
Almost Minimum-Redundancy Construction
of Balanced Codes Using Limited-Precision Integers

Danny Dubé and Mounir Mechqrane
Department of Computer Science and Software Engineering, Université Laval

Quebec City, Quebec, Canada
Email: Danny.Dube@ift.ulaval.ca and Mounir.Mechqrane.1@ulaval.ca

Abstract—We present a technique based on permutations, the
well known arcade game Pacman, and limited-precision integers
to encode data into balanced codewords. The redundancy that is
introduced by the encoding is particularly low. The results are
noticeably better than those of previous work. Still, the resources
required by our technique remain modest: there is no need for
costly calculations using large integers and the time and space
complexity for encoding or decoding a block is linear.

I. INTRODUCTION

A. Balanced Blocks

A block B of M bits is said to be balanced if it contains
an equal number of zeros and ones. Note that M has to be an
even number. Applications of balanced codes are mentioned
in Subsection I-B. When one needs data to be encoded
in the form of balanced blocks, one must have access to
an encoding function ‘Enc’ that transforms arbitrary input
data into balanced blocks. In this work, we consider binary
input data. Encoding data into balanced blocks necessarily
introduces redundancy. Indeed, only

(
M
M/2

)
of the 2M blocks

of M bits happen to be balanced. Let BM be the set of
the M -bit balanced blocks. Let Q, 1 ≤ Q < M , be the
size of the blocks of input data, i.e. Enc : 2Q → BM .
Let P = M −Q be the number of bits of redundancy (parity
bits) that ‘Enc’ introduces per block. Obviously, the smaller P
is, the better ‘Enc’ is. Function ‘Enc’ is a fixed-to-fixed code.
Let Dec : BM → 2Q be the corresponding decoding function.

Mathematically, devising optimal functions ‘Enc’ and ‘Dec’
is a trivial task. First, one determines Q and M . If the
application specifies M , then we let Q be

⌊
log
(
M
M/2

)⌋
.1

Otherwise, the application specifies Q and we let M be the
smallest even integer such that

(
M
M/2

)
≥ 2Q. Second, one may

use enumerative coding to define ‘Enc’ (and ‘Dec’) [1]. To
do so, one enumerates the 2Q unconstrained input blocks in
lexicographic order and the first 2Q M -bit balanced blocks
also in lexicographic order and then lets ‘Enc’ be the one-
to-one mapping from the former to the latter. The mapping
that defines ‘Enc’ (and ‘Dec’) may be stored in a lookup
table, like the one in Figure 1. Alternatively, the mapping
may be implemented using a pair of procedures that build,
by calculations, the i-th balanced block when presented the
i-th input block, and vice versa.

1In this paper, all logarithms are to the base 2.

Unfortunately, the strategies based on enumerative coding
are not practical because they do not scale well. The size
of lookup tables increases exponentially with Q. On the
other hand, procedures based on calculations require the
manipulation of large integers, which is costly in time. The
impracticality of standard enumerative coding has lead many
researchers to develop faster, approximate strategies. Subsec-
tion I-C presents their work. We aim at the same goal.

B. Motivation

Balanced codes have many applications. They can be used
to detect unidirectional errors [2], to detect errors due to low-
frequency disturbances in magnetic storage [3], to reduce noise
in VLSI integrated circuits [4], to maintain the integrity of
data in write-only storage media, which may be altered due to
a 0 getting changed to a 1 [5], to establish delay-insensitive
communications in asynchronous systems [6], to synchronize
data transmitted in fiber optic [7], and to boost data transfer
rates via RFID channels [8].

C. Previous Work

Knuth presented the first practical construction technique
for balanced blocks [9]. His technique is quite simple and it
is based on the following observation: an arbitrary block B
of bits can be made balanced by inverting the bits in an
appropriate prefix of B. Let us denote by · the inversion
operator; i.e. 0 = 1 and 1 = 0. We extend the operator so that
it operates bitwise on sequences. Given an arbitrary block B of
even length Q, Knuth’s technique consists in splitting B into
a prefix u and a suffix v, where 0 ≤ |u| < Q, such that u ·v is
balanced. Knuth showed that such an appropriate prefix always
exists. Merely transforming input blocks that way would not
make a valid (i.e. reversible) function ‘Enc’. The length |u|
has to be encoded somewhere in the transformed block. To do
so, Knuth’s technique recursively relies on a shorter balanced
code. The codewords of the latter have length P , where P is
large enough to encode |u|; i.e.

(
P
P/2

)
≥ Q. Still, P is typically

small enough to use a lookup table. So Knuth’s technique
encodes B by returning Enc(|u|) · u · v.

Knuth estimated the redundancy added by his technique to
be P ≈ logQ ≈ logM bits. He noted that this redundancy is
about twice the optimum one:

M − log

(
M

M/2

)
≈ 1

2
logM.

Input Balanced

0000 000111

0001 001011

0010 001101

0011 001110

Input Balanced

0100 010011

0101 010101

0110 010110

0111 011001

Input Balanced

1000 011010

1001 011100

1010 100011

1011 100101

Input Balanced

1100 100110

1101 101001

1110 101010

1111 101100

Fig. 1. Lookup table for ‘Enc’ for Q = 4 and M = 6.

It means that there is room for improvement.
Indeed, much research has been conducted to reduce the

redundancy of Knuth’s algorithm. Weber and Immink noted
that an input block B may have multiple (between 1 and M

2)
adequate prefixes [10]. This freedom in selecting encodings
is the cause of part of the extra redundancy introduced by
Knuth’s algorithm. The same authors also noted that, in theory,
this selection freedom could be used to convey information
and they showed that, on average, the amount of informa-
tion that could be conveyed per block this way is ASF ≈
1
2 logM−0.916 [11]. They devised a scheme that significantly
reduces the redundancy compared to Knuth’s algorithm. Still,
they did not succeed to fully exploit the selection freedom.
Al-Rababa’a et al. noticed that this selection freedom is a
good candidate for bit recycling [12]. This technique achieved
a better improvement by transmitting almost ASF bits per
balanced block, on average.

D. Contributions

This work presents an alternative to Knuth’s algorithm to
create balanced codes with even less redundancy. We propose
a new technique that is based on permutations and Pacman.2

Indeed, the coding process of this algorithm can be viewed
as action performed by a special Pacman that consumes and
produces pills of information. We demonstrate experimentally
and analytically that our algorithm closes the redundancy gap
mentioned above while requiring low resources in time, space,
and register size.

II. OUR TECHNIQUE

Our technique uses a variety of tools. Some are usual, some
are new. In this section, we introduce the necessary notation,
definitions, concepts, and algorithms step by step.

A. Conventional Representation of Permutations

We denote a (conventional) permutation of n elements by
by (a1, . . . , an), where ai 6= aj whenever 1 ≤ i < j ≤ n.
We define Pn to be the set of permutations of {1, . . . , n}.

B. Indexed Representation of Permutations

Our technique also makes use of an alternative represen-
tation of the permutations: the indexed representation. The
indexed representation indicates the relative position of each
of the numbers that appear in a permutation π ∈ Pn. The
leftmost position is 1. We use the term “relative” because

2The name is inspired by the well known PAC-MAN video game. The
trademark PAC-MAN is a property of BANDAI NAMCO.

π = (2, 4, 1, 5, 3) = P5(η) η = 〈1, 1, 3, 2, 4〉 = H5(π)

Fig. 2. The conventional and the indexed representations of a permutation.

the indexed representation indicates, for each number a, the
position of a in the permutation that remains if we remove
the larger numbers a + 1, . . . , n from π. We denote an
indexed permutation η by 〈ι1, . . . , ιn〉, where 1 ≤ ιi ≤ i,
for 1 ≤ i ≤ n. Let Hn be the set of indexed permutations with
n indices. The conversion of permutations from the conven-
tional representation to the indexed representation is performed
using a family of functions, {Hn}∞n=1, where Hn : Pn → Hn,
which are inductively defined as follows.

H1((1)) = 〈1〉
Hn((a1, . . . , ai−1, n, ai+1, . . . , an))

=

Hn−1((a1, . . . , ai−1, ai+1, . . . , an)) · 〈i〉

Note that we overload the operator ‘·’ to also denote the ex-
tension of a permutation. The reverse conversion is performed
using the family of functions {Pn}∞n=1, where Pn : Hn → Pn.
An example showing both representations is given in Figure 2.
An interesting property of indexed permutations is that every
index is independent of the others, which is not the case with
conventional permutations.

C. Permutations and Balanced Blocks

Permutations have some relation to balanced codes. Let M
be an even integer. Let us suppose that we wish to build a
balanced block B of length M . Let us suppose further that we
have at hand a permutation Π ∈ PM that, for some reason,
results from processing input data. Then we can extract a
balanced block B from Π by keeping the parity of the elements
of Π. Let us denote this operation by B = Π mod 2. For
example, if Π is (5, 4, 2, 7, 1, 8, 3, 6), then B = 10011010

can be extracted. If we could manage to transform the entire
input data into permutations like Π, we would have a complete
procedure for ‘Enc’.

However, there are missing operations. We already know
that we have to devise a way to convert the input data into
permutations from PM . But we face another, less obvious
challenge: we have to deal with Π once we have extracted B
from it. Clearly, it would pointless to extract Π mod 2 again.
We cannot simply throw Π away either, since Π still contains
information from the input.

Let us characterize the information that remains in Π once B
has been extracted. In order to do so, let us take the point of
view of the decoder and assume that B is known but not Π.
B describes the positions of the even and odd numbers inside
of Π. However, nothing is divulged about the order of the even
numbers relative to each other, neither about the odd numbers.
If the decoder were to receive the relative order of the even
numbers and that of the odd numbers, then the decoder would

hold the full information about Π. These orders are equivalent,
up to renumbering, to permutations of M

2 elements. So there
is a one-to-one mapping between permutations like Π ∈ PM
and triples like (B, π, π′) ∈ BM × PM/2 × PM/2. In the
previous example, we have Π = (5, 4, 2, 7, 1, 8, 3, 6) and
B = Π mod 2 = 10011010. The relative positions of the
even numbers of Π are given by π = (2, 1, 4, 3) (which
is (4, 2, 8, 6), monotonically renumbered); those of the odd
numbers, by π′ = (3, 4, 1, 2).

This transform may serve in an effective implementation
of ‘Enc’, which would proceed in four steps. First, input
data somehow gets embedded into Π ∈ PM . Second, Π gets
transformed into (B, π, π′). Third, B gets emitted as encoded
data. Fourth, the information contained in π and π′ somehow
gets reused in the construction of a new permutation from PM .
The transform can be reversed, so it may serve as well in an
implementation of ‘Dec’. There remains to devise a way to
perform the “somehow” tasks of the first and fourth steps.

D. Rebuilding a Large Permutation from Small Permutations

It is not necessarily obvious to see how to reuse the
information contained in π, π′ ∈ PM/2 and embed it into
a new Π ∈ PM Fortunately, indexed permutations can be of
help, here. It is less difficult to see how to reuse the infor-
mation from η, η′ ∈ HM/2 and to embed it into H ∈ HM ,
mainly because indices in indexed permutations are indepen-
dent from each other. So we have reduced the problem to the
following three, simpler steps. First, let η be HM/2(π) and η′

be HM/2(π′). Second, we somehow transfer the information
from η and η′ into H . Third, we let Π be PM (H). In
Subsections II-E to II-H, we explain how to perform the
“somehow” task of the second step.

E. Pacman

In order to extract the information from η, η′ ∈ HM/2

and embed it into (a new) H ∈ HM , we take inspiration
from the famous video game Pacman. The original Pacman
consumes pills with the intent to make points. In our setting,
instead of performing only “input” actions, Pacman performs
both “input” and “output” actions. It does so with the intent
to transfer the information from η and η′ into H . During a
transformation cycle, Pacman consumes all the indices of η
and η′ and produces all the indices of H . Since η, η′ ∈ HM/2

together contain less information than H ∈ HM , we take the
opportunity to have Pacman consume input bits, also.

Since Pacman’s goal is to transfer information, it has a
memory. Its memory enlarges when it consumes an index and
its memory shrinks when it produces an index. If Pacman
consumes many indices in a row, its memory enlarges con-
siderably. It is preferable to have Pacman alternate between
consumption and production, allowing its memory to remain
at a reasonable size.

F. Small Memories

We say that Pacman has a small memory. Its small memory
is intended to hold a single value: an integer in the range 1,

. . . , σ, where σ ≥ 1. The conventional way of measuring the
size of the memory would consider it to be (log σ)-bits wide.
Instead, we choose to consider it to have size σ.

Pacman’s operations have the following effect on its mem-
ory. Let σ and σ′ be the memory sizes and v and v′ be the
values stored in the memory before and after a given operation,
respectively. If Pacman consumes an index of value i of range
size ρ, then we have:

(σ′, v′) = (ρ× σ, ρ× (v − 1) + i) .

If Pacman produces an index i of range size ρ, then we have:

(σ′, i, v′) =

(⌈
σ

ρ

⌉
, ((v − 1) mod ρ) + 1,

⌈
v

ρ

⌉)
.

Rounding is necessary because σ need not be divisible by ρ,
in general. Note that we view the consumption of an input bit
as the consumption of an index of range size 2.

We say that index consumption introduces no redundancy.
On the other hand, we say that index production does introduce
redundancy, in general, because of rounding. However, the
worst-case added redundancy remains modest as σ′ ≤ σ+ρ−1

ρ .

G. Pacman’s Programming

We choose to use the same sequence of operations each
time Pacman transforms η, η′ ∈ HM/2 and input bits b1,
. . . , bQ into a new H ∈ HM . We call that sequence Pacman’s
programming.

We define a programming P to be a permutation of the fol-
lowing instructions: E1, . . . , EM/2, O1, . . . , OM/2, B1, . . . , BQ,
and L1, . . . , LM . Note that P contains 2×M+Q instructions.
There are no syntactic restrictions on P.

Let η be
〈
ι1, . . . , ιM/2

〉
, η′ be

〈
ι′1, . . . , ι

′
M/2

〉
, and H be

〈ι′′1 , . . . , ι′′M 〉. The semantics of the instructions is the follow-
ing: instruction Ei (for “even”) directs Pacman to consume ιi;
instruction Oi (for “odd”) directs Pacman to consume ι′i;
instruction Bi (for “bit”) directs Pacman to consume bi; and
instruction Li (for “large”) directs Pacman to produce ι′′i .

An additional piece of information gets attached to P. It is
Pacman’s memory size σ0 at the beginning of the execution
of P. Note that, given σ0, it is possible to determine Pacman’s
memory size at any step during the execution of P. Let σi
be the memory size after the first i instructions from P have
been executed. In particular, the memory size at the end of the
execution of P is σ2×M+Q.

H. Validity of a Programming

Although that there are no syntactic restrictions on P, there
are semantic restrictions, namely on Pacman’s memory size.
We impose a maximum memory size Ω. P is valid if its
instructions are arranged so that:

∀0 ≤ i ≤ 2×M +Q. σi ≤ Ω and σ2×M+Q ≤ σ0.

A subtle consequence of the validity condition is that, if one
chooses too large a Q, then it becomes impossible to establish
a valid P.

I. Encoding Cycle

We define an encoding cycle to be the computations that
cause the consumption of a block of Q input bits and the
production of a balanced block. The computations of an
encoding cycle also involve the manipulation of data that
is internal to the encoder: Pacman’s memory and some per-
mutations. Internal data is passed over from one cycle to
the next. Let us number the current cycle as cycle #t. The
internal data that is passed over is Pacman’s memory and
two small permutations, πt−1 and π′t−1. Pacman’s memory
has size σ2×M+Q and contains a certain value.3 The first
step of cycle #t is the following: ηt = HM/2(πt−1) and
η′t = HM/2(π′t−1). The second step of cycle #t consists in
resizing Pacman’s memory: the new size is σ0. Note, however,
that the value in Pacman’s memory is left unchanged. This
resizing is consistent since σ2×M+Q ≤ σ0. The third step
consists in executing P. This causes Pacman to consume ηt and
η′t completely. Additionally, this causes Pacman to produce Ht.
The Q bits b1, . . . , bQ that are also consumed by Pacman get
read from the input. The fourth step is the following: Πt =
PM (Ht). The fifth step decomposes Πt into (πt, π

′
t, Bt). The

sixth step writes Bt to the output. Finally, Pacman’s memory,
πt, and π′t are passed over to cycle #t+ 1.

J. Decoding Cycle

The decoding cycle #t merely undoes what the encoding
cycle #t did. We assume that Pacman’s memory, πt and π′t are
passed over by cycle #t+ 1. (Note that the cycles themselves
have to be reversed, not just the computations in each cycle.)
The value in Pacman’s memory, πt and π′t are exactly the same
as those that existed at the end of the encoding cycle #t.
The balanced block Bt gets read from the input. The triple
(πt, π

′
t, Bt) gets blended to rebuild Πt. Next, Ht = HM (Πt).

Then, Pacman performs a reversed execution of P. The rever-
sal not only means that the instructions are executed from right
to left but also that the instructions that triggered consumption
in the encoder now trigger production in the decoder, and vice
versa. The reversed execution rebuilds ηt, η′t, and Q bits. The
Q bits get pushed on a stack to be written to the output
later. They must not be written to the output immediately
because the rebuilt input blocks are recovered from the last
of the first. Finally, PM/2(ηt) and PM/2(η′t) are passed over
to cycle #t− 1.

K. Initialization and Termination

There remains to present procedures for initialization and
finalization. We present those of the encoder. Those for the
decoder are simply reversed procedures, in the reversed order.

The initialization prepares the encoder’s internal data. We
choose to initialize it with fixed values. Pacman’s memory is
initialized to value 1 and size σ2×M+Q, a plausible state left by
a hypothetic cycle #0. Permutations π0 and π′0 are initialized
to the identity permutation,

(
1, . . . , M2

)
.

3Note that the index in variable σ2×M+Q is not the cycle number: it is
the step number in P.

The finalization has to deal with many details. In the first
step, the encoder has to handle the possibility that the sequence
of input bits may have a length that is not a multiple of Q.
Consequently, the encoder appends between 0 and Q−1 bits of
padding to the input. The following steps are intended to flush
out all the internal data, including the length of the padding.
Note that the encoder cannot use its Pacman-and-permutations
machinery anymore as it is precisely the internal data main-
tained by that machinery that the encoder needs to flush out.
Finally, note that the encoder is not relieved of the obligation
to output balanced blocks. In the following steps, we make use
of classical enumerative coding (denoted by ‘Enc’) to encode
various small integers into balanced blocks. So, in the second
and third steps, the encoder emits Enc(l), where l is the length
of the padding, and Enc(vT), where vT is the value stored in
Pacman’s memory after the last cycle (cycle #T). In the last
step, it emits one block per element of πT and π′T .

L. Design of a Programming

In subsections II-G and II-H, even if we formally explain
what P is and under which condition P is valid, we do not
really explain what P one should try to get nor how to design
it. The design of P has to be made carefully.

We have not formally analyzed the complexity of the
design of P but we suspect it is NP-hard. Indeed, it does not
seem easy to design an optimal P, for different definitions
of “optimal”. In our experiments, we have considered two
definitions of optimality. In each definition, we assume that M
is imposed by the application. The first definition consists in
choosing Q ≤ log

(
M
M/2

)
a priori and trying to determine Ωmin,

which is the smallest Ω for which there exists a valid PΩ. The
second one consists in choosing Ω and σ0 ≤ Ω a priori and
trying to determine Qmax, which is the largest Q for which
there exists a valid PQ.

We have not tried to find optimal values under either
definition. Instead, we rely on two heuristics.

The first heuristics relies on an a priori choice of Q,
Ω, and σ0 and designs a programming in a greedy way.
The consumption and production instructions are put in two
separate queues in arbitrary order. Then, an iterative process
successively picks one new instruction at a time from one
of the queues, favouring the consumption instructions over
the production ones whenever possible and favouring the first
consumption instructions that allows Pacman’s memory size
to remain within Ω. This heuristics is not guaranteed to be
able to design a valid programming.

The second heuristics relies on an a priori choice of σ0 and
the availability of a programming P, where a priori values
of Q and Ω implicitly follow from these. The heuristics
considers the swapping of two arbitrary instructions in P and
checks whether it would reduce Pacman’s memory size at
least at certain steps, especially at steps where the maximum
memory size is reached. The heuristics continues until no more
swappings may lead to a reduction.

0 20 40 60 80 100 120 140 160 180 200
101

102

103

104

105

106

107

108

109

M

Ω
m

in

2

3

4

5

6

7

P
m

in

Ωmin

Pmin

Fig. 3. Requirements on Pacman’s memory size and parity bits for various
balanced-block sizes.

III. EXPERIMENTAL AND THEORETICAL RESULTS

We ran experiments in two modes: one for minimum
redundancy, the other for limited-precision integers. Also, we
made a theoretical analysis to obtain upper bounds on the
redundancy in the mode for limited-precision integers.

A. Mode for Minimum Redundancy

In this mode, we set Q to
⌊
log
(
M
M/2

)⌋
, for different values

of M , and observe the effect on Ωmin. We choose the initial
memory size of Pacman to be σ0 = max(64, 2dlogMe). The
design of the programming is done using our two heuristics.
The first curve in Figure 3 shows the results. The growth rate
of Ωmin seems to be polynomial since we can roughly estimate
that Ωmin is multiplied by 10 each time M doubles.

B. Mode for Limited-Precision Integers

In this mode, we arbitrarily set Ω and M to different values
and observe the effet on Pmin (Pmin = M − Qmax). More
precisely, we set Ω to be one of different functions of M : M2,
M3, M4, and other functions of M but results for the latter are
not reported here. Once again, σ0 is set to max(64, 2dlogMe).
In Figure 3, the second curve shows the growth of Pmin

when Ω is set to M3. Choosing Ω = M3 means that it
is sufficient for the registers (and the memory cells) of the
computer to be three times as large as the size of the encoding
of M in binary, which is reasonable.

C. Upper Bounds on the Redundancy

We have derived upper bounds on the worst-case redun-
dancy that one could face in limited-precision mode, if we
set Ω to Mk, for k ≥ 2. Here are the key ideas. During a
cycle, when an index of range size ρ is produced, rounding
may increase σ by ρ− 1, in absolute terms. In relative terms,
this increase is small because we assume σ > Mk−1, thanks
to the greedy heuristics. There remains to cumulate all the
increases of the cycle. We omit the rest of the details. The
bounds guarantee that the redundancy converges very quickly

4 5 6 7 8 9 10

2

3

4

5

6

7

8

9

10

11

logM

R
ed

un
da

nc
y

(i
n

bi
ts

pe
r

bl
oc

k)

Bound
Knuth
I&W
ADC

M2

M3

M4

Fig. 4. Redundancy introduced by different techniques for various balanced-
block sizes.

towards the theoretical minimum redundancy when k grows.
Figure 4 presents three curves that show the upper bounds on
the redundancy when Ω is set to M2, M3, and M4. The other
curves show the lower bound on the redundancy that has to be
introduced per block, the redundancy by Knuth’s algorithm[9],
that by Immink and Weber’s technique [10], and that by Al-
Rababa’a et al.’s technique [12].

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their comments.

REFERENCES

[1] T. Cover, “Enumerative source encoding,” IEEE Trans. on Information
Theory, vol. 19, no. 1, pp. 73–77, 1973.

[2] S. J. Piestrak, “Design of self-testing checkers for unidirectional error
detecting codes,” Scientific Papers of the Institute of Technical Cyber-
netics of the Technical University of Wroclaw, 1995.

[3] K. A. S. Immink, “Coding techniques for the noisy magnetic recording
channel: A state-of-the-art report,” IEEE Trans. on Communications,
vol. 37, no. 5, pp. 413–419, 1989.

[4] J. F. Tabor, “Noise reduction using low weight and constant weight
coding techniques,” Computer Science and Artificial Intelligence Lab,
MIT, Tech. Rep. AITR-1232, May 1990.

[5] E. L. Leiss, “Data integrty in digital optical disks,” IEEE Trans. on
Computers, vol. 100, no. 9, pp. 818–827, 1984.

[6] M. Blaum and J. Bruck, “Coding for skew-tolerant parallel asynchronous
communications,” IEEE Trans. on Information Theory, vol. 39, no. 2,
pp. 379–388, 1993.

[7] A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block,
8B/10B transmission code,” IBM Journal of Research and Development,
vol. 27, no. 5, pp. 440–451, 1983.

[8] G. D. Durgin, “Balanced codes for more throughput in RFID and
backscatter links,” in IEEE International Conference on RFID Tech-
nology and Applications, 2015, pp. 65–70.

[9] D. E. Knuth, “Efficient balanced codes,” IEEE Trans. on Information
Theory, vol. 32, no. 1, pp. 51–53, 1986.

[10] K. A. S. Immink and J. H. Weber, “Very efficient balanced codes,”
IEEE Journal on Selected Areas in Communications, vol. 28, no. 2, pp.
188–192, 2010.

[11] J. H. Weber and K. A. S. Immink, “Knuth’s balanced codes revisited,”
IEEE Trans. on Information Theory, vol. 56, no. 4, pp. 1673–1679, 2010.

[12] A. Al-Rababa’a, D. Dubé, and J.-Y. Chouinard, “Using bit recycling to
reduce Knuth’s balanced codes redundancy,” in Canadian Workshop on
Information Theory, 2013, pp. 6–11.

