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Abstract

Many data compression methods cannot remove all redundancy from a file
that they compress because it can be encoded to many compressed files. In par-
ticular, we consider the redundancy caused by the availability of many equiva-
lent messages. A canonical example is that of the many longest matches that
are typically found by the LZ77 derivatives. Most of this redundancy can be
removed using a technique previously introduced by the authors as bit recycling.
Until now, bit recycling has been applied to LZ77 derivatives. In this paper,
we consider a more general case: the one when there are multiple equivalent
messages available to the compressor. We extend an algorithm, called resolu-
tion, that allows to include bit recycling in a compressor that proceeds in a
stream-like fashion. Finally, we study the efficiency of proportional recycling.

1 Introduction

1.1 Redundancy from multiple encodings

Many lossless data compression methods allow some clear-text file to be encoded in the
form of any one of many different compressed files. The compressed files are different

in the sense that they are different sequences of bits. However, they are equivalent

in the sense that, by decompressing any of them, we recover the original clear-text
file exactly. Typically, a compression method that provides multiple encodings for
some file also provides multiple encodings for most files, if not all. The existence of
multiple encodings tends to increase the size of the compressed files. The severity of
the increase depends on the number of the encodings. Note that we consider files here
but the point would be similar with streams. We simply believe that the explanations
are clearer using files.

Among the data compression methods that allow clear-text files to be encoded
many different compressed files, there are the derivatives of the LZ77 method [12],
where matches need not be as long as possible and where there may be more than one
match of a particular length. A method deriving from LZ78 [13] where the decision
of integrating a new word in the dictionary or not would be taken by the compressor
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and transmitted to the decompressor would lead to a huge number of compressed files
per original file. Also, the technique of selecting one of two predictors for each byte
of the original file [8] can legally map a file of length N to 2N different compressed
files.

This paper presents a technique that aims at reducing the expansion of the com-
pressed files that is caused by the multiplicity of encodings. The technique does not
try to eliminate the multiplicity itself. Instead, it lets the multiplicity exist and it
takes advantage of it by converting it into useful information. We call this process bit

recycling. The information that is recycled conveys (for free) parts of the compressed
file that would normally be produced. A file compressed using bit recycling cannot
be decompressed using a normal decompressor as only part of the information is ex-
plicitly present and the rest has to be recycled from the multiplicity of encodings for
the file at hand.

1.2 Redundancy from equivalent messages

While bit recycling could, in principle, be applied to any compression method that
features multiple encodings, we concentrate on a particular case of multiplicity: when
there exist alternatives to some of the messages that are sent to the decompressor.

Let us describe this case more clearly. From an abstract point of view, the com-
pression and decompression process can be seen as the transmission of a sequence of
messages. On the compressor side, an encoding modeler transforms the original data
into a sequence of messages and then a statistical encoder transforms these messages
into a bit stream. On the decompressor side, the reverse operations are performed by
a statistical decoder and a decoding modeler. The nature of the messages themselves
can be abstracted away. From this point of view, the multiplicity of encodings means
that more than one sequence of messages could be produced by the encoding modeler
to describe the original data.

However, in order to have redundancy from equivalent messages only, the sequence
of messages that is produced by the encoding modeler has to obey a few conditions.
First, the number of messages, say N , has to be uniquely determined by the original
data. Second, the ith message can be chosen among ni (≥ 1) equivalent messages
Mi,1, . . . , Mi,ni

, for 1 ≤ i ≤ N . Each ni has to be uniquely determined by the original
data. By “equivalent”, we mean that, at step i, any of the ni different messages
would be interpreted the same by the decoding modeler. Formally, for any sequence
of choices c1, . . . , cN , where 1 ≤ ci ≤ ni, for 1 ≤ i ≤ N , the sequence of messages
M1,c1 . . .MN,cN

allows the decoding modeler to reconstruct the original data. Note
that there are

∏i=1
N ni different but equivalent encodings for the original data that we

abstractly consider here.

1.3 Running example

A good example of a compression method that suffers from redundancy from equiv-
alent messages is LZ77 compression [12] and its derivatives. In its simplest form,
LZ77 deals with only two kinds of messages: literal characters and matches. A lit-
eral character message [c] explicitly indicates the value of the next character in the

2



original file. A match message 〈l, d〉 indicates that the next l characters are copies
of those that can be found d characters before the current position. Compression is
effectively obtained through matches, provided the length l is sufficient; e.g. l ≥ 3. If
an LZ77-based method requires a match to be selected each time one is available and
also requires a longest match to be selected, then this method obeys the conditions
for redundancy from equivalent messages. Indeed, there typically is redundancy as
the longest matches are not unique in general. When the ith message is a match, the
available messages Mi,1, . . . , Mi,ni

are matches 〈l, d1〉, . . . , 〈l, dni
〉 that all describe the

next l characters by referring to copies located at different distances.

1.4 Getting rid of the equivalent-message redundancy

Our goal is to reduce the adverse effect that redundancy from equivalent messages
has on compression efficiency. We intend to do so using bit recycling, which is in-
troduced in the remainder of the paper. But before we present bit recycling itself,
we need to mention a näıve way of eliminating the redundancy by modifying the
compressor/decompressor pair.

Let us consider some step in the compression process and establish the set of all
messages M1, . . . , MK that could possibly (and legally) be emitted by the encoding
modeler. Note that this set should not take into account any knowledge about the
original data that has not yet been transmitted to the decompressor. Also note that
the modeler associates a probability pi, explicitly or not, to each possible message
Mi. Two different messages may happen to be equivalent. For example, messages
M17 and M64 may both describe matches to copies of “abc”. In order to get rid of
the redundancy caused by equivalent messages, the compressor could then partition
the set of messages into equivalence classes. Each equivalence class would be given a
probability that is the sum of the probabilities of its members. Instead of emitting
some message Mi, a modified compressor would emit the equivalence class of Mi. The
more numerous the messages equivalent to Mi would be, the higher the probability
associated to the equivalent class of Mi would be, and the cheaper the encoding of
the latter would be.

On a similarly modified decompressor side, the reception of a message at the
corresponding step would proceed like this. Given the current knowledge, the decom-
pressor would establish the set of messages that could possibly be received by the
decoding modeler. Note that the set would be M1, . . . , MK also. The decompressor
would be able to partition the set of messages into equivalence classes exactly as
the compressor would have done. Using these equivalence classes and the associated
probabilities, the decompressor would receive the class that would have been emitted
by the compressor. Finally, there would remain to select any message among the
members of the equivalence class and to have the decoding modeler interpret it.

Clearly such a compressor/decompressor pair would effectively remove the re-
dundancy caused by the presence of equivalent messages. However, computing the
equivalence classes at each step would be prohibitively costly. Bit recycling aims at
obtaining the same reductions in the redundancy but by working in a more econom-
ical way. Instead of eliminating redundancy at the source, bit recycling lets it exist
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1. while description incomplete do
2. let C := curr. coding funct.;
3. let M := select message;
4. emit C(M);
where
5. procedure emit w:
6. σ := σ · w;
7. return;

Compressor

1. while description incomplete do
2. let C := curr. coding funct.;
3. let M := receive C;
4. interpret M ;
where
5. procedure receive C:
6. let M , σ′ s.t. C(M) · σ′ = σ;
7. σ := σ′;
8. return M ;

Decompressor

Figure 1: Conventional algorithms with prefix codes

and tries to take advantage of it and to extract a compensation from it. As will be
apparent in the following sections, bit recycling needs to work with the equivalence
class of the single message that was transmitted instead of all equivalence classes.

2 Recycling with prefix codes

2.1 Algorithms for a compressor/decompressor pair

In this section, we present bit recycling applied to a compression method that is
based on prefix codes. However, before we explain recycling itself, we present a skele-
tal compression method. The algorithms for some compressor and the corresponding
decompressor are shown in Figure 1. Note that almost all the details are abstracted
away. An element that is mentioned explicitly is the fact that the compressed file is
the concatenation of a sequence of encoded messages. At each step of the compression
(resp. decompression), there is a current coding function C that can translate any of
the currently possible messages into a codeword (a bit sequence). C is a prefix code

in the sense that, from the front of any infinite string of bits, one can extract the
codeword of one and only one message. Also, the bit stream σ that is conceptually
the communication channel between the compressor and the decompressor is explic-
itly mentioned. Finally, the operation “select message” identifies a message that
correctly describes (part of) the rest of the original data. In case there are many cor-
rect message, one of them is selected. For example, a longest match is found, if one
exists (plausibly, the closest longest match or the one with the shortest codeword).

2.2 Recycling versions using non-determinism

Now, we show how to add bit recycling to the skeletal conventional compression
method. For the moment, to minimize the extent of the changes to the conventional
method, we use non-determinism. The new algorithms are presented in Figure 2.

We intend to describe the compressor’s algorithm after that of the decompressor
because it is much more complex. Nevertheless, we want the reader to simply note
that, at any step during the compression process, the compressor’s main program
considers all messages that are deemed possible. It has the right to select any one of
these but it will do so with the intent of sending a hint to the decompressor.
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1. while description incomplete do
2. let C := curr. coding funct.;
3. let M := possible messages;
4. let M := ND-select in M ;
5. emit C(M);
6. recycle R(C, M)(M);

where
7. procedure emit w:
8. if w = ε or ρ = ε then
9. σ := σ · w;

10. else if w = b · w′ and ρ = b · ρ′

11. /* where b ∈ {0, 1} */ then
12. ρ := ρ′;
13. emit w′;
14. else
15. error;
16. return;
17. procedure recycle w:
18. ρ := w · ρ;
19. return;

Compressor

1. while description incomplete do
2. let C := curr. coding funct.;
3. let M := receive C;
4. interpret M ;
5. let M := equiv. class of M ;
6. recycle R(C, M)(M);

where
7. procedure receive C:
8. let M , σ′ s.t. C(M) · σ′ = σ;
9. σ := σ′;

10. return M ;
11.
12.
13.
14.
15.
16.
17. procedure recycle w:
18. σ := w · σ;
19. return;

Decompressor

Figure 2: Non-deterministic recycling with prefix codes

Let us describe the decompressor’s new algorithm. The first three instructions of
the main loop are similar as those of the conventional algorithm. The differences come
afterwards. At line 5, given the message M that it just received, it is able to identify
all the messages that could have been sent in place of M by the compressor; that is,
all the messages that are equivalent to M ; in other words, the equivalence class M . At
this point, the decompressor is able to observe the extent of the compressor’s freedom
in its selection of M and it can also identify which one M is among M . So, it is
able to notice the hint from the compressor. The information in the hint is obtained
as a bit sequence. Function R is a recycled code construction function. It takes
the current coding function C and the current equivalence class M as arguments
and returns a prefix code R(C, M). The latter associates to each message M ∈
M a codeword R(C, M)(M). This is the bit sequence that is recycled thanks to
the information carried by the selection of M . As expressed by procedure recycle,
recycling a bit sequence simply consists in prepending it in front of the input bit
stream σ. These very bits then contribute to the encoding of the next message(s).

Seeing how naturally the decompressor can decode messages and recycle bit se-
quences, it is not difficult to guess that the compressor has to be extremely careful
in its preparation of the bit stream. If we inspect the main loop of the compres-
sor’s algorithm, the instructions seem to follow a “reasonable” order: considering all
messages, selecting the right one, emitting it, and recycling the corresponding bit
sequence. However, we soon realize that the compressor cannot really recycle a bit
sequence since there is yet no remainder of the bit stream to prepend the sequence
in front of. Moreover, since the compressor has not yet considered the issue of the
following messages at all, how can it select a message in M so that the decompressor
will recycle in such a way that the decoding of the following messages will proceed
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correctly? In any particular step, there is a non-trivial causal effect of the following
messages (and their associated recycling) on the decision at hand.

In order to solve this problem, the compressor makes use of non-determinism.
In line 4, it non-deterministically selects the right message M , which allows it to
emit M and simulate the associated recycling operation. The recycling operation
is nothing more than a simulation: guessed bits are pooled in a special guessed bit
stream ρ. Bits in ρ are those that will never be transmitted explicitly in the bit stream
σ but that will instead be recovered by the decompressor through recycling. During
subsequent emissions, procedure emit confirms that the non-deterministic choices
were correct and consumes the guessed bits. When there are no more guessed bits
available, conventional explicit transmission through σ is used. Our interpretation of
non-determinism may seem dubious to some readers. From a more operational point
of view, we can say that the non-deterministic choice in line 4 causes the execution
to fork into |M | concurrent executions. Later on, all of these executions except a
single one will discover some inconsistency between what has been “guessed” and
what needs to be encoded and result in erroneous terminations. The uniqueness of
the right option per non-deterministic choice is a direct consequence of the fact that
R constructs prefix codes only.

In order to better understand how the compressor and the decompressor collab-
orate to encode and decode messages with recycling, let us state a few invariants.
Let us consider the concurrent executions of the compressor and the decompressor
step by step, always making the right non-deterministic choices on the compressor
side. The bit stream σC on the compressor side monotonically extends to the right,
following explicit emissions of bits. The guessed bit stream ρ grows and shrinks in an
irregular fashion, following implicit emissions and recycling of bits. The bit stream
σD on the decompressor side grows and shrinks on the left, following consumption
and recycling of bits. Bit stream σD can always by split into a recycled prefix σ′

D and
an explicitly transmitted suffix σ′′

D. At the start of every step, we have that ρ = σ′
D—

that is, the compressor knows exactly about the bits that have been recycled by the
decompressor—and that σC · σ′′

D is a constant bit stream—that is, the emission and
reception of explicit bits remain in synch. This constant bit stream happens to be
the complete compressed file. The reader is invited to verify these invariants.1

Let us consider a simple example based on LZ77. Suppose that, at some step,
there are three longest matches and that M = {〈4, 32〉, 〈4, 67〉, 〈4, 2043〉}. Suppose
also that R(C, M) associates the recycled bit sequences 10, 0, and 11 to the matches,
respectively. If, for the sake of correct transmission of the remainder of the original
file, the bit stream faced by the decompressor at the next step has to be 1101100. . . ,
then the compressor has to guess that the right match to choose is 〈4, 2043〉, so that
the appropriate bit sequence gets recycled.

1There is a small mistake in the paper by Dubé and Beaudoin [4]. The operands of the concate-
nation that appears here in the compressor’s algorithm on line 18 are reversed in their paper.
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2.3 Resolution algorithm

Selecting the right messages cannot be done in a deterministic fashion; at least, if
we insist on proceeding forwards. We propose a simple and deterministic resolution
algorithm to make the right choices. Observe that the successive equivalence classes
M 1, . . . , MN can easily be computed forwards in a first phase. Similarly for the
successive coding functions C1, . . . , CN . Then, the successive bit streams σ1, . . . , σN

that the decompressor faces at the start of each step can as easily be computed in a
second phase, but backwards. Let us define σ′

i to be the bit stream at step i between
reception and recycling and σ′′

i to be the one after recycling. Suppose that, for some
step i, σ′′

i is known. It is then possible to determine σ′
i since, by prepending the bit

sequence associated to some (unique) message M ∈ M i, we obtain σ′′
i . In other words,

we can compute M and σ′
i from M i and σ′′

i using the equation R(Ci, M i)(M)·σ′
i = σ′′

i .
Since M is the message that is transmitted in step i, we can also determine σi as it is
Ci(M) · σ′

i. Observing that σ′′
i = σi+1, for 1 ≤ i ≤ N − 1, we conclude that all these

intermediate bit streams can be determined from σ′′
N . It is sufficient to let σ′′

N be some
arbitrary bit string that is long enough to initiate the resolution process. Indeed, σ′′

N

is the bit string that remains after the whole original file has been described to the
decompressor; so it is meaningless. The final result of the resolution algorithm is the
bit stream σ1, as it is the bit stream that is faced by the decompressor at the start
of the first step.

2.4 Greedy resolution algorithm

The resolution algorithm is not very practical as it requires a lot of intermediate in-
formation to be kept until completion. Also, it prevents the compressor from working
in a stream-like fashion. Of course, it would be possible to perform resolution on a
block-by-block basis, for blocks of modest size, but it would cause recycled bits to be
lost at every block boundary.

Instead, it is possible to perform the resolution process in a greedy fashion. The
simplest way consists in waiting for a step i where there is only one possible message,
i.e. where M i = {Mi}, and detecting whether the concatenation Ci(Mi)·σ

′
i, where σ′

i is
yet unknown, provides sufficiently many known bits to trigger a cascade of resolution
for the previous, unresolved steps. For example, this would be the case when Mi

would be a literal character [c] or a unique longest match 〈l, d〉. Since many more
bits are emitted than recycled, as is typical in practice, unresolved chains do not tend
to be long. Moreover, a particular implementation of a compression method may
well emit Ci(Mi) in pieces, where the first one happens to be fixed. As observed by
Dubé and Beaudoin [4] in their LZ77-based experiments on recycling, where a match
is emitted as a length (fixed) followed by a distance (variable), the bit sequence of
the length was very often long enough to trigger the resolution of the previous few
unresolved steps.

A more involved technique would consist in computing many partially known bit
streams backwards from current step i to the most ancient unresolved step j, j < i,
to determine if uncertainty in step i necessarily implies uncertainty in steps i − 1,
i − 2, . . . , j, also.
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3 Natural recycling functions

Until now, we did not say much about the recycled code construction function R. We
simply mentioned that it has to construct prefix codes. Because it ultimately specifies
the bit sequences that get recycled, it definitely has an effect on the improvement in
compression that can be expected from recycling. We consider two natural recycling
functions.

First, let us consider the flat recycling function. That is, R does not use its
first argument, the coding function C, and constructs a code R(C, M) that assigns
codewords of length between blog |M |c and dlog |M |e to the messages. Clearly, the
number of recycled bits for a particular message M does not depend on the length
of C(M). Note that, with recycling, a message M ∈ M is selected as often as a
(almost completely) random bit stream starts with R(C, M)(M), i.e. with probability

2−blog |M |c or 2−dlog |M |e, which is independent of the cost of selecting M .
Let us study an example using flat recycling. Suppose that four equivalent mes-

sages are available, each costing 6 bits. Then, thanks to bit recycling, the net cost of
selecting a message and benefiting from recycling is 4 bits. Note that recycling is not
always a winning strategy. If there are still four equivalent messages with the first
one costing 5 bits and the others, 8 bits, then the net cost of selecting a message and
benefiting from recycling is 29/4 − 2 = 5.25 bits, on average, compared to 5 bits, if
recycling is abandoned and the cheapest option is systematically selected.

Second, let us consider the proportional recycling function. In that case, R con-
structs codes that assign longer recycled codewords to messages that have longer
codewords. More precisely, code R(C, M) is a Huffman code for the messages in M
built using the probabilities 2−|C(Mi)| for the messages Mi, respectively. It is well
known that Huffman codes cannot be optimal in general, but proportional recycling
tends to keep the difference between |C(M)| and |R(C, M)(M)| as uniform as possi-
ble. Assigning a longer recycled codeword to a more costly message tends to make
the selection of that message less probable.

Let us study an example using proportional recycling. Suppose that four equiv-
alent message are available with costs of 4, 4, 5, and 6 bits. Then, for recycling
purposes, they are assigned frequencies 2−4, 2−4, 2−5, and 2−6, respectively, and their
associated recycled sequences might have lengths 1, 2, 3, and 3, respectively. The net
cost of selecting a message and benefiting from recycling would be 3 · 2−1 + 2 · 2−2 +
2 · 2−3 + 3 · 2−3 = 21/8 = 2.625, on average. Note that, using flat recycling, the net
cost would be 2.75, on average.

In their experiments, Dubé and Beaudoin obtained the best results using propor-
tional recycling, leading to an average improvement of 2.1% (see experiment 6 [4]).
Although we provide no complete proof here, we believe proportional recycling to be
close to optimal. In fact, if recycling could be done using fractional bits, then to
equivalent messages of probabilities p1, . . . , pk, where pi = 2−li and li is the length of
the codeword associated to message i, we would assign optimal recycled bit sequences
of probabilities f · p1, . . . , f · pk, for f such that

∑i=1
k f · pi = 1. Now, a recycled

bit sequence of probability f · pi does not necessarily have integer length. To obtain
sequences of whole bits, we have to assign frequencies pi to the equivalent messages
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and use Huffman’s algorithm. Because of this, the result is suboptimal, in general,
because the probabilities of the recycled sequences are not exactly proportional to
those of the equivalent messages. For example, equivalent messages of costs 4, 5, and
15, would be assigned recycled sequences 0, 10, and 11, for an average net cost of 5.5
bits, instead of a net cost 3.41 bits if fractional bits could be used. Because sequences
of whole bits cause sub-optimality, it may be worthwhile to drop certain equivalent
messages whose net contribution is negative. To continue with our example, dropping
the message of cost 15 would improve the net cost to 3.5 bits, on average. In order
to perform optimal whole-bit recycling, one would need to evaluate the average net
cost when dropping from 0 to k − 1 of the most costly messages.

4 Related work

While bit recycling itself has first been proposed by the authors, the idea of exploiting
the redundancy of some data compression methods, namely the LZ77 derivatives, was
presented earlier. The capacity of integrating some amount of information inside of
a file compressed using an LZ77 derivative has been used for information hiding (or
steganography) [2, 5], authentication [1], and error correction [6, 10]. In these ap-
plications, information that is implicitly transmitted comes from an external source,
like a document to hide, an electronic signature of the sender or for the original doc-
ument, or error-correcting codes for the original document. So it is always immediate
for the compressor to determine what message should be selected since the bits that
the compressor wants the decompressor to guess are known in advance.

In the case of bit recycling, things are more complicated since the information that
gets transmitted through the selection of the messages comes from the compressed file
itself. In our work [3, 4], this leads to the resolution algorithm. In the work presented
by Yokoo et al. [11], they choose to split the compressed file in two parts: a first one
that is transmitted explicitly and that carries the second part through bit recycling;
a second one that is transmitted implicitly inside of the first part and that carries no
hidden information. We believe that some space is lost in their technique since the
second part could also contribute to bit recycling, even if it is typically shorter than
the first part. Except for files that feature high redundancy, we expect the loss to be
negligible. Note that all these works about bit recycling could avoid the complications
due to the compressed file holding parts of itself by implicitly transmitting bits from
the original file instead. However, this approach would not be particularly efficient
since bits from the original file have lower informational contents than those from the
compressed file and so are less profitable to recycle.

5 Future work

We mention three things that need to be done in the near future. First, the criterion
that we present here to determine the optimal way to perform proportional recycling
is inefficient. Further investigation is necessary to determine if the proper cut point
could be computed in a cheaper way. Second, bit recycling should be adapted to
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arithmetic coding. It does not seem hard to do it if arbitrary-precision numbers are
used. However, it would become truly useful only by adapting it to the quick, finite-
precision methods [9, 7]. Finally, it would be interesting to extend, whenever possible,
bit recycling to contexts where the redundancy does not come (only) from equivalent
messages. For example, in LZ77 derivatives, when one considers longest matches only,
alternative messages can be seen as equivalent, but when one considers matches of
varying lengths, the various messages cannot be seen as equivalent anymore.
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