
Lossless Data Compression via Substring Enumeration

Danny Dubé Vincent Beaudoin
Université Laval, Canada

Email: Danny.Dube@ift.ulaval.ca Vincent.Beaudoin.1@ulaval.ca

Abstract

We present a technique that compresses a string w by enumerating all the
substrings of w. The substrings are enumerated from the shortest to the longest
and in lexicographic order. Compression is obtained from the fact that the set
of the substrings of a particular length gives a lot of information about the
substrings that are one bit longer. A linear-time, linear-space algorithm is
presented. Experimental results show that the compression efficiency comes
close to that of the best PPM variants. Other compression techniques are
compared to ours.

1 Basic Idea

We propose a technique of lossless data compression via substring enumeration (CSE)
that compresses a string of bits D in three steps: first, it builds a tree that counts the
number of occurrences of each of D’s substrings, while considering D to be circular;
second, it enumerates all of D’s substrings, from the shortest to the longest and in
lexicographic order, and, third, it indicates which of the full-length substrings is D.

If the document to be compressed is over an alphabet other than {0, 1}, it can
trivially be encoded symbol by symbol into bits using a fixed-length code. Throughout
the paper, we assume that D is over {0, 1}. Consequently, when the document is too
long, it can be divided into blocks and each block can then be compressed using
substring enumeration. So we assume that D, whether it is the complete document
or a block, needs not be divided in parts. We further assume that D is non empty.
Finally, for reasons that we give in Section 4, we assume that D is not made from k
repetitions of some string, for any k > 1.

The enumeration proceeds by describing the set of substrings of length L, for
L going from 1 to N , where N is D’s length. Given a particular L, the description
consists in indicating the number of occurrences of each possible L-bit substring of D.
This description does not enumerate the substrings in the order in which they appear
in D but rather in lexicographic order. For example, let D be ‘01000001’. Figure 1
presents all the substrings of lengths 1 to 8. Note that, naturally, one of the 8-bit
substrings happens to be D itself. This is why CSE’s last step consists in transmitting
the rank of the correct rotation.

We do not yet explain how the numbers of occurrences ought to be encoded.
However, a key observation is that the enumeration of the L-bit substrings gives a lot
of information about the enumeration of the (L + 1)-bit ones. It is this observation
that leads to the ability to compress data. If one were to enumerate substrings without
taking the shorter ones into account, one would emit O(N2) numbers of occurrences.
Such a näıve enumeration would have no chance of effectively compressing D.

Length Substrings

1 6×0 2×1

2 4×00 2×01 2×10

3 3×000 1×001 2×010 1×100 1×101

4 2×0000 1×0001 1×0010 1×0100 1×0101 1×1000 1×1010

5 1×00000 1×00001 1×00010 1×00101 1×01000 1×01010 1×10000 1×10100

6 1×000001 1×000010 1×000101 1×001010 1×010000 1×010100 1×100000 1×101000

7 1×0000010 1×0000101 1×0001010 1×0010100 1×0100000 1×0101000 1×1000001 1×1010000

8 1×00000101 1×00001010 1×00010100 1×00101000 1×01000001 1×01010000 1×10000010 1×10100000

Figure 1: Substring enumeration for ‘01000001’

2 Definitions

2.1 Notation

Throughout the paper, we follow the following conventions about the use of variables,
unless stated otherwise: Σ is an alphabet; {0, 1} is the binary alphabet; a, b, and c
are bits, i.e. a, b, c ∈ {0, 1}; D, u, v, w, and x are strings of bits; N is D’s length; p is
the position of an occurrence of a substring in D; L is used to denote both the length
of a string and the number of a level in a tree, where the root is considered to lie at
level 0; C, with indices and possibly exponents, is an integer that counts the number
of occurrences of some substring; T and t, possibly with indices, are trees; and m and
n, with indices, are tree nodes.

We denote the length of w by |w|. We denote the empty string by ǫ. We denote
the negation of b by b̄. We also need the infinite repetition: c∞ is an infinite string
made up of the symbol c ∈ Σ repeated infinitely often. Likewise, Σ∞ is the set of all
infinite strings over Σ and w∞ is an infinite string over Σ which is the concatenation
of an infinite number of copies of w, provided w 6= ǫ.

2.2 Occurrences

We need to be careful with the definition of “occurrence” when we think of D as
being circular. If, say, ‘01’ appears somewhere in D, one could argue that ‘01’ would
also appear N bits further, and 2N bits further, etc. If a substring were to appear at
all in D, then it would appear infinitely often. Such a definition would not be useful,
in our case. Instead, we say that w occurs at position p if:

∃ u ∈ {0, 1}∗, v ∈ {0, 1}∞. |u| = p < N and uw v = D∞.

The number of occurrences of w in D is the number of positions where w occurs.
Note that positions are required to be between 0 and N − 1. This ensures that a
single occurrence is not counted multiple times only because of D’s circularity. Note
also that we do not limit the length of D’s substrings. In particular, a substring can
be longer than D. It can also be the empty string ǫ.

Note that, if w b occurs at position p in D, then so does w. If bw occurs at p,
then w occurs at (p + 1) mod N . If w occurs at p, then there exist b and c such that
w b occurs at p and c w occurs at (p − 1) mod N .1

1Due to lack of space, we do not include demonstrations in the paper.

3 Butterflies

3.1 Trace of the enumeration for our example

Before we explain the strange title of this section, we start by tracing and commenting
the process of transmitting the numbers of occurrences of D’s substrings. D is the
one in our example, with numbers as showed in Figure 1. In the following trace, we
denote the number of occurrences of w by Cw. Our comments on the transmission
process are made according to the point of view of the decompressor.

We first consider the sole substring of length 0, that is, ǫ. Counter Cǫ, which is
N = 8, has to be handled specially. Depending on the context, the decompressor
might know N in advance exactly, partially, or not at all. In one way or another, the
decompressor must be made aware of Cǫ.

Next, we consider the substrings of length 1. We focus on C0. Note that, once
C0 is known, the decompressor can deduce the value of C1. Given what has been
transmitted by now, the decompressor only knows that 0 ≤ C0 ≤ 8.2 Consequently,
C0 = 6 is transmitted subject to 0 ≤ C0 ≤ 8. This implies that C1 = 2.

Now, on level 2, we start with C00 and C01. We know that C00 + C01 = C0 = 6.
By taking no other information into account, it would seem that C00 lies between 0
and 6, inclusively. However, we must notice that 2 = C1 ≥ C01. The bound on C01

forces C00 to lie only between 4 and 6, inclusively. (The symmetric observation, that
is, 8 = C0 ≥ C00, does not constrain C00 any further.) So C00 = 4 is transmitted
subject to 4 ≤ C00 ≤ 6, allowing the decompressor to also determine that C01 = 2.

Finally, we look at one more step of the trace by considering C10 and C11. We
know that C10+C11 = C1 = 2. This suggests that 0 ≤ C10 ≤ 2. Like in the preceding
paragraph, we can take into account the facts that 6 = C0 ≥ C10 and 2 = C1 ≥ C11

but these do not constrain C10 further. Consequently, it seems that about log
2
3

bits need be transmitted to describe C10’s value. However, it is crucial to also take
into account the fact that C01 + C11 = C1 = 2. Thanks to this observation, the
decompressor can determine that C11 = 0, and then that C10 = 2, without requiring

any bit to be transmitted.

3.2 Bidirectional prediction

When thinking about the idea of prediction, it is natural to think about the equation
Cw = Cw0 + Cw1. However, in the last step of the above trace, we also used, quite
profitably, the equation Cw = C0w + C1w. The combined use of these two equations
leads to our notion of butterfly.

Let us consider a step where we are about to transmit the number of occurrences
of a substring x, where |x| ≥ 2. We can view x as a core w with one bit added at each
end; i.e. x = a w b. It is then natural to refer to the substrings x is related to: a w b̄,
ā w b, and ā w b̄. We say that a core w with a bit added at each end is an extension of
w. Figure 2a, depicts the four extensions of w, each of which corresponding to a path
from a bit on the left to a bit on the right. We can see (with a bit of imagination)
the shape of a butterfly.3

2In fact, if C0 was one of 0 or 8, then D would be repetitive. However, we assumed earlier that
D was not. Still, we do not try to use non-repetitiveness in order to narrow down the set of possible
values for the counters.

3Recall that, at this point, Cw, C0w, C1w, Cw0, and Cw1 are known but not C0w0, C0w1, C1w0, nor

w0
1

0
1

X
X

X

�
�

�

�
�

�

X
X

X

C0

•

C1

•

C•

0

C•

1

C0

0

C0

1

C1

0

C1

1

Counter C•

•
C0

•
C1

•
C•

0
C•

1
C0

0
C0

1
C1

0
C1

1

occur. of w 0w 1w w0 w1 0w0 0w1 1w0 1w1

Figure 2: a) A butterfly and the four extensions of w; b) counters for the substrings

In Figure 2a, each of the 8 links are labeled with counters. The meaning of these
counters is summarized in Figure 2b. The counters are related as follows.

C•

•
= C0

•
+ C1

•
= C•

0
+ C•

1

C0

•
= C0

0
+ C0

1
C1

•
= C1

0
+ C1

1
C•

0
= C0

0
+ C1

0
C•

1
= C0

1
+ C1

1

When enumerating the counters for the L-bit substrings of D, it is sub-optimal to
proceed by considering an (L − 1)-bit “parent” substring w and transmitting the
counters Cw0 and Cw1 of its “children”. Instead, it is preferable to consider an (L−2)-
bit core w and transmit the counters C0w0, C0w1, C1w0, and C1w1 of its four extensions
at once.

Among the counters used in a butterfly, C•

•
is the core’s one, C0

•
, C1

•
, C•

0
, and C•

1

are the ones of w’s “partial” extensions, and C0

0
, C0

1
, C1

0
, and C1

1
are the ones of w’s

extensions. The latter are the only ones that are not known yet. Note that learning
the value of one of the unknown counters determines the values of the three others.
We choose C0

0
as the one that is transmitted explicitly. In order to bound the set of

possible values for C0

0
, it is sufficient to satisfy the equations that bind the counters

together and noting that the four unknown counters have to be non negative:

C0

0
≥ 0 ⇔ C0

0
≥ 0, C0

1
≥ 0 ⇔ C0

0
≤ C0

•
,

C1

0
≥ 0 ⇔ C0

0
≤ C•

0
, C1

1
≥ 0 ⇔ C0

0
≥ C0

•
− C•

1
;

which can be summarized by: max(0, C0

•
− C•

1
) ≤ C0

0
≤ min(C0

•
, C•

0
). Given

these bounds, the value of C0

0
can be transmitted efficiently. Note that, when at least

one of C0

•
, C1

•
, C•

0
, or C•

1
is zero, then the lower and upper bounds become equal and

C0

0
can be determined without having to transmit any information.
The complete process of enumerating D’s substrings consists in transmitting Cǫ

and C0 in a special way and then by transmitting the counters of the longer substrings
using butterflies, from length 2 to length N . When transmitting the counters of the
L-bit substrings, each (L− 2)-bit core is considered in turn, using a butterfly to help
determine the counters of its four extensions. A core is considered only if, in doing so,
there is something new that can be learned about its extensions. Section 4 introduce
the tools that allows CSE to efficiently transmit the counters of all the substrings.

3.3 Sources of compression

At first glance, it might not be clear why the mere enumeration of D’s substrings
might lead to compression. However, there are multiple reasons why it does. First,
the information contained in the enumeration of the substrings of length up to L bits
constitutes a good summary of the information contained in the (L+1)-bit substrings.

C1w1. The unknown counters are related by C0w0 +C0w1 = C0w, C1w0 +C1w1 = C1w, C0w0 +C1w0 =
Cw0, and C0w1 + C1w1 = Cw1.

Figure 3: a) The IST for ‘01000001’; b) the corresponding CST

When enumerating the latter, there is no risk of being “caught by surprise”. Moreover,
for the first values of L, the enumeration of the L-bit substrings requires fewer counts
than that of the (L + 1)-bit substrings. Second, the trees introduced in Section 4
filter the cores that matter and avoid sending the same information twice (or more).
Third, in our experiments on the files of the Calgary Corpus, we were able to witness
the effectiveness of the “summary effect” mentioned as the first reason. Here are
two observations. Almost 78% of the butterflies that are processed are trivial ones,
i.e. at least one of C0

•
, C1

•
, C•

0
, and C•

1
is zero. Each butterfly provides the value of

four counters and, in the case of trivial butterflies, we get these for free. Also, for
at least 99% of the butterflies, the width of the range of possible values for C0

0
is 23

or less. The ranges are narrow because of the information that is known about the
shorter substrings. Finally, compression can be improved by exploiting the fact that
the values for C0

0
are not all equiprobable (as observed during our experiments).

4 Substring Trees

A structure that we use to enumerate the substrings is the substring tree. We intro-
duce two versions of the substring trees: first, we present the infinite substring tree
and, then, we present the compacted substring tree. The purpose of both trees is to
indicate the number of occurrences of any substring of the original data D.

4.1 Infinite substring trees

The infinite substring tree with null counts (IST0) for D is defined as follows. For
each w ∈ {0, 1}∗, there exists a node nw. We say that w is the address of nw. Node nw

is labeled with Cw, the number of occurrences of w in D. Each arc is labeled with a
bit. For each pair of nodes nw and nw b, there exists an arc from nw to nw b that is
labeled with b. We say that nw b is the b-child of nw. Note that the counter of a node
is the sum of the counters of its children. Note also that the sequence of the bits that
label the arcs on the path from the root to a node n is equal to n’s address.

Next, we define the infinite substring tree (IST) for D using the IST0 for D. The
IST is the sub-graph of the IST0 in which we keep only the nodes labeled with strictly
positive labels and the arcs that connect these nodes. Note that, by construction,
each node in an IST has either one or two children. Note also that there exists a
one-to-one correspondence between the IST0s and the ISTs. Figure 3a shows the IST
of our example original data ‘01000001’.

Note that the shape and the node labels of an IST from level 0 down to level N
essentially correspond to the enumeration of the substrings of lengths between 0
and N . The transmission of the node labels of the IST, level by level from the root
down to level N , would be a complete enumeration of D’s substrings.

In the presentation of the compacted substring trees below, we use a relation of
order between infinite sub-trees. First, for IST0s, we say that t is larger than t′,
denoted t ⊒ t′, if, for all w ∈ {0, 1}∗, Cw ≥ C ′

w
, where Cw and C ′

w
are the counters

that label the nodes at address w of t and t′, resp. Second, for ISTs, t is larger than t′

if the IST0 corresponding to t is larger than the IST0 corresponding to t′.
We state three properties of ISTs. Prop. 1. If there exists a node nu w at ad-

dress uw, then there also exists a node nw at address w and the respective corre-
sponding sub-trees tu w and tw are such that tw ⊒ tu w. Prop. 2. Let tv and tw be two
sub-trees of the IST and let Cv and Cw be the counters at their respective roots. If
tv ⊒ tw and Cv = Cw, then tv = tw. Prop. 3. Let tv and tw be sub-trees rooted at nv

and nw, respectively. If tv = tw, then the shorter of v and w is a suffix of the other.

4.2 Compacted substring trees

The compacted substring tree (CST) for D is a more practical representation of the
IST for D. In fact, it is not a tree but rather a graph. The CST is a finite graph
that is isomorphic to the IST. By “isomorphic”, we mean that there is a mapping
from the nodes of the IST to the nodes of the CST that preserves the connectivity,
the counters that label the nodes, and the bits that label the arcs.

Here we are interested in the smallest graph that is isomorphic to D’s IST. Let T
be D’s IST. Note that there exists at least one finite graph that is isomorphic to T .4

Since there exists at least one such graph, then the set of such graphs is non empty
and we can find one that has the minimum number of nodes.

Note that, even if the CST is not a tree, we prefer to call it a tree since it is
isomorphic to (an infinite) one and that we intend to traverse it as if it were a tree.
Still, for the sake of the presentation in this paper and for the implementation, we
distinguish the arcs that go “forward” from a level-L node to a genuine level-(L + 1)
one from those that go “back” from a level-L node to a level-L′ one, where L′ ≤ L.
In the picture presented in the following example, arcs that go forward are depicted
with solid lines, as in Figure 3a, while arcs that go backward are depicted with dashed
lines. Figure 3b presents the CST for our example original data ‘01000001’.

In our experiments, we observed that the number of nodes in the CST was consis-
tently 2N − 1.5 Note that this is also the case in our example’s CST. We conjecture
that the CST for (a non-repetitive) D always has 2N − 1 nodes.

Note that the CST can be implemented as a data structure whose size remains
realistic in practice. Moreover, given that the CST for D has a linear number of
nodes, then the time it takes to traverse every node once is linear.

4We can easily build one. First, observe that all nodes at level N have counters equal to 1. Next,
let n0 be the node at address D. We modify the level-(2N − 1) descendant of n0 so that its child is
now n0. Note that, by doing so, we create a cycle. Note also that the N -arc cycle is labeled with D.
Next, we modify each of the level-N nodes, except n0, so that its child is now the appropriate node
in the cycle. Finally, we remove all the nodes that are unreachable from the root.

5CSTs with fewer nodes would be possible if we allowed D to be repetitive. If D = wk, for k > 1,
then the CST for D is identical to the one for w except that all counters are multiplied by k.

One of the effects of having a finite graph is that nodes do not have unique
addresses anymore. For instance, in Figure 3b, the node at address ‘000’ has a single
address but the node at address ‘1’ also has address ‘01’ and the node at address ‘100’
has an infinite number of addresses since it is part of a cycle.

If a node n has two addresses w and w′, then one address has to be the suffix of the
other. A corollary of this statement is that every node has a unique shortest address.
From now on, when we refer to the address of a node, we refer to the shortest of all
the node’s addresses, unless stated otherwise.

During a level-by-level construction of a CST, we need to detect if a given child
node that we are about to create is isomorphic to some node that appears at a higher
level.6 Let nw be that would-be node. Address w might not be nw’s shortest one, but
we do not know that yet. Now, let nx be such that there exists b such that b x = w.
Then we have that there exists a node m located on a higher level that is isomorphic
to nw if and only if Cx = Cw. When Cx = Cw, nx is isomorphic to nw and we might
as well choose m = nx. During the construction of the CST, if Cx = Cw, then nw

must not be built and, instead, a backward arc should be added from its parent to
nx. Otherwise, nw must be built. Locating node nx from node nw’s parent can be
done in constant time if we add suffix links to the implementation of the CST.

4.3 Back to the trace of the enumeration

We complement the trace that is presented in Subsection 3.1 with the issue of the
incremental construction of the CST by the decompressor. First, root node nǫ must
invariably be constructed with Cǫ = 8. Next, we consider the nodes on level 1.
Once the decompressor learns that C0 = 6 and C1 = 2, it knows that both nodes n0

and n1 exist but these might happen to be isomorphic to a node that appears on a
higher level, namely the root nǫ. By verifying that the criterion Cǫ > C0 holds, the
decompressor determines that n0 is not isomorphic to nǫ. By verifying that Cǫ > C1,
it draws the same conclusion for n1. Both level-1 nodes must be created. Finally,
on processing level 2, the decompressor learns that C00 = 4, C01 = 2, C10 = 2, and
C11 = 0. It immediately concludes that nodes n00, n01, and n10 exist but not n11.
Next, given that C0 > C00 and C0 > C10, the decompressor creates nodes n00 and n10.
On the other hand, given that C1 = C01, the decompressor does not create n01 but
instead adds a backward arc labeled with 1 from n0 to n1.

5 Summary of the CSE Technique

Here we give a pretty terse overview of the complete CSE technique. A file (or a
stream) is compressed by dividing it into blocks and compressing each block. D is
taken to be each of the successive blocks.

The first step consists in determining if D is repetitive. This can be done in
linear time by looking for the longest sequence(s) of 0s. If it is unique, then D is
non-repetitive.7 Otherwise, let k be its number of occurrences and L be its length.
We then compare the bits that follow the sequences of 0s. If, after having compared
the remaining N −kL bits on total, we cannot single out a unique smallest substring,
then D is made of k′ repetitions, for 1 < k′ ≤ k, otherwise D is non-repetitive.

6Here, we make a slight abuse of language. When we say that a node nu is isomorphic to another
node nv, we mean that the IST sub-trees that are rooted at nu and nv are isomorphic.

7The special case where D is made only of 0s or 1s can easily be handled.

File Gzip BWT PPM Btf Btf BTF

bib 2.51 2.07 1.91 2.54 2.56 1.98
book1 3.25 2.49 2.40 3.14 3.06 2.27

book2 2.70 2.13 2.02 2.74 2.72 1.98

geo 5.34 4.45 4.83 6.03 5.52 5.35
news 3.06 2.59 2.42 3.33 3.32 2.52
obj1 3.84 3.98 4.00 5.10 4.46 4.46
obj2 2.63 2.64 2.43 3.03 3.02 2.71
paper1 2.79 2.55 2.37 2.79 2.80 2.54
paper2 2.89 2.51 2.36 2.77 2.77 2.41

File Gzip BWT PPM Btf Btf BTF

paper3 3.11 — — 2.95 2.96 2.73

paper4 3.33 — — 3.17 3.20 3.20
paper5 3.34 — — 3.29 3.33 3.33
paper6 2.77 — — 2.75 2.76 2.65

pic 0.82 0.83 0.85 2.05 0.79 0.77

progc 2.68 2.58 2.40 2.76 2.77 2.60
progl 1.80 1.80 1.67 1.90 1.89 1.71
progp 1.81 1.79 1.62 1.99 1.96 1.78
trans 1.61 1.57 1.45 2.16 2.07 1.60

Figure 4: Experimental results

When D is repetitive, the fact is signaled to the decompressor, along with k′, and the
compression is performed on the (|D|/k′)-bit factor.

The second step consists in first building a suffix tree for D2 using a linear-time
technique [6]. D is duplicated in order to simulate circularity. Then, counts are
inserted in the suffix tree at depth N . A count of 1 is used for any N -bit suffix that
has not yet reached the end of D2, otherwise, a count of 0 is used. Next, the counts
are summed in a bottom-up fashion to reproduce those that would appear in an IST.
Finally, the CST is built by performing synchronous breadth-first traversals of both
the suffix tree and the CST that is being constructed. Isomorphism tests ensure that
the constructed CST does not contain duplicate nodes for isomorphic sub-trees.

The third step consists in transmitting Cǫ first, then C0 subject to 0 ≤ C0 ≤ Cǫ,
and finally, for L going from 2 to N , and for each (L−2)-bit core w such that at least
one of n0w and n1w truly lies on level L − 1, in processing the butterfly of core w.

The fourth step consists in sending the rank of D, i.e. the number of rotations that
are lexicographically smaller than D. Note that the rank lies between 0 and N − 1,
inclusively. The rank is obtained by going down the CST following the path D and
adding Cw0 each time a transition is made from nw to nw1. The total is D’s rank.

Note that the decompressor has to participate in the third and fourth steps and
also in the first step when the block is repetitive. It performs the construction of the
CST during the third step. All the described operations can be performed in time
that is linear in the size of the block, thus in linear time for a complete file.

6 Experimental Results

We have implemented a prototype that performs CSE. It first divides files that are
too large into blocks. Given D, instead of building the CST in the way described in
Section 5, it uses a sorting technique that is reminiscent of the Bucket Sort [3] and
builds the CST by extracting counts from the sorted list of rotations. This causes our
prototype not to run in linear time. Next, it transmits the counters of the CST using
arithmetic coding [8]. Finally, it transmits the rank of the N -bit substring that is D.

We present results for three variants of our prototype: Btf, Btf, and BTF. Given
a butterfly, Btf predicts the value of C0

0
by assigning equal probabilities to all the

possible values of C0

0
, from the lower to the upper bound. Such a prediction is pretty

näıve. For example, if C0

•
= C•

0
= 100 and C1

•
= C•

1
= 1, we have that 99 ≤ C0

0
≤ 100

and Btf considers that P (C0

0
= 99) = 1

2
= P (C0

0
= 100). However, intuition suggests

that C0

0
= 99 is much more probable. Unlike Btf, Btf and BTF adaptively encode

the values of C0

0
, using the kinds of butterflies as contexts (that is, specific ranges

for C0

•
, C1

•
, C•

0
, and C•

1
). Both Btf and Btf use blocks of 32 kB while BTF uses blocks

of 1MB, which allows each benchmark file to be processed without being divided.
We ran our prototype on the files of the Calgary Corpus [7]. We compared the

compression efficiency of the prototype with that of gzip [5] set at maximal com-
pression and that reported for PPM*C and the Burrows-Wheeler transform (BWT)
in [2]. The measurements (in bits per character) are presented in Figure 4.

CSE outperforms gzip and BWT too on most files and it is not so far behind
PPM*C. We see that the adaptive encoding of C0

0
helps but it is when coupled with

the use of large blocks that our technique becomes truly competitive. BTF still seems
to have some difficulty with binary data like machine code. We suspect that the initial
conversion from bytes to bits causes our technique to lose track of the original byte
boundaries, which might not be easily recovered in binary data and incur a penalty in
prediction performance. Note that, by using 32 kB blocks, Btf and Btf are compared
unfairly to the other techniques, which allow themselves to have a wider view on the
data.8 Note also that CSE, like PPM*C and BWT, is able to compensate for its
inability to identify matches, which gzip effectively exploits. Finally, note that CSE,
in its C0

0
prediction technique, does not have the advantage of enjoying the same

(considerable) amount of work that has been invested on PPM’s escape mechanisms.
The experiments were run on a 3 GB, 2.83GHz, Intel QuadCore machine. Com-

pressing and decompressing all the files of the Calgary Corpus required less than 16%
of the computer’s memory and took less than 2 minutes. It means that CSE attains
its compression effectiveness while only requiring practical amounts of resources, in
time and space.

7 Discussion

CSE has some links to Prediction by Partial Matching (PPM) [2]. In some sense, the
IST nodes that are located at addresses of length k + 1 and their associated counters
can be viewed as the equivalent of an order-k model used by PPM. An important
difference is that CSE’s “models” are exact while PPM’s are approximate as nothing
is known for sure about the yet unseen part of the data. CSE avoids the need for
escape characters. When a level of the CST is transmitted, the operation can be
seen as the description of the order-(k + 1) models based on the order-k models. Our
technique does not try to predict D’s bits. Instead, it progressively describes D using
ever more powerful models until a perfect knowledge of D’s contents is gathered.
Finally, CSE is not constrained to make predictions in a left-to-right manner.

CSE also has links to the compression techniques based on anti-dictionaries [4].
To any forbidden word in an anti-dictionary corresponds a null counter in CSE.

CSE benefits from the presence of frequently occurring words, in a way that is
somehow analogous to the dictionary-based techniques LZ77 [9] and LZ78 [10]. For
example, frequent occurrences of “the” in English lead LZ77 to identify matches that
include “the” and LZ78 to introduce “the” and its extensions in its dictionary. CSE
will tend to predict the appearance of the bits at one end of “the” when presented
with the bits of the other end.

8Technically, gzip cannot see more than 32 kB at a time but it does allow itself to gather statistics
on much more than 32 kB of original data.

Finally, like the Burrows-Wheeler Transform (BWT) [1], CSE has to work on a
block-by-block basis. The larger the blocks are, the better the compression is. Also,
like BWT, the last item that the compressor transmits to the decompressor is the
rank of the rotation that is identical to the original data.

8 Future Work

Many things should be tried in order to improve this work. First, we must improve
the way C0

0
’s value is predicted. A flat probability distribution for the possible val-

ues of C0

0
—like Btf does—is clearly unrealistic and simply learning the distribution

for C0

0
—like Btf and BTF do—incurs a penalty for the learning process. Second, it is

necessary to demonstrate that a CST always has size 2N − 1. The linearity in time
and space of our technique is based on that. Third, it would be interesting to formally
demonstrate that the technique is universal. A prerequisite is the development of the
“right” way to predict C0

0
. We expect to have multiple cases to consider in order to

get a demonstration of universality for a finite-order Markov source. Fourth, an em-
pirical study that ought to be conducted consists in measuring the impact of the loss
of the phase of the bits inside of their bytes. By that, we refer to the possible cause
for the inferior performance on binary data that we mention in Section 6. Finally,
we intend to determine how to exploit the fact that there exists a Hamiltonian cycle
running through the set of L-bit substrings, and whether substantial savings can be
extracted from this fact.

Acknowledgements

This work was supported by the Natural Science and Engineering Research Council of Canada. We

wish to thank Hidetoshi Yokoo and the anonymous referees for their useful comments.

References

[1] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[2] J. G. Cleary and W. J. Teahan. Unbounded length contexts for PPM. The Computer

Journal, 40(2/3):67–75, 1997.

[3] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[4] M. Crochemore and G. Navarro. Improved antidictionary based compression. In Proc.

of the International Conf. of the Chilean Computer Science Society, pages 7–13, 2002.

[5] J. L. Gailly and M. Adler. The GZIP compressor. http://www.gzip.org.

[6] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14:249–260, 1995.

[7] I. Witten, T. Bell, and J. Cleary. The Calgary corpus, 1987.
ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus.

[8] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.
Comm. of the ACM, 30(6):520–540, 1987.

[9] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE

Trans. on Information Theory, 23(3):337–342, 1977.

[10] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. on Information Theory, 24(5):530–536, September 1978.

