the transformer. Had there
been a callcar b) inf’s body it would take the more complex 1-
cfa analysis to discover that only a pair createddms ¢ andcons g
. can be bound to an instance of variabj¢he 0-cfa does not exclude
1 Introduction that the empty list can be boundlidoecause the empty list can be
o)]) bound toc and returned by function. The 1-cfa analysis achieves
Optimizing compilers typically consist of two components: a pro- thjs higher precision by using an abstract execution model which
gram analyzer and a program transformer. The goal of the ana-partitions the instances of a particular variable on the basis of the
call sites that create these instances. Consequently it distinguishes
the instances of variable created by the call;i (cons ...))
and those created by the cédli '()) , allowing it to narrow the
type returned by(7i (cons ...)) to pairs only. If these two
calls toi are replaced by calls to then the 2-cfa analysis would
Permission to make digital or hard copies of all or part of this work for personal or D€ Needed to fully remove all type checks on callsato. By using
classroom use is granted without fee provided that copies are not made or distributed an abstract execution model that keeps track of call chains up to a
for profit or commercial advantage and that copies bear this notice and the full citation length of 2 the 2-cfa analysis distinguishes the instances of variable

Demand-driven analysis, static analysis, type analysis

on the first page. To copy otherwise, to republish, to post on servers or to redistribute ¢ created by the call chaifyj (cons ...)) — (i d) and the
to lists, requires prior specific permission and/or a fee. \ 3
ICFP'02,0ctober 4-6, 2002, Pittsburgh, Pennsylvania, USA. call chain(gj '()) — (3i d) . The compiler implementer (or

Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00 user) is faced with the difficult task of finding for each program

Exp = #f, | €Lab Vall :=ErrUVall

X| X € Var,| € Lab Err = Errors
(1e1€9) | €Lab,e;,e; € Exp Val :=ValB U ValCU ValP
(Aix. e1) | € Lab, xe Var,e; € Exp ValB := {#f} Booleans
(f 1&16283) lcLab,e,e,e3cExp ValC := Val — Val' Closures
(cons | ej e |elab,ej,ecExp ValP = Val x Val Pairs
(car | &) | € Lab,e; € Exp Env = Var — Val
(cdr | &1) | € Lab,e; € Exp
(pair? | ey) | € Lab,e, € Exp E:Exp— Env— Vall Evaluation function
Lab = Labels E#]p = #f
Var := Variables E %E(IH P y = p)((led)
i Eliere) | p =C(E (e p
Figure 2. Syntax of the Source Language (Wi C (E [e]] p) (Ava))
L Ef(Ax e)]p =AvE[e] plxi—v
an acceptable trade-off between the extent of optimization and theg [(f | erexes)] p=C(E[el] p)
value ofk and compile time. (W.v£# 2E [e] p: E [e3] p)
The analysis approach presented in this paperderaand-driven Ef(cons je1ex)p=C E;V[Eelg ?é el p) . (v,)
type analysis that adapts the analysis to the source program. Thg- [car je)]p =C (E [e]) p) ’
work performed by the analyzer is driven by the need to deter- (AV. V= (V1, V) ?V1 : ERROR)
mine which run time type checks can be safely removed. By be- ¢ [cdr jen]p =c(E e p)
ing demand-driven the analyzer avoids performing useless analysis (AV. V= (V1, V2) ?V5 : ERROR)
work and performs deeper analysis for specific parts of the programg [(air? 1 e)]p =C(E e p)
when it may result in the removal of a run time type check. This (AV. v € ValP ?v : #f)
is achieved by changing the abstract execution model dynamically)
to increase the precision where it appears to be beneficial. Like theA : Val — Val — Val' Apply function
k-cfa our analysis is based on abstract interpretation. As explainedA f v =feValC?fv:ERROR

in Section 4, our models use lexical contours instead of call chains. - . \j1 _, (Val — Vall) — vall Check function

Some important programs analyzed with our approach are more ac \, g =VcEmr?v kv
curately analyzed than with tHecfa for any value ok (see Sec- Fi 3s tics of the S L
tion 6). In particular, some programs with higher order functions, Igure 5. semantics ot the source Language

including uses ofmapand the Y combinator, are analyzed precisely.) .) .
There is no built-irletrec special form. The Y combinator must

Our demand-driven analysis does not placgriori limits on the be written explicitly when defining recursive fun(_:tions. Note also
precision of the analysis. This has the advantage that the analysighatcons, car , cdr andpair? are treated as special forms.
effort can be varied according to the complexity of the source pro-) L -
gram and in different parts of the same program. On the other hand,T"€ sémantics of the language is given in Figure 3. A notable de-
the analysis may not terminate for programs where it is difficult or Parture from the Scheme semantics is et? returns its argu-
impossible to prove that a particular type check can be removed.Ment when itis a pair. The only operations that may require a run
We take the pragmatic point of view that it is up to the user to de- Ume type check arear andcdr (the argument must be a pair) and
cide what is the maximal optimization effort (limit on the time oron function call (the function position must be a function).
some other resource) the compiler should expend. The type checks
that could not be removed within this time are simply kept in the 3 Analysis Framework
generated code. We think this is better than giving the user the
choice of an “optimization level” (such as theto use in ak-cfa) To be able to modify the abstract evaluation model during the anal-
because there is a more direct link with compilation time. ysis of the program we use amalysis frameworkThe framework
is a parameterized analysis general enough to be used for type anal-
Although our motivation is the efficient compilation of Scheme, the ysis, as we do here, as well as a variety of other program analyses.
analysis is also applicable to languages such as SML and HaskellWwhen the specifications of an abstract evaluation model are fed to
for the removal of run time pattern-matching checks. Indeed the the framework an analysis instance is obtained which can then be
previous example can be translated directly in these statically typedused to analyze the program.
languages, where the run time type checks are in the cdit$.to
The analysis instance is composed of a seiMafluation constraints
After a brief description of the source language we explain the ana- that is produced from the framework parameters and the program.
lyzer, the abstract execution models and the processing of demandsThese constraints represent an abstract interpretation of the pro-
Experimental results obtained with a prototype of our analyzer are gram. The analysis of the program amounts to solving the set of
then presented. constraints. The solution is thenalysis results From the pro-
gram and the framework parameters can also be produceditty
constraintswhich indicate at which program points run time type
2 Source Language checks may be needed. It is by confronting the analysis results with
o . the safety constraints that redundant type checks are identified. If
The source language of the analysis is a purely functional languagey|| the safety constraints are satisfied, all the type checks can be

similar to Scheme and with only three data types: the false value, ;emoved by the optimizer. A detailed description of the analysis
pairs and one argument functions. Each expression is uniquely la-

beled to allow easy identification in the source program. The syntax 1The U operator is thelisjoint union i.e. the sets to combine
is given in Figure 2. must be disjoint.

ValB+#0 Abstract Booleans
ValCc #0 Abstract closures
ValP #0 Abstract pairs
cont #£0 Contours

ko € Cont Main contour

cc :Labx cont— ValC Abstract closure creation
pc :Labx Val x Val x Cont— ValP

Abstract pair creation
call : Labx ValC x Val x Cont — Cont

Contour selection
whereVal := ValB U YalC U ValP
subject toVal| < o and|Cont| <

Figure 4. Instantiation parameters of the analysis framework

Value ofg in k:

o) x € Val | eLab, ke Cont
Contents of x irk:

Bxk C Val x € Var, ke Cont
Return value ot with its body ink:

Yek € Val ce ValC, ke Cont
Flag indicating evaluation o in k:

ok C Val | eLab, ke Cont
Creation circumstances of

Xc Ccci(c) cevalc
Creation circumstances @f

T, Cpci(p) peValp
Circumstances leading to

Ke Cecall™l(k) ke cont

Figure 5. Matrices containing the results of an analysis

framework and its implementation is given in [4]. Here we only
give an overview of the framework.

3.1 Framework Parameters

Figure 4 presents the framework parameters that specify the ab
stract evaluation model. The interface is simple and flexible. Four
abstract domains, the main contour, and three abstract evaluatio
functions have to be provided to the framework.

ValB, ValC, and¥ValP are the abstract domains for the Booleans,

(mPay = #| Ay | A k| (P.P')
wherel € Lab,k € (mkPay, P,P’ € (mPaj
=% |\ N K[(P.P)|(P.P)
wherel € Lab,k € (skPab,
P e (sPa}, P’ € (mPaj
(mkPab := (P1...Pn)
whereVi<j<n. Pj € (mPa}
(skPah :=(P1...R...Py)
whereP, € (sPa}, Vi<j<n. Pj € (mPa}

(sPa}

#i
Figure 6. Syntax ofJ patterns

3.2 Analysis Results

The analysis results are returned in the seven abstract matrices
shown in Figure 5. Matriceq, B, andy indicate respectively the
value of the expressions, the value of the variables, and the return
value of closures. The valy is defined as follows. Assume that
closurec was created bi-expressiof A x. &) . Thenifcis called

and thecall function prescribes contodt for the evaluation ot's

body, then parameter x will be bound to the abstract vjue

9 « indicates whether or not expressigris evaluated in contou.

g is evaluated in contouk if and only if & x # 0. Apparently,d k
should have been defined as a Boolean instead of a set. However,
the use of sets makes the implementation of the analysis framework
simpler (see [4]).

Matricesy, 11, andk are logs keeping the circumstances prevailing
when the different closures, pairs, and contours, respectively, are
created. For example, if during the abstract interpretation of the
program a paimp is created at expressian with valuesv; andv,

and in contouk, then this creation op is logged intor,. That is,
(I,v1,v2,K) € . Most of the time, the circumstances logged into
the log variables are much fewer than what they can theoretically
be. In other wordsig, usually contains fewer values thao1(p).
Similarly, when closure = cc(l, k) is created by the evaluation gf

‘ink, (I, k) is inserted inxc. And when contouk’ = call(l, f,v,k) is
selected to be the contour in which the bodyfaé to be evaluated

WWhen f getsinvoked o atg ink, (I, f, v, k) is inserted irky .

4 Pattern-Based Models

closures, and pairs. They must be non-empty and mutually disjoint.

9/al is the union of these three domaingont is the abstract do-

In the demand-driven type analysis we use patterns and pattern-

main of contours. Contours are abstract versions of the evaluationmatchers to implement abstract evaluation models. Patterns con-

contexts in which expressions of the program get concretely evalu-

stitute the abstract valueg/@l) and the abstract contourg @nt).

ated. The part of the evaluation contexts that is abstractly modeledAbstract values arshallowversions of the concrete values and ab-

by the contours may be the lexical environment, the continuation,
or a combination of both. The main contdgrindicates in which
abstract contour the main expression of the program is to be evalu
ated.

The abstract evaluation functiomrs, pc, andcall specify closure
creation, pair creation, and how the contour is selected when a func
tion call occurs.cc(l,k) returns the abstract closure created when
theA-expressiorg is evaluated in contolk. pc(l, vy, Vv, k) returns

the abstract pair created by tbans -expression labeleldevaluated

in contourk with argumentss andv,. Finally, call(l,c,v, k) indi-
cates the contour in which the body of closuaiie evaluated when

is called from the call-expressi@nin contourk and with argument

V.

stract contours are shallow versions of the lexical environments.
These lexical contours are one of the features distinguishing our
-analysis from most type and control-flow analyses which typically
use call chains. A call chain is a string of the labels ofkmearest
enclosing dynamic calls. Although the use of call chains guarantees
polynomial-time analyses, it can also be fooled easily. We believe
-that lexical contours provide a much more robust way to abstract
concrete evaluation contexts.

Figure 6 gives the syntax of patterns. There are two kinds of pat-
terns: modeling patterng(mPa} and (mkPab) and split patterns
({(sPa} and(skPab). For both modeling patterns and split patterns,
there is avaluevariant (mPa} and (sPa}) and acontour variant
({mkPa} and (skPab). Split patterns contain a singplit point

that is designated by. They are used in the demands that drive

Any group of modeling parameters that satisfies the constraintsthe analysis (irsplit demands, more precisely). Modeling patterns

given in Figure 4 is a valid abstract evaluation model for the frame-
work.

contain no split point. They form the representation of the abstract
values and contours.

/" C Val x (mPaj N: ((sPaju(mPa}) x ((sPajU(mPa})

v, Y, if ve Val — ((sPaju (mPa})
#t 7 #f P1 NP, is undefined ifPy, P, € (sPa}
c/ Ay, IifceVvalC vYNbP, =P
c/ Nk ifcevalC,c=E[(Ax €] p,and PiNY =Py
P/ k *NPy =%
(V7 W) / (P17 PZ)! le* = %
if v/ Prandw " P, #EN#H = #f
p./1 (), ifpisvalid atlabel % and A NP= Py if P, =AyorPo = Ay (P}...P))
Dom(p) =02 PLNAy= Py, if P =2y or Py = (P}...P,Q)
P (Pl P ... Pn), A NP=)*,!f Po=AyOrP, =\ (P}Pé)
if p is valid at label, PLNA= A, if PL=AyorP =)\ (P]...Py)
x is the innermost variable in Dofp), At (Pr...Pa) 0N (Py...PY)
px P, =N (P...Py),
g = (Arx. €),and ifP-’”:P.ﬂP{,Vlgign
plx— L] Ay (P P)? (P, P2)N (P/i, Pg)
Figure 7. Formal definition of relation “is abstracted by” = (P, P5),

if P/ = PLNP; andPy = P,NP}

. Figure 8. Algorithm for computing the intersection between
4.1 Meaning of Patterns twgo patterns g PHAng

Modeling patterns represent abstract values, which in turn can be4 2 Pattern Intersection
seen as sets of concrete values. Patteabstracts any value, pat-)
tern#f abstracts the Boolean value #f, pattagnabstracts any clo-
sure, patterr\; k abstracts any closure coming frokrexpression
labeled and having a definition environment that can be abstracted
by k € (mkPa, and patterr{P;, P,) abstracts any pair whose com-
ponents can be abstracted®yandP,, respectively. The difference
between abstract values and concrete values is that an abstract val
can be made imprecise by having parts ailt off usingVv andA, .

Although the ~ relation provides a formal definition of when a
concrete value is abstracted by an abstract value, and, by extension,
when an abstract value is abstracted by another, it is not necessarily
expressed as an algorithm. Moreover, the demand-driven analysis
does not manipulate concrete values, only patterns of all kinds. So
Ye present a method to test whether an abstract value is abstracted
by another. More generally, we want to be able to test whether a
(modeling or split) patterintersectswith another. Similarly for

Modeling contourpatterns appear in the modeling patterns of clo- both kinds of contour patterns.

sures. To simplify, we use the term contour to mean modeling con-
tour pattern. Contours abstract lexical environments. A contour is
a list with an abstract value for each variable visible from a certain
label (from the innermost variable to the outermost). For example
the contour(Ay (V,V)) indicates that the innermost variable (say
y) is a closure and the other (say x), is a pair. It could abstract the
following concrete environment:

The intersection between patterns is defined in Figure 8. It is par-
tially defined because two patterns may iheompatible in the

' sense that they do not have an intersection and as such, their empty
intersection cannot be represented using patterns, or as the inter-
section of two split patterns may create something having two split
points. The equations in the figure should be seen as cases to try in
order from the first to the last until, possibly, a case applies.

S L H] [y — E[(Mz# 1)]]

o A patternP intersects with another pattef if the intersection
A formal definition of what concrete values are abstracted by what fynction is defined when applied ® andP. Moreover, wherP

abstract values is given in Figure 7. The relatjgrC Val x (mPaj intersects withP’, the resulting intersectioR” = PN P’ is charac-
relates concrete and abstract values suchwhdtP means that terized by®

is abstracted by. We mention (without proof) that any concrete

value obtained during execution of the program can be abstracted {veval|v/P'}={veval|v,/PAv P}

by a modeling pattern that is perfectly accurate. That is, the latter
abstracts only one concrete value, which is the former. . .

4.3 Spreading on Split Patterns
The split patterns and split contour patterns are used to express
split demands that increase the precision of the abstract evaluationAnother relation that is needed to perform the demand-driven anal-
model. Their structure is similar to that of the modeling patterns but ysis is the spreading test. It is useful in determining if a given split
they include one and only one split poird) that indicates exactly ~ pattern will increase the precision of the model if it is used in a
where in an abstract value an improvement in the precision of the split demand. Spreading can occur between a set of abstract val-
model is requested. Their utility will be made clearer in Section 5. ues (modeling patterns) and a split pattern. A split pattern can be
Operations on split patterns are explained next. thought of as denoting a sub-division: the set of its abstracted con-
crete value is partitioned into a number of sets corresponding to the
> X . . . different possibilities seen at the split point. Each of those sets is
p is valid at label if its domain is exactly the set of variables 5j1ed abucket For example, the pattemabstracts all values, that

thag are visible frong. _) is, Val. It sub-divides Val into three buckets: ValB, ValC, and ValP.
Dom(f) denotes thelomainof function f. Spreading occurs between the set of abstract valuasd the split
4 1’ denotes an undefined value. Consequeptly,— 1] is the
same environment gsbut without the binding to x. 5provided that we considex*and ‘A,’ to abstract all concrete

5The empty concrete environmentgontains no bindings. values and all concrete closures, respectively.

¢ C 2(MPal, (spay
S P, ifves
S X *, if #f € SandS\ {#f} #0, or
SNT#0#£S\T
whereT = {(P,P') | PP’ € (mPa}}
S X P, if S\T #0andT X P
whereT = {P’' € S| P’ intersects wittP}
S P, if Ay €S
S X Ay if Al (Pl...Pm),)\y (Pi...Prq)GS
andl #1I’
S XN (Pr...R...Pn),
if B € (sPa} andT X P
whereT = {P/ |\ (P{...P/...P}) € S}
S X (P, Pp), if P e (sPaf andT X Py
whereT = {P; | (P}, P}) € S}
S X (P, Pp), if P, € (sPaf andT X P,

whereT = {P; | (P{,P}) € S}
Figure 9. Algorithm for the relation “is spread on”

patternP if some two values (or refinements of valuesYithat are
abstracted by fall into different buckets. We say th¥tis spread
on split patterrP and denote it witlV XX P. Figure 9 gives a formal
definition of . As with then operator, cases should be tried in
order.

Mathematically, the relationX has the following meaning. The set
of abstract valueSis spread on the split pattef) denoteds X P,
if:
dP,P> € S vy, v € Val. VP’ € {P$7P67P?}.
vi/"PLAVY /PO A
vi,/"PAVy /"PA
(1 P'==(v2 /P))

wherePg, P-, andPp are modeling patterns obtained by replacing
‘x"in P by #f, Ay, and(V, V), respectively.

4.4 Model Implementation

An abstract value can be viewed as a concrete value that has gon
through aprojection Similarly, a contour can be viewed as a lexical

environment that has gone through a projection. If one arranges for.

the image of the projection to be finite, then one obtains the desired
abstract domain$/alB, ValC, Val®P, andCont.

But which projection should be used? The relation is not of
much help since, generally, for a concrete valyghere may be
more than one abstract valwesdch thatv V. So a projection
based on” would be ill-defined.

The projection we use is based on an exhaustive non-redundan

As for the projection of contours, we use one pattern-matchex-per
expression. For a givekrexpressiorg, the lexical environment in
which its body is evaluated can be projected by the pattern-matcher
M, . The empty lexical environment is always projected onto the list
of length 0, as the empty list is the only contour that abstracts the
empty environment.

The simplest contour pattern-matchdr for expressior{ Ajx. &)
is {(V ... V)}, itis a single list having as many entries as there are
visible variables in the environment in whieh is evaluated.

Having a pattern-matchevl, that projects values and a family

of pattern-matcher§M; | ...} that project lexical environments,
and assuming tha¥l, projects closures coming from different
expressions to different abstract closures, it is easy to create an ab-
stract model, i.e. to define the parameters of the analysis framework,
as follows.

o ValBis {#f}

ValCis {\ ke My}

Val?is {(v1,Vv2) € My}

Contis () U UiM;

kois ()

cc(l,k) is the projection ok k by My
pc(l,v1,V2,K) is the projection ofvy, vo) by My

call(I,A; (wy ... wn),V,k) is the projection ofvw ... wy) by
M

4.5 Maintaining Model Consistency

One remaining problem that requires special attentioooissis-
tency During the demand-driven analysis, pattern-matchers are not
used to project concrete values, but abstract values. If one of the
abstract values is not precise enough the projection operation may
become ill-defined. In general, abstract values abstraetat con-
€rete values. Suppose thati$ such an imprecise abstract value.
Now, letv, be a modeling pattern that contansas a sub-pattern.

We want to project; in order to obtain the resulting abstract value.

A sensible definition for the projection @ €onsists in choosing a
modeling patternvin the pattern-matcheM such that all concrete
values abstracted by are abstracted by. "Unfortunately, such a

W may not exist as it may take the union of many modeling patterns
of M to properly abstract all the concrete values abstracted.by ~

Here is an example to help clarifying this notion. The following
Eattern-matcheM, intended for the projection of values, is incon-
istent:

pattern-matcher. That is, the pattern-matcher implementing the pro-

jection of the values is a finite set of modeling patterns. For any
concrete value, there will exist one and only one modeling pattern

V in the set such that V. Such a pattern-matcher describes a
finite partition of Val.

For example, the simplest projection for the values is:
{#17)\Vv (V, V)}
Itis finite, exhaustive and non-redundant.

"This is not exactly true. The simplest pattern-matcher would
be the trivial one{V}, but it would not implement a legal model
for the framework since an abstract model must at least distinguish
the Booleans, the closures, and the pairs.

#f,
Ay,

(v, #f),

\4 (V, (#f,V)),
(vv)\V):

(vv ()\Vv v))7
(v, ((V,V), V)

Note that the pattern-matcher is finite, exhaustive, and non-redun-
dant but nevertheless inconsistent. Before explaining why, let us
see how it models the values. First, it distinguishes the values by
their (top-level) type. Second, it distinguishes the pairs by the type
of the value in thecDR-field. Finally, the pairs containing a sub-
pair in thecDR-field are distinguished by the type of the value in
the cARr-field of the sub-pair. Note that theaRr-field of the sub-
pairs is more precisely described than ther-field of the pairs
themselves. This is the inconsistency. Problems occur when we try
to make a pair with another pair in tie®Rr-field. Let us try to make

PM
PMo

PMp | PMc | PML
Onode [Val = M4] |
Onode [ValB = M1, ValC = My, ValP = M3]
whereM1, My, M3 € PM
PMc := Cnode [Lab=- M;] |
Cnode [I1 = My, ..., In = My]
whereMy,...,My € PM
and{lq,...,In} ={l € Lab| g is aA-expr}
PM_ Leaf (mPaj} |Leaf (mkPaj
Figure 10. Implementation of the pattern-matchers

To projectP € (mPa} with M € PM,
compute pniM, []<P), and

to project(Py ... Pn) € (mkPab with M € PM,
compute pniM, [] <Py <...<P,), where

pm : PMx [queue offmPa}] — (mPaj U (mkPa}
pm(Onode [Val = M3], P<q)

= pm(My, q)

pm(Onode [ValB = My,..], #f<q)
= pm(My, q)

pm(Onode ..., ValC = My,...], P<q)
= pm(Mz, q<P)

if P=AyorP=A; (P1...Pn)
pm(Onode [..., Val? = Mg], (P1, P»)<q)
= pm(Ms, q<aPr<aP)
pm(Cnode [Lab=- M1], P<q)
=pm(My,)
pm(Cnode [...,li = M;,...], A, (Py...Pn)<0)
=pm(M;, q<Py<...<Py)
pm(Leaf P,[])

Figure 11. Pattern-matching algorithm

a pair with the value#f and (V, (#f, V)). We obtain the modeling
patternv’= (#f, (¥, (#f, V))) and we have to project it usird. Itis

(demandl := showa C B
wherea € (a-var),B € (boung
| splitsP
wheres € (splitteg, P € (sPaj
| showd =0
whered € (&-var)
| bad-calll P’ P” k
wherel € Lab,P',P” € (mPa},k € (mkPaj
(bound := ValB|ValC|ValP| ValTrues
(splittee :=ValC | Val?|a|b|c
wherea € (a-var),b € (B-var),c € (y-var)

(a-var) =ax wherel € Labk € (mkPa

(B-var) :=Bxk1 Wherexe Varke (mkPab,| € Lab
(yvar) :=ycx Wwherecec (mPaj,k e (mkPab
(o-var) =@y wherel € Lab ke (mkPab

Figure 12. Syntax of demands

The pattern-matching algorithm is presented in Figure 11. The
breadth-first traversal is done using a queue. The contents of the
gueue always remain synchronized with the position in the deci-
sion tree. That is, when a C-node is reached, a closure is next on
the queue, and when a leaf is reached, the queue is empty. The ini-
tial queue for an abstract value projection contains only the abstract
value itself. The initial queue for a contour projection contains all
the abstract values contained in the contour, with the first abstract
value of the contour being the first to be extracted from the queue.
To keep the notation terse, we use the view operatiboth to en-
gqueue and dequeue values. When enqueuing, the queue is on the
left of <. When dequeuing, the queue is on the rightofThe
empty queue is denoted by

The pattern-matchers used in the initial abstract model are the fol-
lowing. Note that we describe them in terms of set theory and not
in terms of the actual data structures. The value pattern-matcher
contains one abstract Boolean, one abstract pair, and one abstract
closure for each\-expression. For eack-expression, its corre-
sponding contour pattern-matcher is the trivial one. Note that they

clear that we cannot non-ambiguously choose one of the modelingare consistent as the pattern-matchers are almost blind to any de-

patterns oM as an abstraction of all the values abstractes.by ~

tail. The only inspection that is performed is the switch on the la-
bel when projecting a closure. However, the projection of closures

one of the pattern-matchers, we must ensure that the abstract valyyrough the use of the abstract model function

ues and the contours on which the refined entity depends are suffi-
ciently precise. If not, cascaded refinements are propagated to thgye do not give a detailed description of the process of refining a

dependencies of the entity. This cascade terminates since, for eaclyattern-matcher because it would be lengthy and it is not conceptu-
propagation, the depth at which the extra details are required de-g)y djfficult.

creases.

5 Demand Processing

Figure 12 presents the syntax of demands. The syntax of the de-
mands builds on the syntax of the patterns. Theresamvde-

Our implementation of the pattern-matchers is quite simple. A mandssplit demands, anblad calldemands.

pattern-matcher is basically a decision tree doing a breadth-first .

inspection of the modeling pattern or modeling contour patternto 5.1 Meaning of Demands

project. An internal node of the decision tree is eitheiGanode

(object) or aC-node(closure). A leaf contains an abstract value A show demand asks for the demonstration of a certain property.
or a contour which is the result of the projection. Each O-node For example, it might ask for demonstration that a particular ab-
is either a three-way switch that depends on the type of the ob- stract variable must only contain pairs, meaning that a certain ex-
ject to inspect or is a one-way catch-all that ignores the object and pression, in a certain evaluation context, must only evaluate to pairs.
continues with its single child. Each C-node is either a multi-way Or it might ask for the demonstration that a particular abstract vari-
switch that depends on the label of the closure to inspect or is a one-able must be empty, meaning that a certain expression, in a certain
way catch-all that ignores the closure and continues with its single evaluation context, must not get evaluated. Note that the bound
child. Figure 10 presents the data structures used to implement thel/alTruesrepresents the values actingtase in the conditionals.
pattern-matchers. That is,ValTrues= ValC U ValP.

4.6 Pattern-Matcher Implementation

A bad call demand asks for the demonstration that a particular func-
tion call cannot happen. It specifies where and in which contour
the bad call currently happens, which function is called, and which
value is passed as an argument. Of course, except for the label, the
parameters of the demand are abstract.

A split demand asks that proper modifications be done on the model
in such a way that theplitteeis no longerspreadon the pattern.
Take this demand for examplsplit a; x . It asks that the abstract
values contained in, x be distinguished by their type (because of
the patterr). If the variableo; k currently contains abstract values

of different types, then these values are said to be spread on the
patternx. Then the model ought to be modified in such a way that
the contourk has been subdivided into a number of sub-contours
ki, ..., kn, such thaiy , contains only abstract values of a single
type, for 1< i < n. In case of success, one might observe that
contains only pairsq x,, only closuresq, x,, nothing,a; y,, only

#f, etc. That is, the value of expressignin contourk would have
been split according to the type.

In a split demand, the splittee can be an aspect of the abstract model
(when it is ValC or Val®P) or an abstract variable from one of
the a, B, or y matrices. A splittee in-var) does not denote an
ordinary entry in thel matrix. It does indicate the name of the

create initial model
analyze program with model
while there is time left
set demand pool to initial demands
make the set of modifying demands empty
repeat
monitor call siteql, k) that are marked
while there is time lefand
there are new demands in the pdol
pick a new deman® in the pool
if D is a modifying demanthen
insertD in the modifying demands set
else
procesD
add the returned demands to the pool
until there is no time lefor
there are no call sites to monitor
if modifying demands set emptiyen
exit
else
pick the best modifying demarid
modify model withD
re-analyze program with new model

Figure 13. Main demand-driven analysis algorithm

source variable but it also gives a label and a contour where this

variable isreferencenot bound). The initial demands are those that we obtain by responding to the

. . needs of the optimizer and not by demand processing. That is, if

On_ly the values that intersect with th_e pattern are concemed by thenon-closures rr?ay be called or noyn-pairs mar))/ go throggh a strictly

?ﬂt' #TF(;; ex;fm)\ple},} Iftrtgeo?]?nlﬁinnd ﬁlzlatt %gtt(Zr’s*%sat?li?Itﬁe:two “pairwise” operation, bound demands asking a demonstration that
, (#,)7.(M)}, y 9 ' .these violations do not really occur are generated. More precisely,

abstract pairs must be separated. What happens with the Boolean For a call(1e- g~) and fork e Cont, if oy x € ValC, then the initial

not important because it does not intersect with the paftérs). demandshow oy C ValC is generafed And for a pair-access

Normally, a show demand is emitted because the analysis has detef€XPressior(car | ev) or (cdr | &) and fork € Cont, if ayx &
mined that, if the specified property was false, then a type error will V'@/%, then the initial demanshoway i C Val® is generated.

most plausibly happen in the real program. Similarly for a bad call o) .
demand. Unfortunately, split demands do not have such a naturall N€ criterion used to select a good model-updating demand in our
interpretation. They are a purely artificial creation necessary for the implementation is described in Section 6.

demand-driven analysis to perform its task. Moreover, during the . . .)

concrete evaluation of the program, an expression, in a particularThe analysis/model-update cycle continues until there is no more

evaluation context, evaluates to exactly one value. So splitting in time left or no model updates have been proposed in the model-
the concrete evaluation is meaningless. update phase. Indeed, it is the user of a compiler including our

demand-driven analysis who determines the bound on the compu-
tational effort invested in the analysis of the program. The time is
not necessarily wall clock time. It may be any measure. In our
implementation, a unit of time allows the algorithm to process a

The main algorithm of the demand-driven analysis is relatively sim- démand. Two reasons may cause the algorithm to stop by lack of
ple. It is sketched in Figure 13. Basically, it is an analysis/model- medel-updating demands. One is that there are no more initial de-
update cycle. The analysis phase analyses the program usin ands. That means that all the run time type checks of the program
the framework parameterized by the current abstract model. TheN@ve been shown to be redundant. The other is that there remain
model-update phase computes, when possible, a model-updatin itial demands but the current analysis results are mixed in such a
demand based on the current analysis results and applies it to th&v@y that the demand processing does not lead to the generation of
model. Note that the successive updates of the abstract modef model-updating demand.

make it increasingly refined and the analysis results that it helps to

produce improve monotonically. Consequently, any run time type .

check that is proved to be redundant at some point remains as suct®.3 Demand Processing

for the rest of the cycle.

5.3.1 Show In Demands
The steps performed during the model-update phase are: the ini-
tial demands are gathered; demand processing (of the demands thadow, let us present the processing of demands. We begin with the
do not modify the model) and call monitoring occur until no new processing oshow (a-var) C (bound demands. Let us consider
demands can be generated; if there are model-updating demandghe demanaghowa, x C B. There are 3 cases. First case, if the val-
the bestone is selected and applied on the model. The model- ues ina; y all lie inside of the bounds, then the demand is trivially
modifying demands are the split demands in which the splittee is successful. Nothing has to be done in order to obtain the desired
ValC, ValP, or amember ofp-var). demonstration.

5.2 Demand-Driven Analysis Algorithm

if ayx € B: ifg =(A\/x. g):
= (SUCCES$ N { bad-calll” cvK | (1”,c,v,K) €Kk A }
K" € cont. (I, K") € Xc
Second case, if the valuesdny all lie outside of the boun®, then
it must be shown that the expressigndoes not get evaluated in ~ Now, let us consider the case whegeis a conditional. A condi-
the abstract contou«. This is a sufficient and necessary condition tional has three sub-expressions, so we first consider the case where
because, i§ is evaluated in contols, any value itreturnsis outside g is the then-branch of,. Clearly, it is sufficient to show thag:

of the bound, causing the original demand to fail. And dloes not is not evaluated at all in contolr However, such a requirement is
get evaluated in contols; then we can conclude that any value in abusive. The sufficierdnd necessary condition for a then-branch
0| k lies inside the bound. to be evaluated (or not to be evaluated) is for the test to return (not

' to return, resp.) some true values.

if oy xNB=0:

= showQ =0 ifeg =(f g qeam:

= showay y C ValB
Last case, some values @ lie inside of B and some do not.
The only sensible thing to do is to first split the contéuinto sub- The case where is the else-branch of the conditional is analogous.
contours in such a way that it becomes clear whether the values allThe else-branch cannot get evaluated if the test always returns true
lie inside ofB or they all lie outside oB. Since the bounds are all values.
simple, splitting on the type of the objects is sufficient. Once (we
would better say “if”) the split demand is successful, the original ifeg =(f ggnvg):

demand can be processed again. = showay»x C ValTrues
otherwise: The case wherg is the test of the conditional can be treated as a
= split oy g % default case. The default case concerns all situations not explicitly

treated above. In the default case, to prove #hatoes not get
evaluated in contouk requires a demonstration thetdoes not get
5.3.2 Show Empty Demands evaluated in contouk either. This is obvious since the evaluation
of a call,cons, car , cdr , orpair? expression necessarily involves
We continue with the processing siiow (5-var) =0 demands. Let the evaluation of all its sub-expressions. Similarly for the test sub-
us consider the demarghow § x = 0. There are many cases in €xpressionina conditional.
its processing. First, if the variablg i is already empty, then the)
demand is trivially successful. otherwise:
= showdy =0
if 5l,k =0
= (SUCCESS
5.3.3 Bad Call Demands
Otherwise, the fact tha#y does get evaluated or not in contdur
depends a lot on its parent expression, if it has one at all. If it does We next describe how the bad call demands are processed. Let
not have a parent expression, it means ¢hethe main expression us consider this demandad-call | f v k. The expressiom is
of the program and, consequently, there is no possibility to prove necessarily a call and let= (;g: g~) . There are two cases: either
thate does not get evaluated in contddt the specified call does not occur, or it does. If the call does not
occur, then the demand is trivially succes$ful.
if g is the main expression:
= (FAILURE) if fZayorve o y:
= (SUCCES$S
In caseq does have a parent expression,gebe that expression.
Let us consider the case whageis aA-expression. Itimplies that |n the other case, the specified call is noted intolihd call log

g is the body ofg. Note that the evaluation & in contourk has Another note is kept in order to later take care of all the bad calls
no direct connection with the evaluationefin contourk. In fact, atg in contourk. We call this operatiomonitoring ¢ in contour
g gets evaluated in contodiif a closurec, resulting from the eval- k. More than one bad call may concern the same expression and

uation ofe; in some contour, gets called somewhere (at expression the same contour. Because the monitoring is a crucial operation, it
g~) in some (other) contouk’ on a certain argumentin such a should have access to bad call informations that are as accurate as
way that the resulting contowall(1”,c,v,K') in which the body of ~ possible. So, it is preferable to postpone the monitoring as much as
¢ must be evaluated Is So the processing of the demand consists possible.
in emitting a bad call demand for each such abstract call. Note how
the log matriceg andy are used to recover the circumstances under otherwise:
which the contours and closures were created. = Insert(l, f,v,k) in the bad call log.

Flag(l,k) as a candidate for monitoring.

8In fact, it is a little more complicated than that. We suppose
here that the abstract variables contain thimimal solutionfor 9Actually, in the current implementation, this case cannot occur.
the evaluation constraints generated by the analysis framework. InThe demand is generated precisely because the specified call was
these conditions, far being the label of the program main expres- found in thek matrix. However, previous implementations differed
sion, g k is non-empty if and only ik is the main abstract contour. in the way demands were generated and bad call demands could be
For any other contouk’, §; ;v = 0. emitted that were later proved to be trivially successful.

5.3.4 Split Demands ife=(ea):
splityc P | ceapn¥alC A

Direct Model Split N ASKITSA
K = call(l,c,v,k) A
Let us now present the processing of the split demands. The pro- Yex X P
cessing differs considerably depending on the splittee. We start by U { splitoy g Py |'P1 €B }
describing the processing of the following demansfdit 7alC P U{ splitapxP2 | P€C }
andsplit Val? P. These are easy to process because they explicitly ((c,V),Yer) | c€apn¥alc A
prescribe a modification to the abstract model. The modification ' VE KA
can always be accomplished successfully. whereA = K = call(l,c,v,k) A
-/ d P
= UpdateMy with P (B,C) = sC(A,P) Vew X P)

(succesy

)) The following example illustrates the processing of the demand.
Splita-variables Suppose that we want to process the derspiid o i +; that two
)) o . closures may result from the evaluationepf say,oy = {c1,Co};
The most involving part of the demand processing is the processingand that two values may be passed as arguments,opay,=

of the split (a-var) (sPa} demands. Such a demand asks for a {y; v,}. Definek;j, for i, j € {1,2}, ascall(l,ci,vj,k). Also sup-
splitting of the value of an expression in a certain contour, so that pose that

there is no more spreading of the values on the specified pattern. Let

us consider the demaisglit a; i P. The first possibility is that there = (Yorkyy X%, Yoy kip 25
is actually no spreading. Then the demand is trivially successful. Yoo ko X%, @NA = (Yo, X %),
if — (ay X P): that y, |, € ValB, and thaty, ,, € Val®?. Closurec;, when
) ’ called onv,, and closure,, when called orvy, both return values
= (succesy that are spread or. It follows that their return values in those

circumstances must be split. Sg, ,, andye, ,, must be split by

However, if there is spreading, then e.xpressepmas. to be in- the patterr. Itis necessary for these two splits to succeed in order
spected, as the nature of the computations for the different expres-

I : . . to make our original demand succeed. It is not sufficient, however.
sions vary greatly. Lgt us examine each kind of expression, one byWe cannot allowc; to be called onv, andc, to be called orvs
one. First, we consider the false constant. Note that this eXPres-| der the same contolir It is because the union of their return
sion can only evaluate to #1. So its value cannot be spredd oo values is spread on They arencompatible This is where thesc
matter which split patter® is. For completeness, we mention the function comes into play and its use:
processing of the demand nevertheless. '

. . i SC({((ClvVl)vyCLknL((027V2)7y027k22)}7*)
if g =#f:

= (succEes$ returns eithef{A.},0) or (0,{x}). In either case, a split according
) . . _ to the prescribed pattern, if successful, would make the two incom-
Secondg may be a variable reference. Processing this demand ispatible calls occur in different contours. If we suppose that the first

straightforward and it translates into a split demand on{-ear). case happens, the result of processing the original demand is:
if e =x: = split ye, k,, *
= split By k| P Split Ve, Ky, *
split oy A

Third, § may be a call. Clearly, this case is the most difficult to

deal with. This is because of the way a call expression is abstractly Fourth,g may be a\-expression. The processing of this demand is

evaluated. Potentially many closures are present in the caller posi-simple as it reduces to a split on the abstract model of closures.
tion and many values are present in the argument position. It fol-

lows that a Cartesian product of all possible invocations must be jf g = (Ajx. &/):

done. In turn, each invocation produces a set that potentially con- . split /alC P

tains many return values. So, in order to succeed with the split,

each set of return values that is spread on the pattern must be splitfith, let us consider the case wheges a conditional. Two cases

And the sub-expressions of the call must be split in such a way thatare possible: the first case is that at least one of the branches is
no invocation producing non-spread return values can occur in thespread on the pattern; the second is that each branch causes no
same contour than another invocation producing incompatible non-spreading on the pattern but they are incompatible and the test sub-
spread return values. This second task is done with the help of theexpression evaluates to both true and false values. In the first case,

function sc (Split Couples) that prescribes split patterns that sepa- a conservative approach consists in splitting the branches that cause
rate all the incompatible couples. An example follows the formal the spreading.

description of the processing of the split demand on a call.
ife=(f & a e Ak XPVamgXP):
:»{ split oy P | 10 € {1717} A ajo g X P }

In the second case, it is sufficient to split on the type of the test
sub-expression, as determining the type of the test sub-expression
allows one to determine which of the two branches is taken and

consequently knowing that the value of the conditional is equal to teed to lie. The first modeling pattern corresponds to the innermost

one of the two branches. variable. The last corresponds to the outermost.
ifg=(f g qgm): Note that the analysis framework does not compute the value of
= split ay i * variable references using these bounds. As far as the framework is

concerned, the whole contour is just a name for a particular eval-
Sixth, our expressio® may be a pair construction. The fact that uation context. In the framework, a reference to a variable x is
the value ofg is spread on the pattern implies first that the pattern computed by either inspecting the abstract varighleif x is the
has the form(P’, P”) and second that the value of one of the two innermost variable or by translating it into a reference to x from the
sub-expressions @& is spread on its corresponding sub-patté?n (labell’ of theA-expression immediately surroundiggand contour
or P”). In either case, the demand is processed by splitting the k' in which A-expressiong: got evaluated, creating a closure that

appropriate sub-expression by the appropriate sub-pattern. later got invoked, leading to the evaluation of its body in contour
k. For the details on variable references in the analysis framework,
if § =(cons | g g+) AP=(P,P’) AP € (sPa}: see [4]. Nonetheless, because of the way we implement the abstract
= split oy P/ model, a reference to a variable x from a lahelnd in a contouk
always produces values that lie inside of the bound corresponding
if g =(cons | g gr) AP=(P,P"): toxink.

= split or g P”
Consequently, a split on a program variable involves a certain num-
Seventh,g may be acar -expression. In order to split the value ber of splits on the abstract modelsaail andcc. Moreover, con-
of g on P, the sub-expression has to be split @ V). However, sistency between abstract values also prescribes multiple splits on
there is the possibility that the abstract model of the pairs is not the abstract model. For example, if contéuresults from the call
precise enough to abstract the pairs up the level of details requiredof closureA k' on a valuev at labell”, and in contouk”, that is,
by (P, V). If not, the model of the pairs has to be split first. If itis, k= call(l”, A k’,v,k”), then contouk cannot be more precise than

the split on the sub-expression can proceed as planned. k' about the program variable bounds it shares with contoun
turn, if closure);: K’ results from the evaluation ef in contourk”,
if @ = (car | @) A Val? is precise enough faiP, v): that is,A; K = cc(l’,k"), then contouk’ cannot be more precise
= split oy (P, V) thank” about the program variable bounds it shares with contour
K" . It follows that a split on a program variable, which can be seen
if g =(car | g/): as a refining of its bound in the local contour, requires the refin-
= split Val? (P, V) ing of a chain of contours and closure environments until a point is

reached where the contour to refine does not share the variable with
Eighth, ifg is acdr -expression, the processing is similar to that of the closure leading to its creation.

acar -expression.
Now, if we come back to the processing silit 3 i P, the first

if g =(cdr |) A ValP is precise enough fdiv, P): thing that must be verified is whether a reference to x feprim
= split oy x (V, P) contourk produces values that are spread on patieridVe denote
’ such a variable reference by fefk,1). If no spreading occurs,

if g =(cdr | g): the demand is trivially successful, otherwise modifications to the
= split Val? (v, P) model must be done.
Ninth, § must be gair? -expression. Processing the demand sim- if = (ref(x,k,1) X P):

ply consists in doing the same split on the sub-expression. To = (SUCCES$
see why, it is important to recall that, if this case is currently be-

ing considered, it is becausgy X P. If P =x, the type of the otherwise: .
sub-expression must be found in order to find the type of the ex- = UpdateM, with (P Pmn-1 ... Po)
pression. IfP = (P/, P"), the same split is required on the sub- UpdateMy with Ay, (P Pm-1 ... Po)

expression since all the pairs of thar? -expression come from its UpdateM,_, with (Pmy1 Pl Pm-1 ... Po)
sub-expressiorP cannot be\, or \j» K, for1” € Lab,k’ € (mkPab, .

because can only evaluate to Booleans and pairs. : .
UpdateMy with Aj, (Pa—1 ... Pm+1 P Pm1 ... Po)

otherwiseg = (pair? | g/): UpdateM,, with (P ... Pmy1 Py Pme1 ... Po)
= splita; x P where
’ (AXe oMY (Y X)))
Split B-variables is theA-expression binding x
The next kind of split demands have(@var) as a splittee. Re- Pn=PmNP

call that a(B-var) indicates the name of a program variable and the))

label and contour where a reference to that variable occurs. LetSplity-variables

us consider this particular demansplit By x| P. Recall also that))))

the contourk is a modeling contour pattern which consists in a list The last kind of demands is the split demand wityavar) as a

of modeling patterns, one per variable in the lexical environment Splittee. The processing of such a demand is straightforward since

visible from the expressiog. Each modeling pattern represents a

kind of bound in which the value of the corresponding is guaran- *°Once again, this case cannot occur in the current implementa-
tion.

the return value of a closure is the result of the evaluation of its according to the bucket in which the return values fall relatively to

body. Let us consider this particular demasglit y.x P. In case a split patterrP; splitting closure-argument pairs depending on the
the return value is not spread on the pattern, the demand in trivially criterion that they are considered bad calls or not. In fact, those two
successful. tasks are very similar. In both cases, the set of pairs is partitioned
into equivalence classes that are given either by the split pattern
if = (Yek X P): bucket or by the badness of the call. In order to separate two pairs
= (SUCCES$Y (v1, v2) and (wy, wp) belonging to different classes, it is sufficient
to provide a split that separatesfrom wy or a split that separates
otherwise: v, from w,. So, whatsc has to do is to prescribe a set of splits
= split ay P to perform only on the first component of the pairs and another
wherec=\ K A g =(AX. &) set of splits to perform only on the second component such that
any two pairs from different classes would be separated. This is
5.3.5 Call Site Monitoring clearly possible since prescribing splits intended to separate any

first component from any other is a simple task. Similarly for the
second components. This wany pair would be separated from
all the others. Doing so would be overly aggressive, however, as
there are usually much smaller sets of splits that are sufficient to
separate the pairs.

The processing rules have been given for all the demands. However
we add here the description of the monitoring of call sites. The
monitoring of call sites is pretty similar to the processing of the
demandsplit a; x P whereg is a call. The difference comes from
the fact that, with the monitoring, effort is made in order to prove
that the bad calls do not occur. Let us consider the monitoring of
call expressiort| g/ g~) in contourk. LetLgc denote the bad call
log. Potentially many closures may result from the evaluatiogy of
and potentially many values may result from the evaluatiog.of
Among all the possible closure-argument pairs, a certain number
may be marked as bad in the bad call log and the others not. If
no pair is marked as bad, then the monitoringgah k is trivially
successful.

Our implementation o§c proceeds this way. It first computes the
equivalence classes. Next, each pair is converted into a genuine
abstract pair (a modeling pattern). Then, by doing a breadth-first
traversal of all the pairs simultaneously, splitting strategies are elab-
orated and compared. At the end, the strategy requiring the smallest
number of splits is obtained. Being as little aggressive as possible
is important because each of the proposed splits will have to be ap-
plied on one of the two sub-expressions of a call expression. And
these sub-expressions may be themselves expressions that are hard

if ((a|«7km Valc) x a|//7k) ALgc(l,k) = 0: to split (such as calls).

= (SUCCESS)
6 Experimental Results
On the contrary, if all the pairs are marked as bad calls, then a de-
mand is emitted asking to show that the call does not get evaluatedg 1 Cuyrrent Implementation
at all.)

. Our current implementation of the demand-driven analysis is mere-
if ((arxNvalC) x o) € Lec(l,K): ly a prototype written in Scheme to experiment with the analysis
= showd k=0 approach. No effort has been put into making it fast or space-

)) efficient. For instance, abstract values are implemented with lists

But in the general case, there are marked pairs and non-markedyng symbols and closely resemble the syntax we gave for the mod-

pairs occurring at the call site. It is tempting to emit a demBnd g|ing patterns. Each re-analysis phase uses these data without con-

asking a proof that the call does not get evaluated at all. It would yerting them into numbers nor into bit-vectors. And a projection

be simple but it would not be a good idea. The non-marked pairs ysing the pattern-matchers is done for each use oéthgc, and
may abstract actual computations in the concrete evaluation of the.g| functions.

program and, consequently, there would be no hope of ever making

D successfut! What has to be done is to separate, using splits, the aside from the way demands are processed, many variants of the
pairs that are marked and the pairs that are not. The (overloaded)yain algorithm have been tried. The variant that we present in Sec-

scfunction is used once again. tion 5 is the first method that provided interesting results. Previ-

) ous variants were trying to be more clever by doing model changes
otherwise:) concurrently with demand processing. This lead to many compli-
= {split oy y Py | Py € A} U {split ar P2 | P, € B} cations: demands could contain values and contours expressed in

whereA = (apxNvalC) x ap k terms of an older model; a re-analysis was periodically done but
(B,C) = sc(A,Lpc(l,k)) not necessarily following each model update, which caused some

demands to not see the benefits of a split on the model that had
5.3.6 The Split Couples Function just been done; a complex system of success and failure propaga-
tion, sequencing of processing, and periodic processing resuming

We conclude this section with a short description ofgkidunction. was necessary; etc. The strength of the current variant is that, after

scis used for two different tasks: splitting closure-argument pairs €ach model update, a re-analysis is done and the whole demand-
propagation is restarted from scratch, greatly benefitting from the

11This is because an analysis done using the framewatkris new analysis results.
servative(see [4]). That is, the computations made in the abstract
interpretation abstraeit leastall the computations made in the con- In the current variant, we tried different approaches in the way the
crete interpretation. So, it is impossible to prove that an abstract bestmodel-updating demand is selected to be applied on the model.
invocation does not occur if it has a concrete counterpart occurring At first, we appliedall the model-updating demands that were pro-
in the concrete interpretation. posed by the demand processing phase. This lead to exaggerate

(letrec , map=
(A,0p. (Al (if 1 (cons ¢ (;0p, (car 4 1;0))
(11(12maR3 Opld)

‘map’ is mentioned in [7] as being impossible to analyze perfectly
well by anyk-cfa. The source code of this benchmark is shown in
Figure 14.Fib , gcd, tak , andack are classical numerical computa-

1) (6" 15 Lol) tions. N-queens counts the number of solutions for 4 queeBKI
(let 5 0p1=(AgX. (Car 5 Xy) is an interpreter of expressions written with the well known S, K,
(let ,, 0p2=(A,5Y. (54Yas # 56)) and | combinators. The interpreter runs an SKI program doing an
(letrec ,, loop= infinite loop. The combinators and the calls are encoded using pairs
(Aygdata and Booleans.

(let ,q resl=(44(5,map, opl,) (car ,, datg.))
(let 5 res2=(4, (zsmap, 0p2,) (cdr ,, datg,))

(45l00p,, (cons . (cons ¢ (cons ,, #f o #f ,0)
(Car o data) 6.3 Results
(cons o, (Agw. # . . .
(cdr ,, datay)))) Figure 15 presents the results of running our analysis on the bench-
(5,l00pg (cons o, #f o, # ,))) marks. Each benchmark was analyzed when reduced with each
Figure 14. Source of themap- har d benchmark translation method (global and private Y). A time limit of 10000

“work units” has been allowed for the analysis of each bench-
. . . . ark. The machine running the benchmarks is a PC with a 1.2 GHz
refining of the model, leading to massive space use. So we dec'ded:thlon CPU, 1 GByte RAM, and running RH Linux kernel 2.4.2.

to make a selection of one of the demands according to a CertainGambit-C 4.0 was used to compile the demand-driven analvsis
criterion. The first criterion was to measure how much the abstract ’ P ysIs.

model increases in size if a particular demand is selected. While
it helped in controlling the increase in size of the model, it was
not choosing very wisely as for obtaining veénformativeanalysis
results. That is, the new results were expressed with finer values
but the knowledge about the program data flow was not always in-

creased. Moreover, it did not necessarily help in controlling the . . S
those moments, respectively: before any analysis is done, after

increase in size of the analysis results. The second criterion, Whichthe analvsis with the initial model is done. durina. and after the
we use now, measures how much the abstract model plus the analy- YSKs P , during, and .
demand-driven analysis. Finally, the computation effort invested in

sis results increase in size. This criterion really makes a dif‘ference,the analvsis is measured both in terms of work units and CPU time
although the demand selection step involves re-analyzing the pro- y :

gram for all candidate demands.

The column labeled “Y” indicates whether the Y combinator is
Global or Private. The next column indicates the size of the trans-
lated benchmark in terms of the number of basic expressions. The
columns labeled “total”, “pre”, “during”, and “post” indicate the
number of run time type checks still required in the program at

The measure in column “total” is a purely syntactic one, it basi-
cally counts the number of callear -, andcdr -expressions in the
6.2 Benchmarks program. The measure in “pre” is useful as a comparison between
the O-cfa and our analysis. Indeed, the initial abstract model used in
We experimented with a few small benchmark programs. Most of our approach is quite similar to that implicitly used in the 0-cfa. An
the benchmarks involve numeric computations using naturals. Two entry like 2@23 in column “during” indicates that 2 run time type
important remarks must be made. First, our mini-language doeschecks are still required after having invested 23 work units in the
not includeletrec -expressions. This means that recursive func- demand-driven analysis (this gives an idea of the convergence rate
tions must be created using the Y combinator. Note that we wrote of the analysis).
our benchmarks in an extended language \éth- andletrec -
expressions, and used a translator to reduce them into the base lanAhen we look at Figure 15, the aspect of the results that is the
guage. We included two kinds tefrec translations: one in which ~ most striking is the small improvements that the full demand-driven
Y is defined once globally and all recursive functions are created analysis obtains over the results obtained by the 0-cfa. Two reasons
using it; one in which a private Y combinator is generated for each explain this fact. First, many run time type checks are completely
letrec -expression. The first kind of translation really makes the trivial to remove. For instance, evelst -expression, once trans-
programs more intricate as all recursive functions are closures cre-lated, introduces an expression of the fqfmix. ...) ...). Inturn,
ated by Y. The second kind of translation loosely corresponds to the translation of eacletrec -expression introduces 2 orl& -
making the analysis able to handd#gec -expressions as a special expressions, depending on the translation method. It is so easy to
form. We made tests using both translation modes. Our second re-optimize such an expression that even a purely syntactic detection
mark concerns numbers. Our mini-language does not include inte-would suffice. Second, type checks are not all equally difficult to
gers. Another translation step replaces integers and simple numeriagemove. The checks that are removed by the 0-cfa are removed be-
operators by lists of Booleans and functions, respectively. Thus, in- cause it is “easy” to do so. The additional checks that are removed
tegers are represented in unary as Peano numbers and operations &y the demand-driven phase are more difficult ones. In fact, the dif-
the numbers proceed accordingly. This adds another level of diffi- ficulty of the type checks seems to grow very rapidly as we come
culty on top of theletrec -expression translation. For an example close to the 100% mark. This statement is supported by the numbers

of translation, see Appendix A. presented in [2] where a linear-time analysis, $hb-0-cfa obtains
analysis results that are almost as useful to the optimizer than those
Our benchmarks are the followin@dr-safe contains the defini- from the O-cfa, despite its patent negligence in the manipulation of

tion of a function which checks its argument to verify that itis a pair the abstract values.

before doing the access. It can be analyzed perfectly well by a 1-cfa,

but not by a 0-cfaLoop is an infinite loop.2-1 computes the value Note how translating with a private Y péatrec helps both the

of (- 2 1) . Map-easy uses the ‘map’ function on a short list of 0-cfa and the demand-driven analysis. In fact, except for the
pairs using two different operatorllap-hard repetitively uses the n-queens benchmark, the demand-driven analysis is able to re-
‘map’ function on two different lists using two different operators. move all type checks when private Y combinators are used. The
The lists that are passed are growing longer and longer. This use ofsuccess of the analysis varies considerably between benchmarks.

Y | size | total | pre during post | units time(s)
cdr-safe G 17 4 1 0 5 0.02
P 17 4 1 0 5 0.02
loop G 32 11 0 0 1 0.02
P| 26 9 0 0 1 0.02
2-1 G| 48 15 2| 1@7 0 a7 0.30
P 42 13 2| 1@7 0 48 0.26
map-easy | G 82 26 6 | 4@19 0 134 1.95
P 76 24 6 | 4@19 0 134 1.76
map-hard G 96 33 9 | 6@385@2543@3051@520 0 1399 76.26
P | 101 35 4| 2@118 0 284 5.22
fib G| 141 40 12 12 | 10000| 1480.57
P | 168 50 5| 4@163@292@391@46 0 358 8.77
gcd G | 257 77 8 | 7T@256@475@664@823@952@1051@112 1| 10000[7958.30
P | 328 103 6 | 5@194@353@482@581@65 0 8509 1088.58
tak G | 202 46 9 9 | 10000| 1996.30
P | 218 52 4| 3@132@231@30 0 240 11.63
n-queens G| 372 121| 51 51| 10000| 15899.39
P | 454 | 151 | 11| 10@349@658@937@1186@1405@1750 5] 10000| 1816.00
ack G | 162 49 5] 4@163@292@391@46 1] 10000| 3948.32
P | 189 59 3| 2@101@17 0 200 7.97
SKI G | 285 46 19 | 15@9113@17311@3239@397 4 | 10000 841.13
T@4736@5435@14744@3584
P | 290 48 17 | 13@5211@989@1388@212 0 899 64.37
5@2494@3583@5671@673
Figure 15. Experimental results
unrolling | 1 2 4 8 16 method to automatically compute useful modifications on the ab-
units 176 280 532 1276 3724

! stract model. We gave a set of demands and processing rules for
time(s) 6.77 1553 51.76 24839 1592.93 them to compute useful model updates. Finally, we demonstrated
Figure 16. The effect of the size of a program on the analysis the power of the approach with some experiments, showing that it
work analyzes precisely (and in relatively short time) a program that is
known to be impossible to analyze with thefa. A complete pre-
Moreover, it is not closely related to the size of the program. It sentation of our contribution can be found in [3]. An in-depth pre-
is more influenced by the style of the code. In order to evaluate sentation of all the concepts and algorithms along with the proofs
the performance of the analysis on similar programs, we conductedoehind the most important theoretical results are also found there.
experiments on a family of such programs. We modifiedatie
benchmark by unrolling the recursion a certain number of times. Except for the ideas of abstract interpretation Hexibleanalyses,
Translation with private Y is used. Figure 16 shows the results for the remainder of the presented work is, to the best of our knowl-
a range of unrolling levels. For each unrolling levelthe total edge, original. Abstract interpretation is frequently used in the field
number of type checks in the resulting program ist4B9i if no of static analysis (see [2, 7, 8, 9]). Thecfa family of analyses
optimization is done, 3 checks are still required after the program (see [8, 9]) can, to some extent, be considered as flexible. The
is analyzed with the initial model, and all the checks are eliminated configurable analysis presented in [2] by Ashley and Dybvig can
when the demand-driven analysis finishes. We observe a somewhaproduce an extended family of analyses, &utompiler implemen-
quadratic increase in the analysis times. This is certainly better thantation time Our analysis framework (see [4]) allows for more sub-
the exponential behavior expected for a type analysis using lexical-tlety and can be modifieduring the analysis
environment contours.
We can think of many ways to continue research on this subject: ex-
tended experiments on our approach in comparison to many other
; analyses; the speed and memory consumption of the analysis; in-
7 Conclusions cremental re-analysis (that is, if analysis res&tswere obtained
by using modeM1, and modelM; is a refinement of modé¥i,,
then compute new resul®, efficiently), better selection of the
model-updating demands. Moreover, language extensions should
Be considered to handle a larger part of Scheme and extending our
demand-driven approach to other analyses. There are also more
theoretical questions. We know that analyzing with the analysis
framework and adequate modeling parameters is always at least as
owerful as thé-cfa (or many other analyses). However, it requires
e parameters to be given by an oracle. What we do not know is
whether our current demand-driven approach is always at least as
Soowerful as thek-cfa family. We think it is not, but do not yet have

The type analysis presented in this paper produces high quality

specifics of the program while considering the needs of the opti-
mizer. This adaptivity is obtained by the processing of demands
that express, directly or indirectly, the needs of the optimizer. That
is, the model updates are demand-driven by the optimizer. More-
over, the processing rules for the demands make our approach mor
robust to differences in coding style.

The approach includes a flexible analysis framework that generate roof
analyses when provided with modeling parameters. We proposeda proot.
a modeling of the data that is based on patterns and described a

(letrec ;| ack=
(A,m. (Agn.(f (= m, 0,)

(+g Ny 1,0)

(If 11 (12 n13 014)
(15 1saCkL7 18 Mg L) 1p1)
(22023 25 Mag 127

(28 zgaCk30 Myy) (=35 Ngg 13,00
(35(368CKs7 435) Og)

Figure 17. Theack benchmark, before expansion

(LAY ((A +p.
(5()\6+.
(7(Ag
(oA (13 (Aso=P.
13(A=
(15(A gackp
(17(Ajgack (1o(,0ack,, (cons ,, # o (cons ,, #f ,c (cons ¢ #f ,, (cons o # o #) # 4)))
(32 33 ackg4)))
(Aggackh ((Aggm. (Agn. (if 5o (39(40 41 Mip) #45)
(4alas*a6 n47) (cons g # 4q # 5))
(if 51 (5o 55754 Neg) # 55
(57(558Kl (60(61762 m63) (cons g, # g5 # g5))) (cons g # g5 # ¢g))
(70(7 ackf72 (73(74775 Myg) (CONS 77 # 25 # 20)))
(80(818CKE, Mg3) (54(556 Ne7) (CONS g #f gg # o))
(91Yg2 p93))))
(Agg=F (AgeX. ((Aggy. (it g7 Xgg (If 99 V100 (101(100=F103 (€N 104 105)) (edr o6 Yig) # 18)
(i 109 Y120 # 115 (€ONS 135 # 133 # 1))
(115 116 Pya7)))
(Apggf (A1 gX2 (Appoy2 (F 150 Y2105 (100 104F 105 (€O 156 X2157)) (CUF 105 Y2159)) X2430)0))
(131 Y130 *Py35)
(Ayggtf (A ggex3 (Aygey3 (f 137 X316 (CONS 139 #F 14 (141 (1454145 (©T 144 XB145)) Y3146)) Y3147))
(A1agf (146(A 1509 (1519157 F1sa)) (Aygah (AyseZ (156(157156 (150M160 Ni61)) Z1g2))

Figure 18. Theack benchmark, after expansion

Other researchers have workedaemand-driven analysisut in a
substantially different way (see the work of Duesterwald et al. [5],
Agrawal [1], and Heintze and Tardieu [6]). These approaches do
not have an abstract execution model that changes to suit the pro
gram. Their goal is to adapt well-known analysis algorithms into
variants with which one can perform what amounts to a lazy evalu-
ation of the analysis results.

8 Acknowledgments

The authors thank the anonymous referees for their careful review
and the numerous constructive comments.

This work was supported in part by a grant from the Natural Sci-
ences and Engineering Research Council of Canada.

9 References

[1] G. Agrawal. Simultaneous demand-driven data-flow and call
graph analysis. IProceedings of International Conference on
Software Maintenanc@ages 453-462, sep 1999.

[2] J. M. Ashley and R. K. Dybvig. A practical and flexible flow
analysis for higher-order languag@sCM Transactions on Pro-
gramming Languages and Syste28(4):845-868, jul 1998.

D. Dubé. Demand-Driven Type Analysis for Dynamically-
Typed Functional Languages PhD thesis, Université de
Montréal, 2002. Available at:
http://www.iro.umontreal.ca/"dube

(3]

[4] D. Dubé and M. Feeley. Demand-driven type analysis: an in-
troduction. InProceedings of the Workshop on Scheme and

Functional Programming 20QJages 21-32, sep 2001.

[5] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven
computation of interprocedural data flow. 8ymposium of

Principles of Programming Languaggsages 37—48, jan 1995.

[6] N.Heintze and O. Tardieu. Demand-driven pointer analysis. In
Proceedings of SIGPLAN 2001 Conference on Programming
Languages Design and Implementati®®CM SIGPLAN No-
tices. ACM Press, jun 2001.

[7] S. Jagannathan and S. Weeks. A unified treatment of flow
analysis in higher-order languages. 28nd ACM Symposium
on Principles of Programming Languagemges 392-401, jan
1995.

[8] O. Shivers. Control flow analysis in Scheme. Rroceedings
of the SIGPLAN '88 Conference on Programming Language
Design and Implementatippages 164—-174, jun 1988.

[9] O. Shivers. The semantics of Scheme control-flow analysis.
In Proceedings of the Symposium on Partial Evaluation and
Semantics-based Program Manipulatiggages 190-198, jun
1991.

A Translation of a Benchmark

In Section 6, we mention thddgtrec -expressions and numerical
operations in the benchmarks have to be translated into the base
language. We illustrate this process usingdtie benchmark. Fig-

ure 17 shows the source code of the benchmark and Figure 18 shows
the program after translation. Note that numbers have been replaced
by cons -expressions and that the necessary arithmetic operators
have been introduced as functions. Also note that the Y combi-
nator is bound first and that the recursive functions (‘ack’ and three
arithmetic operators) are created using it.

