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ABSTRACT

Resource management in complex socio-technical
systems is a central and crucial task. The many
diverse components involved together with various
constraints such as real-time conditions make it
impossible to devise exact optimal solutions. In
this article, we present an approach to the re-
source management problem based on the multia-
gent paradigm to be applied in the context of a ship-
board command and control (C2) system. A general
architecture for multiagent planning and schedul-
ing for achieving a common shared goal together
with a real-time simulation environment as well as
a simulation test-bed using the agent teamwork ap-
proach is described.

INTRODUCTION

Socio-technical systems (STS) are becoming in-
creasingly complex. Often this complexity arises
from the multitude and variety of relationships
that are involved among the resources to be de-
ployed or used to achieve system goals. Additional
complexity is further introduced when system be-
havior requiring human intervention and interac-
tion forms an integral part of the system. Ex-
amples of such systems include transportation lo-
gistics, management and control (road, rail, sea,
air), industrial engineering systems (process con-
trol, flexible manufacturing, and others), nuclear
power plant control, communication management
and control, shipboard command and control (C2),
electric power management, reactive systems such
as commercial aircraft control systems, etc. In

these systems, tasks are performed in a highly dy-
namic, complex environment and call for a high de-
gree of coordinated activity among actors, planners
and decision makers to occur in a timely and re-
sponsive manner.

In the case of an industrial engineering sys-
tem for example, the common goal of every entity
involved in the production process is to produce
manufacturing goods as efficiently and effectively
as possible. There are multiple resources to be con-
sidered here: manufacturing components, assem-
bly components (e.g. robots), human resources in
the manufacturing process, resources at the engi-
neering and marketing levels, as well as sensors
for automated control, and humans responsible for
monitoring and controlling the functioning of the
whole process. In the same context, an air-traffic
control system is characterized by the goal of ensur-
ing passenger and crew security during all phases
of a flight (take-off, flight, landing). Finally, ship-
board C2 systems must assure adequate response
to external threats while making the most effective
use of its resources for tactical picture compilation
and defensive measures.

The management of the resources involved
constitutes a central and crucial task for such sys-
tems to achieve their goals. The multiple resources
may be of many different kinds, such as computa-
tional equipment, communication channels, techni-
cal equipment, and personnel. In some cases, the
scenarios to manage, the actions to take and the
resource allocation strategies to employ are fairly
deterministic or at least predictable. This is the
case for instance with some applications of manu-
facturing. Other more open systems are potentially
subject to large not anticipated variations and tend
to be more reactive. This is due to the occurrence of
non-deterministic arising events, which require im-
plementing dynamic resource allocation strategies.
Some systems show a further complication in that
very often conflicting situations arise, be it conflict-
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ing or imprecise information for taking resource al-
location decisions, be it conflicting or overlapping
goals. Such situations may for instance arise in
railways (or other transportation systems), where
load capacity, delivery time, routing, etc., compete
for transportation resources.

The diverse characteristics of the resources
controlled and managed by such systems, as well
as the diverse characteristics of the information
available and the associated interaction environ-
ment, require new methods and techniques to find
solutions. Moreover, the complexity of the resource
management problem for STS do not allow for ex-
act solutions, because the computational effort is
very large even when using high performance com-
puting systems (Kropf et al. 1999). Therefore, we
rather envisage a Decision Support System (DSS)
to help operators to take accurate resource alloca-
tion actions. While the allocation of a CPU to pro-
cesses or the allocation of take off slots in air traf-
fic control might use a simple round robin schedul-
ing technique combined with a priority scheme, a
transportation or shipboard C2 system should in-
stead be viewed as a Multiagent System (MAS)
where human or software agents provide decision
support for dispatching and engaging resources.
In MAS, knowledge, action and control are dis-
tributed among software entities (called agents)
which may cooperate, compete or coexist depending
on the context. MAS technology is becoming one of
the most important and exciting areas of research
and development in computer science today (Chaib-
draa 1995). For these reasons, we have adopted
the MAS paradigm by considering Resource Man-
agement (RM) as a coordination process involving
goals, agents or actors (i.e., worker/operator/human
entity or automated entity) and resources; a pro-
cess which is viewed as the act of managing inter-
dependencies between agents’ activities as shown
in Table 1.

RESOURCE MANAGEMENT

The aim of resource management, simply stated,
is to manage inter-dependencies between activi-
ties. We have selected the complex socio-technical
system of tactical C2 (Chalmers 1998) on board a
navy frigate as a concrete environment in which
to study the characteristics of such coordination
processes and to identify and generate appropri-
ate coordination mechanisms for these processes,
including algorithms and architectures, for these
processes. Operators in this type of environment

Components of coor-
dination

Associated coordination
process

Goals (G) Identifying goals
Planning (P) Mapping the complex

multiagent plan to the
goals (G)

Agents Task allocation or map-
ping parts of the plan to
agents

Coordination Managing the inter-
dependencies between
agents (resource al-
location, sequencing,
synchronization, etc.)

Table 1: Components of coordination.

perceive and interpret information available from
own-ship sensors or data-linked from other coop-
erating platforms, and plan and conduct mission
operations. In highly dynamic scenarios with a
large number of constraints, handling such a large
amount of information could quickly overwhelm
human capabilities. This suggests a need for tools
to support and complement operators by match-
ing their perceptual and cognitive resources to the
demands of the environment, and by supporting,
when necessary, their mental strategies used to
deal with complexity and perform decision making
activities. The Simulated Real-Time Environment
(SRTE) (Chalmers and Blodgett 1998) provides the
necessary simulation infrastructure for our C2 ap-
plication in which to accomplish planning and re-
planning. The SRTE shown in figure 1 simulates
targets and own-ship features (sensors, actuators,
etc.), performs multi-sensor data fusion (MSDF),
and has a KBS shell and agents for Situation and
Threat Assessment (STA) and a multiagent plan-
ning architecture for resource management (RM).
The Human-computer Interface allows to monitor
and evaluate the system and to communicate with
the KBS.

APPROACH

Multi-Sensor Data Fusion and Situa-
tion Assessment

For our purposes, the principal functions related
to these processes are: (1) threat detection based
on data from several sensors; (2) target tracking
based on data fusion; (3) contact discrimination
which consists of separating threats from friends,
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Figure 1: Generic architecture for the SRTE.

neutrals, and decoys; and finally (4) identifica-
tion which consists of establishing further iden-
tity information on threats, friends and neutrals.
These functions are part of multi-sensor data fu-
sion (MSDF) and situation and threat assessment
(STA) processing (Duquet et al. 1998).

Goal Selection and Planning in a MPA

The concept of coordination that we have adopted
implies multiple activities related to some goal(s).
Therefore, in order for coordination to occur, these
goals and activities must somehow be identified.
The most commonly analyzed case of this process
occurs when an individual or group decides to pur-
sue a goal, and then decomposes this goal into sub-
goals (or plans), which together will achieve the
original goal. We call the process of choosing the
goal, goal selection, and the process of choosing the
activities goal, decomposition or planning.

The triad goals, problems and opportunities is
principally motivated by the meaning and signif-
icance of potential problems imposed and opportu-
nities provided by an external environment from an
operator-centered perspective. For our purposes,
we define a problem to be a feature of the situa-
tion that has the potential to negatively impact the
achievement of one or more goals or which should
at least alert a decision maker to consider a change
in the way these goals are being, can be, or should
be achieved. A problem therefore represents an im-
portant goal-relevant property of the environment
in that it can shape some aspect of an operator’s
behavior. The detection of a problem signals a pos-
sible need for corrective measures to avoid or re-
solve the problem. A second important type of goal-
relevant property for an operator interacting with

a complex, dynamic environment is related to op-
portunities. An opportunity is defined as a fea-
ture of the situation that represents a possibility
to achieve one or more goals, or to accelerate their
achievement, or to resolve the obstacles to their
achievement. Whereas a problem can be thought
of as a behavioral constraint, recognition or identi-
fication of an opportunity is an event that offers po-
tential for enlarging the degrees of freedom for that
behavior. For example, a particular geographical or
environmental feature may offer an opportunity for
concealing detection from an enemy. In some cases,
there may be a cost attached to taking advantage of
an opportunity. This cost may need to be estimated
as a precursor to a decision.

The planning problem addressed here is a mul-
tiagent planning problem in which the decision
agents (or planning agents) are comprised of hu-
man decision makers, computer-based agents and
decision aids. The decision agents can be geograph-
ically dispersed due to the distributed nature of the
operational environment (task force, task group),
the nature of sensors, and physical limitations of
weapon systems. To capitalize on the benefits of
distributed computing architectures which sustain
our distributed decision agents, we propose here a
multiagent planning architecture (MPA). MPA pro-
vides protocols to support the sharing of knowledge
and capabilities among (software) agents involved
in cooperative planning and problem solving. Such
software agents share a well-defined, uniform in-
terface specification, so that we can explore ways
of reconfiguring, re-implementing, and adding new
capabilities to the planning system.

MPA also provides an environment to create
intelligent agents, called plan managers (PM’s) as-
sociated with each planning agent. PM’s communi-
cate with each other during the planning process,



Figure 2: Architecture for Multiagent Planning and Scheduling.

notifying other plan managers of changes to the
plan (taking into account: temporal constraints, op-
erational constraints, resource utilization, oppor-
tunities, problems, etc.) that may cause conflicts
among the partial plans. Once the conflict is iden-
tified, the plan managers use a set of conflict reso-
lution strategies to repair the conflict, with involve-
ment of human planners where necessary.

Task Allocation and Negociation

The previous planning process provides as output
a complex plan (i.e., a set of activities) which ad-
dresses the target C2 situation. How to decompose
this plan and how to allocate sub-plans to actor
agents, constitutes the task allocation problem. To
solve this problem, we will analyze three alterna-
tives in terms of coordination costs and benefits.

The first one uses two specific software agents:
the supervisor agent which knows how to decom-
pose a given multiagent plan, and the media-
tor agent which knows which actor agents are
capable of performing which tasks. These two
agents are parts of the Laval University multiagent
architecture, called Networked Software Agents
(NetSA) (Côté and Troudi 1998). Other agents of
NetSA have the following characteristics: (1) User
agents: they contain mechanisms to select an on-
tology, support a variety of interchangeable user
interfaces, maintain models of other agents, etc.,
(2) Mediator agent: it implements a ’yellow pages’
and ’white pages’ directory services for locating ap-
propriate actor agents with appropriate capabili-
ties. It also manages Agent Name Server (ANS)
and resources services, and may have the ability to
store and forward messages, and locates message

recipients. It also functions as a communication
aid, by managing communications among the var-
ious other agents. Communication is based on the
standard language KQML (Chaib-draa and Van-
derveken 1998; Lizotte and Chaib-draa 1997); (3)
Resource agents: they come in a variety of common
types, depending on which resource they are repre-
senting. In the context of the C2 application, a re-
source designates target, weapon, soft-kill weapon,
hard-kill weapon, sensor, ship, a computer system,
a database, etc. and a resource agent means the
software agent which constitutes the interface to
this specific resource; (4) Supervisor agent: it de-
composes a complex plan and allocates the different
activities to actor agents with help from the medi-
ator. It also provides the SRTE simulation test-bed
with all the information regarding a conflict or a
failure in order to help it to re-plan. Figure 2 shows
the design of an architecture based on NetSA for
the C2 application.

The second alternative for task allocation sup-
poses that our mediator does not have all the
knowledge to do a complete task allocation. In this
case, the supervisor will first decompose the com-
plex plan and then send a description of each activ-
ity to be performed to the mediator. The mediator
attaches to each description the qualifications and
capabilities required and makes an announcement.
The potential resource agents then use this infor-
mation to decide whether to submit a bid for the
task. A bid includes a description of qualifications
of the bidder and its availability for performing the
task. The mediator uses these bid messages to de-
cide which resource agent should perform the task
and then send an award message to notify (1) the
resource agent that is selected and, (2) the supervi-
sor which actor agent it has selected.



Finally, the third alternative turns around a
simulated market where actor agents compete on
the prices of goods and services. In this context,
the allocation task is viewed as a market and the
’best’ strategy for this type of competition according
to the analysis will be implemented.

Coordination with Resource Schedul-
ing

Because of the diverse characteristics of the re-
sources involved in a socio-technical system, as
well as the many different methods used to man-
age those resources, we are faced with a situation
where resources, their use and management must
be considered at different levels in order to cope
with complexity. We enrich our NetSA architec-
ture with many Local-Scheduler-Agents (LSA) (one
for each level) that communicate with a Central-
Scheduler-Agent (CSA) as depicted in Figure 1. For
a scheduling problem raised by the mediator, the
CSA considers this problem as a Distributed Con-
straint Satisfaction Problem (DCSP), formulated in
terms of variables, domains and constraints. The
CSA decomposes the DCSP and contacts LSA’s for
partial solutions. If there are some conflicts be-
tween LSA’s, it tries to solve them in collaboration
with the concerned LSA’s (by relaxing some con-
straints, for example). Finally, it combines the par-
tial results to the DCSP and submits the solution to
the mediator. For the local CSP, a number of gen-
eral purpose (and powerful) techniques can analyze
the problem and find a solution (Tsang 1993).

A TEAMWORK TEST-BED

Figure 2 illustrates the general design of the de-
cision support system (DSS) test-bed we apply to
the shipboard C2 system. This DSS supports oper-
ators at least in: (1) the identification and selection
of actions; (2) the management of resources; and
(3) action implementation. In order to better un-
derstand the specific characteristics of the resource
management problem in the context of the C2 ship-
board system and to deliver a proof of concept for
our approach, we have developed a test-bed archi-
tecture applying the concept of teamwork. This pro-
totype environment for C2 planning and scheduling
includes the simulation of the target, own-ship and
MSFD features of the SRTE test-bed as agents as
well (see figure 1). This allows us to easily test and
evaluate the planning and scheduling algorithms

before their integration into the architecture shown
in Figure 2, the SRTE simulation environment and
ultimately into the real DSS system.

Tasks in complex technical systems with hu-
man interaction are in general too difficult to be
executed by individual units. In the context of our
application of naval combat, many different indi-
vidual members of the defense system must work
together as a team towards common objectives with
dynamic shared plans and information. For exam-
ple, in order to efficiently manage the defense re-
sources of a ship, they can be considered as a team-
work trying to achieve the common goal : inter-
cepting enemy missiles (or other weaponry). Un-
fortunately, in implemented multi-agent systems,
team activities and the underlying model of team-
work are often not represented explicitly (except
Tambe’s work (Tambe 1997)). In fact, to simulate,
test and evaluate operation strategies using mul-
tiagent systems, the agents must be provided an
explicit model of teamwork.

Soldier Base

CameraTree

Scout

Intruder

Sensitive

Area

Figure 3: Teamwork test-bed environment

To achieve a multiagent module that supports
teamwork between an arbitrary number of agents
is necessary. A generalized environment realizing
a prey-predator scheme has been designed. In the
context of a military scenario, there are a number
of agents patrolling the area which try to intercept
intruders who want to reach a sensitive area which
must be drastically defended.

Figure 3 illustrates this environment as a two
dimensional grid containing either trees, which
serve as obstacles to the agents’ vision, or flat land.
A number of man-made constructs are also present:



bases, where soldier agents wait before they are
sent to intercept an intruder, and the sensitive
area.

Three different types of agents exist in this en-
vironment: scouts, soldiers and cameras. Scouts
are the fastest agents and see very far but are in-
efficient in combat: their role is to patrol the area
until they find an intruder, at which time they call
for reinforcements and try to follow the intruder to
update it’s position to his other team-mates. Sol-
diers are slow and do not see far ahead but are the
only agents able to intercept and possibly to kill in-
truders, their limited perception make them reliant
on scouts for knowing the position of these intrud-
ers. When they are not out for an interception, the
soldiers wait at small bases placed around the sen-
sitive area. Finally, cameras are placed at the cor-
ners of the sensitive area. While they cannot move,
the camera can turn and are able to see the fur-
thest of all agents. Their role is only to inform other
agents when an intruder is detected. Users of the
program control the intruders themselves, as well
as their arbitrary number in the environment. Ob-
viously, the ultimate goal of intruders consists of
reaching the sensitive zone to ”bomb” it.

This generalized view can be extended to the
complex shipboard system, which allows us to ab-
stract from the many technical details of the very
sophisticated equipment on board (sensors, radars,
etc.) and the associated data (control system data,
intruder speed, turning rate of a missile, etc.) In-
stead, this test-bed environment allows to concen-
trated on the resource management problem only,
i.e. on the design and implementation of the agent
teamwork. The agents in our test bed should have
some sophisticated reasoning mechanism that al-
low them to achieve their goals and sometimes to
operate as a teamwork, particularly for (1) percep-
tion and (2) interception of intruders. Our test
bed is ideally suited for an advanced team-working
module that, while being very efficient in the ship-
board resource management problem, is robust and
flexible enough to be used in other applications
such as transportation systems or any other socio-
technical system.

CONCLUSIONS

Real time decision support systems and resource
management for such complex systems as the tac-
tical C2 on board a navy frigate are a very de-
manding research and development challenge. The

Multi-agent paradigm is well suited for our re-
source management problem. RM is considered as
a coordination process involving goals, agents and
resources. The use of agents is very suitable to gen-
erate plans and managing their inter-dependencies
in the highly dynamic environment of the C2 sys-
tem. The test-bed environment is currently being
implemented and first experimentation results are
expected in the very near future.
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