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Abstract

Compression by Substring Enumeration (CSE) is a recent and promising
lossless compression scheme. The first experiments on CSE showed that it
yields compression ratios that favorably compare to other lossless compression
techniques. However, the experiments also showed that it tends to incur a
performance loss on non-textual, byte-oriented sources and it was conjectured
that CSE’s phase unawareness was responsible for this loss of performance.
Subsequent work confirmed the conjecture by obtaining improved compression
ratios when synchronization codes get inserted in the data source, indirectly
solving the phase-unawareness problem. This indirect solution does not give an
absolute measure of the loss incurred by the phase unawareness problem. This
paper presents a modified CSE algorithm that is made explicitly phase aware.
It compares the synchronization-code approach to the explicitly phase-aware
approach and shows that, in the end, the approach based on synchronization
codes is almost as good as the phase-aware approach.

1 Introduction

Compression by Substring Enumeration (CSE) is a recent and promising lossless
compression scheme [4]. The first experiments showed that CSE yields compression
ratios that favorably compare to other lossless compression techniques. However, the
experiments also showed that it tends to incur a performance loss on non-textual,
byte-oriented sources. Dubé and Beaudoin conjectured that this loss of performance
was caused by CSE’s phase unawareness. Being bit-oriented, CSE is unable to take
any block structure of the data into account, e.g. when the data is byte-oriented. As
such, CSE is unaware of the position of the bits in their respective blocks, i.e. of the
phase of the bits. Subsequent work confirmed the conjecture by obtaining better com-
pression ratios when synchronization codes get inserted in the data source [2, 3, 9].
The approach in that work consists in preprocessing the data to insert synchroniza-
tion patterns, which cause CSE to distinguish substrings that are located at different
phases. It is the synchronization code that indirectly makes CSE aware of the phase.
As such, the approach has the advantage of being very simple, implementation-wise,
as CSE’s algorithm does not have to be modified. But it is only an indirect solution
to the phase-unawareness problem and one of its drawbacks is that the insertion of
synchronization codes inflates the source data. Due to this effect, the actual per-
formance of a genuinely phase-aware version of CSE remains unknown. This paper
presents how CSE has been modified to be made explicitly phase aware. It compares
the performance of the modified CSE to that of the original CSE with synchronization
codes and shows the unexpected efficiency of the synchronization codes.



Length Substrings

0 8×ϵ
1 6×0 2×1

2 4×00 2×01 2×10

3 3×000 1×001 2×010 1×100 1×101

4 2×0000 1×0001 1×0010 1×0100 1×0101 1×1000 1×1010

5 1×00000 1×00001 1×00010 1×00101 1×01000 1×01010 v 1×10000 1×10100

6 1×000001 1×000010 1×000101 1×001010 1×010000 1×010100 1×100000 1×101000

7 1×0000010 1×0000101 1×0001010 1×0010100 1×0100000 1×0101000 1×1000001 1×1010000

8 1×00000101 1×00001010 1×00010100 1×00101000 1×01000001 1×01010000 1×10000010 1×10100000

Figure 1: Substring enumeration for ‘01000001’.

The paper is structured as follows. Section 2 briefly reviews the CSE technique.
Section 3 describes the problem of phase unawareness. Section 4 reviews prior work
based on synchronization codes. Section 5 present our new phase-aware CSE variant.
Sections 6 and 7 present and comment about the experimental comparison between
the prior work and this contribution. Section 8 mentions future work.

2 Background on CSE

2.1 Preliminary Notations

For the remainder of this paper, we adopt the following conventions: N is the set of
natural numbers; ϵ is the empty string; | · | designates the length of a string; a and b
denote individual bits; u, v, w are strings in {0, 1}∗. The data to be compressed is a
binary string d of N bits. We use D to denote the circular representation of d. In-
formally, the circular representation of d can be thought as the infinite concatenation
of d with itself.

We state that a substring w of D occurs at position p, denoted w ∈p D iff:
∃u, v ∈ {0, 1}∗, ∃i ∈ N, uwv = di, and |u| = p < N . Note that, as D is the circular
representation of d, there can be some substring w of D such that |w| ≥ N . A
substring w occurs in D, denoted by w ∈ D, iff ∃p such that w ∈p D. Accordingly,
we define the occurrence count of a substring w, Cw, to be |{p ∈ N|w ∈p D}|. Note
that by the restriction on p, we avoid counting the infinite repetitions implied by the
circularity of D. Another consequence of this definition is that if w /∈ D, then Cw = 0.
Furthermore, in the case of w = ϵ, we have Cϵ = N . Figure 1 lists the occurrence
count for each substring of length at most N from d = 01000001.

2.2 Overview of the Compression by Substring Enumeration Scheme

In a somewhat counterintuitive way from a compression standpoint, CSE proceeds to
describe the original data string d by essentially encoding the occurrence count Cw

for each lexicographically ordered substring w of D. This encoding is done in a
structured manner such that, upon decoding the counts, the decompressor will be
able to progressively reconstruct the original data string. Almost every step of the
enumeration consists in encoding some Cawb, where w is called the core of awb and,
conversely, awb is one of the (four possible) extensions of w.

Even if substrings of D can be of arbitrary length, in order to fully describe the
original data, CSE needs only enumerate the substrings of at most N bits. Clearly,
from the set of N -bit substrings, there is exactly one1 that will match the original

1Assuming d is not repetitive.



data thus obviating the need to consider any longer substrings. In the following, we
will cover the essential details of this description process.

From the given definition of the occurrences of some substring w of D, there is a
set of relations that will lay the foundation for CSE’s compression process and clarify
why the mere enumeration of D’s lexicographically ordered substrings can lead to a
compressed representation of d. The first and foremost of these relations is that, by
the circularity of D, we have:

C0w + C1w = Cw = Cw0 + Cw1.

Given the above equality and one of the four extensions awb of w, we easily derive
the three others. For instance, for a fixed C0w0, we observe that:

C0w1 = C0w − C0w0

C1w0 = Cw0 − C0w0

C1w1 = Cw1 − C0w1 = Cw1 − C0w + C0w0.

From these equalities and the fact that Cawb ≥ 0, for all a, b ∈ {0, 1}, we obtain
lower and upper bounds on C0w0:

max(0, C0w − Cw1) ≤ C0w0 ≤ min(Cw0, C0w).

Assuming |w| = n−1, we can see from this last result that given the occurrence counts
of 0w, 1w, w0, and w1, namely the left and right extensions of w, each of length n,
we have enough information to fix the lower and upper bounds on the occurrence
count for 0w0 of length n + 1. Also note that given C0w0, C0w, C1w, Cw0, and Cw1,
from our first set of equations, we can further deduce the occurrence count for each
of the other extensions of w of length n+ 1: 0w1, 1w0, and 1w1.

From this bounded prediction on C0w0, we can then use any entropy encoder to
lower the number of bits needed to encode each occurrence count. It is by inductively
establishing those bounds on C0w0 from |w| = 0 to |w| = N − 2 that CSE mainly
achieves compression. Furthermore, it is not all the C0w0 that explicitly need to be
sent. For instance, if C0w = 0 or Cw0 = 0, then it can safely be assumed that C0w0 = 0.
More generally, each time min(C0w, C1w, Cw1, Cw0) = 0, there is no ambiguity on the
value of C0w0 and thus, there is no need to explicitly send its value.

In order to describe and reconstruct the original string d only from the occur-
rence count of D’s lexicographically ordered substrings, a special data structure, the
substring tree, has to be maintained by both the compressor and the decompressor.
The simplest form of a substring tree is what has been called the infinite substring tree
(IST). As shown in Figure 2, each path from the root of the IST to a given node nw

forms a substring w of D; the occurrence count being nw’s label. For convenience,
we identify the address of a node by the path/substring that leads to it. Referring to
Figure 2 a), n001, the node of address 001 would be the one and only node in solid
grey. If CSE were to send each occurrence count of each substring of D in lexico-
graphic order, it would construct the IST level by level, each time predicting C0w0

from the occurrence counts of the preceding level. There is however a high amount
of redundancy in the IST. For instance, if, starting from the root, there is a path cor-
responding to the substring aw then by construction, there is a path corresponding
to w. Moreover, let Taw be the sub-tree rooted at naw and let Tw be the sub-tree



Figure 2: Substring trees for ‘01000001’: a) the IST; b) the CST.

rooted at nw; if Cw = Caw, we can then assume that each and every occurrence of w
is preceded by a and hence Tw and Taw are isomorphic: their expansion can only
lead to the same substrings. In Figure 2, we can see two such isomorphic sub-trees
beginning at nodes n00101 and n0101. It follows that if, when constructing the IST,
we were to prune Taw and create a shortcut from the parent of its root node to Tw,
then the traversal of the resulting tree will need to emit considerably fewer occurrence
counts to properly describe d. It is the result of pruning deeper isomorphic sub-trees
and linking their parent node to their respective counterpart that has been called the
Compacted Substring Tree (CST). In Figure 2 b), we can see how the sub-tree starting
from n00101 has been pruned and replaced by a shortcut (a dashed line) to n0101.

After having directly transmitted the occurrence counts for ϵ (the number of bits
in d) and 0, CSE’s algorithm initiates a breadth-first construction of the CST. Starting
with ϵ as its initial core w along with the counts of its left and right extensions (0ϵ,
1ϵ, ϵ0, and ϵ1), for each step of the way, CSE extends w by estimating the bounds
on C0w0. If none of the occurrence counts for the left and right extensions of w is
equal to zero and if there is no possible shortcut to be made to an equivalent node
in the CST, CSE creates a new node and emits its bounded occurrence count using
an arithmetic encoder. After reaching level N , the final step is then to send out the
rank of the original string among all its lexicographically ordered rotations so that
upon the reconstruction of CST, the decompressor would be able to trace the path
leading to the original string.

3 The Phase Problem

As previously mentioned, experimental measurements on the performance of CSE
have shown a significant loss on the compression ratio for binary (non-textual),
byte-oriented data [4]. It was conjectured by the original authors that this loss of
performance was the result of CSE’s inherent phase unawareness. In the following,
we explain what is really meant by phase unawareness and how it can affect CSE’s
performance on binary sources.

The notion of phase appears when the source data is organized into blocks of
identical size. Let k be the number of bits in each block (given that, in this paper, we
consider the binary alphabet only). For example, the source data may be organized
into bytes and we would have k = 8 in that case. The phase of a particular occurrence
of a bit in D is the offset the bit relative to the beginning of the block it is located in.



For example, in byte-oriented data, the phase of a bit is one of 0, 1, . . . , 7. The phase
of a particular occurrence of a substring in D is the phase of its leading bit.2

We say that CSE is unaware of the phase in the sense that, when it considers (all
occurrences of) some substring w and its number Cw of occurrences, it does not take
the phase into account. As such, when CSE encodes a number Cawb of occurrences, it
does so while mixing the occurrences of w that are located at any phase whatsoever.
Mixing the occurrences of all the phases together incurs a loss of performance by CSE.
Indeed, occurrences of w at a certain phase might not have the same neighboring bits,
statistically speaking, as the occurrences of w at some other phase. For example, in
byte-oriented data, given some occurrences of 110 at phase 1 (which are preceded by
phase-0 bits and followed by phase-4 bits) and some occurrences at phase 7 (which
are preceded by phase-6 bits and followed by phase-2 bits of the following bytes), it
seems reasonable to expect a higher correlation between phase-0 and phase-4 bits of
the same bytes than between phase-6 and phase-2 bits of neighboring bytes.

Regarding CSE’s performance, since CSE is essentially working at the bit level,
it might not be immediately clear why there should be any difference between byte-
oriented text files and byte-oriented binary data. The reason for this is rather simple:
on most ASCII-encoded files, nearly all bytes have their most significant bit set to 0.
When considering long enough substrings, this nearly systematic presence of a zero
on the first phase of the eight-bit blocks provides a discriminating factor by which
substrings taken at different phases can be distinguished by CSE. For instance, given
the substring 00010001 and knowing that there cannot be a bit 1 at phase 0, among
the eight possible phases of that substring, there are exactly two phase arrangements
that will never occur, namely: 0506071001020314 and 0102031405060710. While the
most significant bit in ASCII-encoded data is sufficient to induce some sense of phase
awareness in CSE, it certainly is not reliable enough to ensure that CSE will never
mix together two occurrences of same-contents substrings that are located at different
phases. However, it is this idea of bits acting as markers to restrict the phase at which
a given substring can appear that has lead to the scheme employed in prior work to
induce a sense of phase awareness in CSE.

4 Inducing Phase Awareness Using Synchronization Codes

In order to validate the conjecture that CSE incurs a performance loss due to phase
unawareness, Dubé et al tested an indirect solution based on synchronization codes [2,
3, 9]. The solution is said to be indirect because CSE’s algorithm is left unchanged—
and, so, technically remains phase unaware—but the insertion of synchronization
codes causes CSE to cease mixing substrings of different phases together. A clear
advantage of this approach is that, by not changing CSE’s algorithm, it is very simple
and easy to implement. The insertion of the synchronization code is performed in
a preprocessing step, just before compression by CSE. On the other hand, a clear
disadvantage of this approach is that the source data gets inflated by the insertion and,
if the compression performance of CSE is not improved enough by the synchronization
codes, then the net result might be a loss in compression performance. However,
experiments showed that the insertion of synchronization codes does provide a clear
improvement of the compression performance, on average. The rest of the section

2We may also assign a phase to a particular occurrence of ϵ in D: it has the phase of the bit that
immediately follows the occurrence of ϵ.



_ _ _ _ _ _ 0 _ _ 0 1 1 1

1 _ _ _ _ _ _ 0 _ _ 0 1 1

1 1 _ _ _ _ _ _ 0 _ _ 0 1

1 1 1 _ _ _ _ _ _ 0 _ _ 0

0 1 1 1 _ _ _ _ _ _ 0 _ _

_ 0 1 1 1 _ _ _ _ _ _ 0 _

_ _ 0 1 1 1 _ _ _ _ _ _ 0

0 _ _ 0 1 1 1 _ _ _ _ _ _

_ 0 _ _ 0 1 1 1 _ _ _ _ _

_ _ 0 _ _ 0 1 1 1 _ _ _ _

_ _ _ 0 _ _ 0 1 1 1 _ _ _

_ _ _ _ 0 _ _ 0 1 1 1 _ _

Figure 3: Demonstration of the reliability of the example pattern; k = 8 and n = 5.

gives an overview of the approach.
In this approach, a synchronization code transforms the source data on a per-

block basis using a fixed pattern. Such a pattern is a sequence of jokers and control
bits. A pattern contains k jokers, where k is the size of the blocks of the source
data, and a certain number n of control bits. A joker is denoted by ‘ ’ and a control
bit is simply a bit. For example, the pattern ‘ 0 0 1 1 1 1’ may be
used to insert synchronization codes in data organized in bytes (k = 8). A data
block is transformed by merely copying its k bits in the pattern at the k positions
marked by jokers, while preserving the order. The transformation described by a
(k, n)-pattern causes an inflation of the data by a factor of k+n

k
and the transformed

data in organized in blocks of k + n bits. The approach based on synchronization
codes uses only reliable ones. Reliable synchronization codes provide sure information
about the phase, not just probabilistic information. Figure 3 presents a proof of the
reliability of the example pattern: any two distinct rows have conflicting control bits.
Thus, when we observe a substring of 13 consecutive bits (where 13 = 8 + 5) taken
at some arbitrary position in the transformed data, the phase of the substring can be
identified with certainty.

When compressing transformed data, CSE benefits from clues about the phase
while, at the same time, suffers from the inflation of the data caused by the trans-
formation. CSE has to compress both the complete sequence of bits that originates
from the source data and the control bits that are interspersed among them. How-
ever, Dubé et al selected a kind of synchronization codes, namely those based on
fixed patterns of jokers and control bits, that are especially easy for CSE to learn and
encode efficiently.

Referring to Figure 3, it is obvious that, after the insertion of the synchronization
codes, any substring of length greater or equal to 13 can only be located on a unique
phase: there cannot be two identical substrings having 13 or more bits which would
begin at different phases. Thus, for |w| ≥ 13, when predicting and encoding C0w0

based on C0w, C1w, Cw0, Cw1, the phase of all the occurrences of w is unique, even
if unknown to CSE per se, so no encoding on substrings of mixed phases happens.
Moreover, if the bit to the left of w happens to be a synchronization bit, say bit 1,
due to the pattern used by the synchronization code, it follows that each and every
occurrence of w will have 1 to its left, resulting in C1w = Cw, and C0w = 0. As



previously shown, a count of zero in either one of w’s left or right extension leads to the
immediate inference of C0w0 and hence the opportunity not to send that information.
This effect is the result of CSE having learned the synchronization code. Predicting
and encoding the control bits can be performed by CSE at no cost for cores w such
that |w| ≥ 13. Learning the synchronization code incurs a cost only for cores w such
that |w| < 13.

5 Inducing Phase Awareness Explicitly

Although CSE can effectively learn synchronization codes, the cost of inserting those
codes in-between the original data can hardly be null. Here, we present a modification
to CSE’s algorithm that allows it to be phase aware without incurring any inflation
on the original data and allowing phase synchronization for each and every substring,
regardless of their length.

First, let us slightly refine our definition of occurrence for some substring w ofD to
take the phase into account. Given blocks of length k, we say that some substring w
occurs at phase q and position p, noted w ∈q

p D, if ∃i ∈ N, ∃u, v ∈ {0, 1}∗ such

that uwv = di, |u| mod k = q, and |u| = p < N . That is to simply say that some
substring w occurs at phase q if and only if it begins at offset q from the beginning of
a block and begins at a position that is less than the length of the original string d.
For short, we note wq to refer to some substring beginning at phase q regardless of its
position. Correspondingly, we define the number of occurrences for some substring w
at phase q, noted Cq

w, as |{p ∈ N|w ∈q
p D}|.

In this context, the original equations that allowed us to predict the bounds
for C0w0, now noted Cq

0w0, are also slightly modified. But, first, we introduce an
abbreviated notation: q ⊕ δ means q + δ mod k. Now, we have:

Cq
0w + Cq

1w = Cq⊕1
w = Cq⊕1

w0 + Cq⊕1
w1 .

From which we can derive:

Cq
0w1 = Cq

0w − Cq
0w0

Cq
1w0 = Cq⊕1

w0 − Cq
0w0

Cq
1w1 = Cq⊕1

w1 − Cq
0w1 = Cq⊕1

w1 − Cq
0w + Cq

0w0.

Hence, our fundamental inequality to establish the bounds on Cq
0w0 becomes:

max(0, Cq
0w − Cq⊕1

w1 ) ≤ Cq
0w0 ≤ min(Cq⊕1

w0 , Cq
0w).

Having defined the bounds on Cq
0w0, we now need to define exactly which of those oc-

currence count will have to be sent. This means that the CST on which we previously
relied for this purpose will have to be modified.

As before, the CST is built by enumerating the occurrences of each lexicograph-
ically ordered substring of D with the difference that all those occurrences, as per
the new definition of occurrence, have to be counted under their respective phase.
It follows that for a given phase q, the empty substring ϵ will now have as many
occurrences as there are blocks of length k in d. This means that our CST will now
have k root nodes, each corresponding to some ϵq substring, and such that Cq

ϵ = N
k
.

For each of those roots, still as before, CSE will directly emit the occurrence count



Figure 4: The 4-phase CST for the binary encoding of ‘uL’: ‘0111 0101 0100 1100’.

for ϵq and 0q. It will then proceed to predict the bounds of Cq
0w0, beginning with w = ϵ

and create the resulting CST nodes up to |w| = N − 2.
Recall that a CST is the compacted expression of an IST, namely that while

the IST explicitly develops the isomorphic sub-trees that results from two substrings
having a common suffix and the same occurrence count, the CST will prune the sub-
tree associated with of the longest substring and create a shortcut to the root of the
sub-tree at the end of the shortest substring. When taking the phase into account, this
means that while building a core’s extension for a given phase, we also have to look
on the previous level of the next phase if we can find a common suffix with the same
occurrence count. The sub-tree rooted at nq

aw is isomorphic to the one rooted at nq⊕1
w

if Cq
aw = Cq⊕1

w . A simple illustration for this is given in Figure 4: because C1
1ϵ = C2

ϵ ,
instead of expanding n1

1ϵ’s sub-tree, we directly link to n2
ϵ . Having a procedure to

predict occurrence counts and accordingly build a CST while always taking the phase
into account, CSE can effectively be said to be explicitly phase aware.

6 Experimental Results

Here we present a comparison of the compression efficiency on the files of the Calgary
Corpus [10]; comparing gzip [6] set at maximal compression, the compression ratios
for PPM*C and the Burrows-Wheeler transform (BWT) reported in [1], the original
implementation of CSE, CSE with optimal Synchronization Codes [9] (noted CSE SC)



File Gzip BWT PPM CSE CSE SC CSE EPA

bib 2.51 2.07 1.91 1.98 1.88 1.87
book1 3.25 2.49 2.40 2.27 2.33 2.24
book2 2.70 2.13 2.02 1.98 1.93 1.93
geo 5.34 4.45 4.83 5.35 4.57 4.56
news 3.06 2.59 2.42 2.52 2.42 2.42
obj1 3.84 3.98 4.00 4.46 3.99 3.95
obj2 2.63 2.64 2.43 2.71 2.44 2.44
paper1 2.79 2.55 2.37 2.54 2.41 2.39
paper2 2.89 2.51 2.36 2.41 2.34 2.33

File Gzip BWT PPM CSE CSE SC CSE EPA

paper3 3.11 — — 2.73 2.63 2.61
paper4 3.33 — — 3.20 3.01 2.96
paper5 3.34 — — 3.33 3.10 3.05
paper6 2.77 — — 2.65 2.49 2.47
pic 0.82 0.83 0.85 0.77 0.81 0.81
progc 2.68 2.58 2.40 2.60 2.44 2.42
progl 1.80 1.80 1.67 1.71 1.64 1.63
progp 1.81 1.79 1.62 1.78 1.66 1.64
trans 1.61 1.57 1.45 1.60 1.47 1.45

Figure 5: Experimental results.

and CSE with Explicit Phase Awareness (noted CSE EPA). The measurements (in
bits per character) are presented in Figure 5. Note that CSE usually divides too large
a file into several chunks to be individually compressed. In the following benchmark,
each of CSE’s variants used chunks of 3 MB, hence being able to process each of the
Calgary’s corpus files in one pass, with or without synchronization codes.

7 Discussion

As can be seen from the above results, in the few instances where CSE EPA does not
in fact provide a better compression ratio, the gap between the best listed algorithms
and CSE EPA is very small.

A somewhat peculiar result however, is that of the compression ratios obtained
from the pic file. It is the only instance where the original implementation of CSE
actually outperforms both of its phase-aware variants. The pic file, being a binary
image, is indeed the only file from the Calgary Corpus where the data is not byte-
oriented. From this context, grouping substring occurrences based on their phase is
a false premise and it might very well be (as it is here the case) that this artificial
phase restriction on the bounds of the occurrences of some substring will result in
worst compression ratios than if they were accounted for regardless of their phase.

Another interesting and rather unexpected result is the small and sometimes
nearly null margin between CSE with synchronization codes and its explicitly phase-
aware counterpart. As expected, the explicitly phase-aware version of CSE always
leads to better compression ratios. Yet, the smallness of the gap between the two
versions clearly shows how effective CSE is in learning the synchronization codes and
exploiting the implicit phase awareness provided by them.

8 Future Work

One important detail that has been overlooked in the general presentation of CSE
is the probability distribution of C0w0 between its lower and upper bounds. At the
moment, CSE’s algorithm uses a statistical learner that has proved to be consistently
better than simply assuming a flat probability distribution, thus leading to better
compression ratios.

However, the effectiveness of this statistical learner has not been established and
some knowledge on the evolution of the statistical distribution of C0w0, especially in
upper levels of the CST, could very well enhance CSE’s general performance. Most



of the research on CSE is currently done in that direction. In theory, CSE has been
shown to be universal for Markovian sources and, more generally, for stationary and
ergodic sources [5, 11]. The demonstrations assume that another statistical distribu-
tion is used by CSE, namely the hypergeometric distribution and a related one based
on necklaces. Iwata et al have proposed to use slightly stronger bounds on C0w0 [7].
They also showed that the version of CSE described in Dubé and Yokoo’s proof of
universality suffers from little redundancy [8].
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