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Abstract We have tested our approach in the RoboCupRescue sim-
ulation environment. Our results show that the agents’ per-
This paper presents a learning algorithm used to allo- formances improved with the learning algorithm. They ob-
cate tasks to agents in an uncertain real-time environment.tained good results with a compact representation of the
In such environment, tasks have to be analyzed and allo-state space.
cated really fast for the multiagent system to be effective.  In the remaining of this article we explain in more de-
To analyze those tasks, described by a lot of attributes, wetails the approach we have used, but first we describe, in the
have used a selective perception technique to enable agentfollowing section, our test environment, the RoboCupRes-
to narrow down the description of each task by choosing the cue simulation.
attributes that it should be considering in each situatiBg.
doing so, we have obtained a drastic reduction of the num-2  The RoboCupRescue Environment
ber of possible states. We have used this algorithm at two
different levels for the problem of choosing the best fire to  The goal of the RoboCupRescue simulation project is to
extinguish for each firefighter agent in the RoboCupRescuepuild a simulator of rescue teams acting in large urban dis-
simulation environment. First, a center agentis usingthe a asters [1, 2]. More precisely, this project takes the form of
gorithm to allocate a zone on fire for each firefighter agent. an annual competition in which participants are designing
Then, those agents are choosing the best fire to extinguishrescue agents trying to minimize damages, caused by a big
in this zone. Our results show a good improvement in the earthquake, such as civilians buried, buildings on fire and
agents capability to extinguish fires, as the agents becomeplocked roads. In the simulation, participants have agprox
better at distinguishing the world states. mately 30 to 40 agents of six different types to manage:

FireBrigade There are 10 to 15 agents of this type.
Their goal is to extinguish fires. EadrireBrigade
1. Introduction agent is in contact by radio with all othEireBrigade
agents as well as with tHéreStation

Analyzing many possible goals and choosing the best  pgjiceForce There are 10 to 15 agents of this type. Their

one is obviously a difficult task for an agent, particularly i goal is to clear roads to enable agents to circulate. Each
a dynamic and uncertain environment. In this case, anagent  pgjiceForceagent is in contact by radio with all other
has to make a choice with only a partial view of the situa- PoliceForceagents as well as with tHeoliceOffice

tion and it has to make it quickly, because the environment
is constantly changing.

In those difficult settings, we present in this paper an al-
location algorithm based on the information learned by a se-
lective perception learning algorithm. In our approactchea
agent evaluates the number of agents needed to accomplish
a particular task and it uses this information to allocate it
self to a task, knowing the other agent are doing the same Center agents There are three types of center agents:

AmbulanceTeam There are 5 to 8 agents of this type.
Their goal is to search in shattered buildings for buried
civilians and to transport injured agents to hospitals.
EachAmbulanceTearagent is in contact by radio with
all other AmbulanceTeanagents as well as with the
AmbulanceCenter

thing. Thus, our agents are coordinating themselves with- FireStation PoliceOfficeand AmbulanceCenterThe

out any communication about their intentions. The selec- only actions those agents can make are to send and
tive perception technique enables the agent to learn by it- receive messages. They are in contact by radio with

self which is the level of precision it needs to efficiently de all their platoon agents as well as with the other cen-

scribe states in all possible situations [3]. ter agents. Platoon agents are the moving agents in the



simulation, which are the first three mentioned in this addition, the learning algorithm has to be resistant toenois
list. A center agent can read more messages than a plabecause of the uncertainty present in the RoboCupRescue
toon agent, so center agents can serve as informatiorsimulation environment. For example, two buildings on fire
centers and coordinators for their platoon agents. could be identically described and give different rewards.

In the simulation, each individual agent receives visual
information of only the region surrounding it. Thus, no 4. Selective Perception
agent has a complete knowledge of the global state of the
environment. Therefore the RoboCupRescue domain is in  To learn the expected reward of choosing one building on
general, collectively partially observable [4]. This mean fire, we have used a selective perception technique [3], be-
that even if the agents are putting all their perceptions to- cause the description of our states is too big. With this-tech
gether, they do not have a perfect perception of the envi-nigue, the agentlearns by itself to reduce the number of pos-
ronment. This uncertainty complicates the problem greatly sible states. In fact, the agent regroups all similar states
Agents have to explore the environment, it is not enough to gether and it does not distinguish between states of the same
work only on the visible problems. They also have to com- group. It considers states to be similar if they have simi-
municate to help each other to have a better knowledge oflar expected rewards. Since they have similar expected re-

the situation. wards, the agent does not have to distinguish them since it
would take the same decision in all of those situations.
3. Problem Description To be more precise, it is worth mentioning that the al-
gorithm is not really trying to regroup states, it is tryirg t
In this article, we focus only on the work of tiéreBri- divide them. To do that, the algorithm uses a tree structure

gadeand FireStationagents. Those agents are faced with Similar to a decision tree. At the beginning all states are co
the problem of choosing a fire to extinguish between a list of sidered to be the same, so there is only the root of the tree.
buildings on fire, which are described with some attributes. After some experiences, the agent tests if it would be inter-
Since there could be a lot of fires, agents do not consider allesting to divide the different states, represented as tvete
fires at once. They separately choose which fire zone to ex-0f the tree. To divide a leaf, it tries to divide its experiesc
tinguish and which specific building in the chosen fire zone stored in that leaf, by making a test on an attribute. By do-
to extinguish. Fire zones are simply regroupments of nearing so, the agent creates new states, by expanding a leaf of
buildings on fire. the tree, and thus it refines its view of the state space.

To stop a zone from spreading, tR@eBrigade agents An advantage of this algorithm is that it distinguishes
have to extinguish all fires at the border of the zone. Also, only states that really need to be distinguished. This has
it is pointless to constantly change from one fire zone to an-the effect of reducing the state space of the learning algo-
other, because by doing so, all zones would spread. A betterithm and thus facilitating the learning process. The foHo
strategy is to choose a zone and stop the spreading or reing subsections describe the algorithm in more details.
ally slow it down, before choosing another zone.

_ Th_eref_or_e, when an agent has tq choose a building to ex-4 1 Recor ding of the Agent’s Experiences

tinguish, it firstly has to choose the fire zone. In other woprds

agents are using a two level depision makiqg process. First At each time step, the agent records its experience cap-
of all, they look at the global view of the situation, look- tyred as an "instance” that contains the observation it per-
ing only at groups of buildings on fire. Afterwards, they use cejyes ¢,) and the reward it obtains). Each instance also
more detailed information to choose which specific build- ha5 3 link to the preceding instance and the next one, thus

ing to extinguish in the chosen fire zone. _ making a chain of instances. Consequently, an instance at
Since each mobile agent has only a local view of the tjme+ is defined as:

situation, it is often hard for &ireBrigade agent to have

a good view of the global situation. Therefore, it is diffi- is = (it_1,08, ¢, 0541) (1)

cult for them to choose between the fire zones since they

don’t have a good knowledge of the fire zones that are far  In our case, we have one chain for each building that an

from them. It is why it is the responsibility of tHereSta- agent chooses to extinguish. A chain contains all instances

tion agent to allocate fire zones EreBrigadeagents, be-  from the time an agent chooses to extinguish a building un-

cause it can receive more messages, so it normally has a betil it changes to another building. Therefore, during the-si

ter knowledge of the global situation compared to Fire- ulation, the agent records many instances organized in many

Brigadeagents. instance chains. It keeps all those instances until the &nd o
Our goal is to enable thereBrigadeagents to learn how  the simulation. There is no learning taking place during the

many agents are needed to extinguish all kinds of fires. Insimulation since it would take too much time. Agents are



4.3. Updateof the Tree
Building
composition

After a simulation, all agents put their new experiences
Reinforced concrete together. This set of new experiences is then used to update
the tree. First, all instances are added to the tree in their r

Steel frame

imi::ny B "Siff‘f"g spective leaf. Afterwards, we update the expected reward of
each leaf with the following equation:
st >
/ E QU) = R+~ Y Pr'HQ() )
Number of v
agents whereQ(!) is the expected reward if the agent tries to ex-

tinguish a building belonging to the leafR(!) is the esti-
mated immediate reward if a fire that belongs to the leaf
is chosenpPr(1’|l) is the estimated probability that the next
instance would be stored in le#fgiven that the current in-
stance is stored in ledf Those values are calculated di-
Figure 1. Structure of a tree. rectly from the recorded instanceB(!) is the average re-
ward obtained when a fire belonging to this leaf was cho-
sen andPr(I’|l) is the proportion of next instances that are
in leaf’:

evolving in a real-time environment and they cannot afford S regn

to take time to learn during the simulation. R(l) = i€l 3)
After the simulation, the agents are regrouping all their 11|

experiences together, the tree is updated with all those new , {Vis € I|L(igy1) = '}

instances and the resulting tree is returned to each agent. Prl’l) = 17| (4)

By regrouping their experiences, agents can accelerate the . , ) .
learning process. The next sections explain the tree struc- WhereL(i) is a function returning the leaf of an in-

ture and how it is updated with the instances recorded by allSt2NCe: 1; represents the set of all instances stored in leaf
agents. I, |1;] is the number of instances in lelaindr; ., is the re-

ward obtained after the instan;ewas chosen.
After all new instances have been added to the tree, we
check all leaf nodes to see if it would be useful to expand
4.2. TreeStructure some leafs and replace them with new center nodes con-
taining a new test, thus dividing the instances more finely.

To learn how to classify the states, we use a tree structure'© find the best test to divide the instances at a leaf node,
similar to a decision tree. The tree divides the instances inWe try all possible tests, i.e. we try to divide the instances

clusters depending on their expected reward. The objective?ccording to each attribute describing a state. After all at
is to regroup all instances having similar expected rewards tributes have been tested, we choose the attribute that max-

The algorith d here i . based al imizes the error reduction as shown in equation 5 [7]. In
. ©a g(_)ﬂt m pre_sente ereis an |_nstance- ased algog, .t the test is chosen only if the expected error reduction
rithm in which a tree is used to store all instances which are

keot in the | fih To find the leaf hich an | is greater than a certain threshold, if not, it means that the
eptinthe leaves of the tree. Tofind the leafto which anin- (oot qqes not add enough distinction, so the leaf is not ex-

Etandcz belor;gs, we s;:mpl'y start at Lhe root of (tjhe :]rei and anded. The error measure considered is the standard devi-
ead down the tree choosing at each center node the branchy;,, (sd(I;)) on the instances’ rewards. If the standard de-

'nc:'cat%d b%/ Thefrefsulllt of the t?St on the_ Inst;’:lnces amZu viation is reduced, it means that the rewards are closer to
value. Each leaf of the tree also contains the expected re,,q another, thus the tree is moving toward its goal of di-

ward if a fire that belongs to this leaf is chosen. viding the instances in groups with similar rewards. The ex-
An example of a tree is shown in Figure 1. Each rectan- pected error reduction obtained when dividing the instance

gular node represents a test on the specified attribute. The, of leaf! is calculated using the following equation where

words on the links represent possible values for discretef, denotes the subset of instanceg;ithat have thet" out-

variables. A test on a continuous attribute has always twocome for the potential test:

possible results, it is either less or equal to the thresbold

greater than the threshold. The oval nodes (LN) are the leaf Aerror = sd(I}) — Z @ x sd(I) (5)

nodes of the tree, where the expected rewards are stored. 7 |1



The standard deviation is calculated on the expected re-

. . . . - It looks he gl 1vi Fi
ward of each instance which is defined as: tlooks at the global view (Fire zones)

- It uses the learned tree to allocate fire zones

Qr(it) = re + YPr(L(is11)|L(3:)) X Q(L(iz41)) (6) FireStation Agent

wherePr(L(it+1)|L(i:)) is calculated using equation 4 Fire zone suggestion Fire zone suggestion
and@(L(i;+1)) is the value returned by equation 2.

As mentioned earlier, one test is tried for each possible FireBrigade Agent | | FireBrigade Agent
instance’s attribute. For a discrete attribute, we divigde t .
instances according to their value for this attribute. Ier i - They look at the local view (Individual buildings on fire)
stance, if an attribute has three possible values, it gergera - They use the learned tree to choose a building on fire
three subsets, thus adding three children nodes to the tree. .
We then use the equation 5 and record the error reduction Figure 2. lllustrates how the agents collab-

for this test. For a continuous attribute, we have to test dif ~ Orate to choose the fires to extinguish.
ferent thresholds to find the best one. A continuous attibut
always divides the instances in two subsets, the first one is
for the instances with a value less or equal to the thresh-what we want to estimate. More precisely, what we want is a
old for the specified attribute and the second subset is forlower bound, i.e. the minimum number of agents needed to
the instances with a value greater than the threshold. extinguish a fire. To find this estimation, we find in the tree
To find the best threshold, we have used the techniqueall expected rewards for all number of agents until we reach
described by Quinlan [6]. The instances are first sorted ac-a certain threshold, see the algorithm on Figure 3. For ex-
cording to their value for the attribute being considered. ample, if we have to estimate the number of agents for a
Afterwards, we examine al — 1 possible splits, where fire f, we find the tree’s leaf corresponding at the descrip-
m is the number of different values. For example, with an tion of f with one agent extinguishing it. Suppose we ob-
ordered list of valuegv, vy, ..., v, }, we try all possible  tain 10 and it is under the threshold, then we find the leaf
thresholds. So, we try the valug as a threshold, thus di- for two agents and the same fife We continue like this
viding the instances in two subsets, those less or equal anddding one agent each time and we stop if the expected re-
those greater tham . We calculate and record the error re- ward becomes greater or equal to the specified threshold.
duction for this division. Then, we do the same thing for the This threshold represents the limit over which we think that
other possible values; to v,,,_1. At the end, we keep only  the agents are able to extinguish the fire. By doing so, we
the threshold with the best error reduction value. can estimate the less number of agents that are needed to ex-
Finally, after the tree has been updated, we updat®the tinguish a fire, even if the number of agents is an attribute
values again to take into consideration the new state spacedescribing a state.
If for one particular situation, the is no node "number of
5. Useof the Tree agents” on the path from the root to the leaf, that means that
the expected reward is independent of the number of agents.
During the simulation, the agents are using the tree cre-In this case, there are two possibilities: the expectednéwa
ated offline to choose the best fire zone and the best buildings greater or equal to the threshold or less. If it is greater o
on fire to extinguish. Since tHa@reStationagent has a bet- ~ €qual, the agent considers that one agent is enough to extin-
ter global view of the situation, it is its responsibilitysag- ~ guish this fire. But, if the expected reward is less then the
gest fire zones tBireBrigadeagents. However, those agents threshold, the agent considers that it is impossible toexti
have a better local view, so they are choosing which partic- guish the fire. In this last option, they will all go to the same
ular building on fire to extinguish. By doing so, we can take building, if there is no "possible” fires left.
advantage of the better global view of thigeStationagent
and the better local view of thEireBrigade agent at the 5.2, Fire Zones Allocation
same time. This process is illustrated on Figure 2.

To allocate the fire zones, tiéreStationagent has a list

5.1. Number of Agents Estimation of all fire zones. For each fire zone, it has to estimate the
number of agents that are needed to extinguish this zone. To

The tree learned is used to get an estimation on the num-do so, it makes a list of all the buildings that are at the bor-
ber of agents that are needed to extinguish a fire. The situ-der of the zone. For each of those buildings, the agent uses

ations that are stored in the tree contain some attributes dethe algorithm on Figure 3 to get an estimate of the num-
scribing a fire and the number of agents. However, whenber of agents needed to extinguish each fire. It then esti-
we use the tree, we do not know the number of agents, it ismates the number of agents needed to extinguish the fire



function NUMBER-AGENT(tree fireDescription total Agents) returns numberAgentghe estimated number of agents.

Inputs: tree, the learned tree.
fireDescription a vector of attribute values describing a fire.
totalAgentsthe total number of agents available.

for number Agents = 110 total Agents do
expected Reward «+— FIND-EXPECTED-REWARD(tree, fireDescription, number Agents)
if expectedReward > THRESHOLD then
return numberAgents
end if
end for
return -1 {It is impossible to extinguish this fire with the availablesats}

Figure 3. Algorithm used to estimate the number of agents nee ded to extinguish a fire.

zone as the maximum number of agents returned for one
building in the zone. Thé&ireStationagent does the same
thing with all fire zones, ending up with a number of agents
for each zone. With this information, it then chooses the
zone for which the needddreBrigadeagents are the clos- 075
est. When a zone is chosen, the assigned agents are thos /
that are closer to this zone. Afterwards, it removes thigzon o

and the assigned agents from its lists and continues the pro 0.5 /
cess with the remaining agents and the remaining fire zones

It continues until there is no agent or fire zone left. When it 06
is done, the center agent sends a message toFéamtri-

gadeagent to inform them about their new fire zone assign-

ment.
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Figure 4. Evolution of the  FireBrigade

5.3. FiresAllocation o : ,
agents efficiency over 90 simulations.

Therefore, eackireBrigadeagent receives a fire zone to
extinguish from the=ireStationagent. Since all messages
are broadcasted, each agent also knows the assigned firheir predefined order to allocate themselves to a fire and
zone of all other agents. When choosing a fire to extinguish, thus the coordination is obtained without any communica-
theFireBrigadeagent has a list of buildings on fire it knows  tion about their respective choices. They can do that becaus
about in the specified fire zone. More precisely, this list is they know which agents are with them to extinguish their
a sorted list of buildings on the border of the zone in which assigned fire zone.
each building at the positiohis the closest building, not al-
ready in the list, of the building in positioh— 1. The first 6. Experimentations
building is a reference building given by th@eStation

All FireBrigadeagents have approximately the same list  In our experiments, we have started with an empty tree
of buildings on fire. To choose their building on fire they and we have let the agents learn a tree to distinguish the
go through the list, one building at a time. For each build- states. The graphic on figure 4 presents the evolution of the
ing, they use the tree to find the expected number of agentsagents efficiency over 90 simulations. The graphic shows
needed to extinguish the fire by using the algorithm pre- the percentage of intact buildings in average on 10 simu-
sented on Figure 3. Afterwards, each agent uses its predelations. As we can see the agents’ performances improved
fined position in the list of agents to find the building it has gradually as the tree become better at dividing the expected
to extinguish. For example, if five agents are needed for therewards.
first building, the first five agent in the list of agents would By looking at the simulations, we could see that the
choose this building and the other agents would choose beFireStationagent become better at estimating the number
tween the other buildings. In short, the agents are usingof agents needed to extinguish a fire zone. At the same



time, theFireBrigade agents become better at estimating 8. Conclusion

the number of agents needed for one building. Because of

that, they were better coordinated and they were able to ex- This paper has presented a learning algorithm that en-

tinguish more than one fire at a time. It is the reason why abled the agents to learn efficient expected rewards in a big

they were faster at extinguishing fire zones. At the begin- state space. The approach we have presented enabled the

ning, they were all extinguishing the same fire, but after agent to reduce the state space by distinguishing onlysstate

some time, they learned a better estimate of the number ofthat really need to be distinguished. The agents are using

agents needed, so they were able to split themselves effithe tree, with the expected rewards learned, in their alloca

ciently on different fires. tion algorithm, enabling them to be well coordinated. Fur-
Furthermore, the agents were able to attain such goodthermore, the coordination process we have presented re-

performances with trees having only approximately 1500 duires very few communications therefore it is effective in

leafs. Therefore, they were just distinguishing 1500 state real-time environments with limited bandwidth. The result

out of the 30 000 possible states. In other word, they wereShow that the agents were able to obtain good results with

able to perform efficiently with an intern state space of only {rées having a very small number of leaves compared to the

5% of the complete state space. This shows a very good relotal number of states before learning.

duction of the state space, enabling the learning algorithm

to work on an easier state space. In our tests, the states werRefer ences
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