
Optimal Single- and Multiple-Tree

Almost Instantaneous Variable-to-Fixed Codes

Danny Dubé Fatma Haddad

Université Laval, Quebec City, Canada

Email: Danny.Dube@ift.ulaval.ca Fatma.Haddad.1@ulaval.ca

Abstract

Variable-to-fixed codes are often based on dictionaries that obey the prefix-free property. In particular, the

Tunstall algorithm builds such codes [1]. However, the prefix-free property is not necessary to have correct

variable-to-fixed codes. Removing the constraint to obey the prefix-free property may offer the opportunity

to build more efficient codes [2], [3]. Here, we come back on the almost instantaneous variable-to-fixed

(AIVF) codes introduced by Yamamoto and Yokoo. They considered both single trees and multiple trees

to perform the parsing of the source data. We show that, in some cases, their techniques build suboptimal

codes. We propose potential correctives to their techniques. We also propose a new, completely different

technique based on dynamic programming that builds optimal dictionary trees.

We identified two defects in the Yamamoto-Yokoo technique (YY) that prevents it to build optimal AIVF

codes. In multiple-tree mode, YY initializes the dictionary tree with a complete root. While a complete root

is a necessity in single-tree mode, to ensure progress during parsing, it is not in multiple-tree mode. The

obligation to complete the root in multiple-tree mode sometimes leads to the construction of suboptimal

codes. In both modes, YY works by having two strategies compete to grow dictionary trees: one consists

in completing the most probable incomplete node and the other one consists in growing a few best new

leaves. When the proposition made by the second strategy happens to be the most competitive, it is harmful

to fully adopt the proposition. We proposed two correctives to compensate for the identified defects.

In order to build clearly optimal dictionary trees, we proposed a simple construction technique based

on dynamic programming (DP) [4], [5]. The technique builds all trees TN
i up to a desired size, where N

is the size of the tree in terms of number of parsewords and i is the strength of the partial information

about the next symbol of the input. Here are the fundamental shapes of the dictionary trees built by the

DP algorithm, where the alphabet is {a1, . . . , aA, } such that p(aj) ≥ p(aj+1).

(a) ◦

aA

TN
0

(b) • (c)

ai+1

TL
0

TR
i+1

(a) TN
A−1

= DEFAULT(TN
0 )

(b) T 1
i = ROOT, where: i ≤ A− 2

(c) TN
i = TL

0 ⊕ TR
i+1, where: i ≤ A− 2,

2 ≤ N = L+R

As future work, we should verify whether applying our correctives on YY would make it optimal. The

“almost instantaneous” property remains a constraint on the considered VF codes, even if it is looser than

the PF property, and we should investigate on the opportunities offered by the removal or relaxation of

this constraint; e.g., codes with a longer delay [6].

REFERENCES

[1] B. P. Tunstall, Synthesis of Noiseless Compression Codes, Ph.D. thesis, Georgia Institute of Technology, 1967.

[2] S. A. Savari, “Variable-to-fixed length codes and plurally parsable dictionaries,” in Proc. of the Data Compression
Conference, Mar. 1999, pp. 453–462.

[3] H. Yamamoto and H. Yokoo, “Average-sense optimality and competitive optimality for almost instantaneous VF
codes,” IEEE Transactions on Information Theory, vol. 47, no. 6, pp. 2174–2184, Sep. 2001.

[4] S.-L. Chen and M. J. Golin, “A dynamic programming algorithm for constructing optimal “1”-ended binary
prefix-free codes,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1637–1644, 2000.

[5] K. Iwata and H. Yamamoto, “A dynamic programming algorithm to construct optimal code trees of AIVF codes,”
in Proc. of the International Symposium on Information Theory and Applications, Nov. 2016.

[6] K. Iwata and H. Yamamoto, “An iterative algorithm to construct optimal binary AIFV-m codes,” in Proc. of the
IEEE Information Theory Workshop, Nov. 2017, pp. 519–523.


