
Selective Perception Learning for Tasks Allocation

Sébastien Paquet, Nicolas Bernier and Brahim Chaib-draa
DAMAS Laboratory, Laval University, Canada
{spaquet;bernier;chaib}@damas.ift.ulaval.ca

Abstract

This paper presents a learning algorithm used to allo-
cate tasks to agents in an uncertain real-time environment.
In such environment, tasks have to be analyzed and allo-
cated really fast for the multiagent system to be effective.
To analyze those tasks, described by a lot of attributes, we
have used a selective perception technique to enable agents
to narrow down the description of each task by choosing the
attributes that it should be considering in each situation.By
doing so, we have obtained a drastic reduction of the num-
ber of possible states. We have used this algorithm at two
different levels for the problem of choosing the best fire to
extinguish for each firefighter agent in the RoboCupRescue
simulation environment. First, a center agent is using the al-
gorithm to allocate a zone on fire for each firefighter agent.
Then, those agents are choosing the best fire to extinguish
in this zone. Our results show a good improvement in the
agents capability to extinguish fires, as the agents become
better at distinguishing the world states.

1. Introduction

Analyzing many possible goals and choosing the best
one is obviously a difficult task for an agent, particularly in
a dynamic and uncertain environment. In this case, an agent
has to make a choice with only a partial view of the situa-
tion and it has to make it quickly, because the environment
is constantly changing.

In those difficult settings, we present in this paper an al-
location algorithm based on the information learned by a se-
lective perception learning algorithm. In our approach, each
agent evaluates the number of agents needed to accomplish
a particular task and it uses this information to allocate it-
self to a task, knowing the other agent are doing the same
thing. Thus, our agents are coordinating themselves with-
out any communication about their intentions. The selec-
tive perception technique enables the agent to learn by it-
self which is the level of precision it needs to efficiently de-
scribe states in all possible situations [3].

We have tested our approach in the RoboCupRescue sim-
ulation environment. Our results show that the agents’ per-
formances improved with the learning algorithm. They ob-
tained good results with a compact representation of the
state space.

In the remaining of this article we explain in more de-
tails the approach we have used, but first we describe, in the
following section, our test environment, the RoboCupRes-
cue simulation.

2. The RoboCupRescue Environment

The goal of the RoboCupRescue simulation project is to
build a simulator of rescue teams acting in large urban dis-
asters [1, 2]. More precisely, this project takes the form of
an annual competition in which participants are designing
rescue agents trying to minimize damages, caused by a big
earthquake, such as civilians buried, buildings on fire and
blocked roads. In the simulation, participants have approxi-
mately 30 to 40 agents of six different types to manage:

FireBrigade There are 10 to 15 agents of this type.
Their goal is to extinguish fires. EachFireBrigade
agent is in contact by radio with all otherFireBrigade
agents as well as with theFireStation.

PoliceForce There are 10 to 15 agents of this type. Their
goal is to clear roads to enable agents to circulate. Each
PoliceForceagent is in contact by radio with all other
PoliceForceagents as well as with thePoliceOffice.

AmbulanceTeam There are 5 to 8 agents of this type.
Their goal is to search in shattered buildings for buried
civilians and to transport injured agents to hospitals.
EachAmbulanceTeamagent is in contact by radio with
all other AmbulanceTeamagents as well as with the
AmbulanceCenter.

Center agents There are three types of center agents:
FireStation, PoliceOfficeand AmbulanceCenter. The
only actions those agents can make are to send and
receive messages. They are in contact by radio with
all their platoon agents as well as with the other cen-
ter agents. Platoon agents are the moving agents in the

simulation, which are the first three mentioned in this
list. A center agent can read more messages than a pla-
toon agent, so center agents can serve as information
centers and coordinators for their platoon agents.

In the simulation, each individual agent receives visual
information of only the region surrounding it. Thus, no
agent has a complete knowledge of the global state of the
environment. Therefore the RoboCupRescue domain is in
general, collectively partially observable [4]. This means
that even if the agents are putting all their perceptions to-
gether, they do not have a perfect perception of the envi-
ronment. This uncertainty complicates the problem greatly.
Agents have to explore the environment, it is not enough to
work only on the visible problems. They also have to com-
municate to help each other to have a better knowledge of
the situation.

3. Problem Description

In this article, we focus only on the work of theFireBri-
gadeandFireStationagents. Those agents are faced with
the problem of choosing a fire to extinguish between a list of
buildings on fire, which are described with some attributes.
Since there could be a lot of fires, agents do not consider all
fires at once. They separately choose which fire zone to ex-
tinguish and which specific building in the chosen fire zone
to extinguish. Fire zones are simply regroupments of near
buildings on fire.

To stop a zone from spreading, theFireBrigadeagents
have to extinguish all fires at the border of the zone. Also,
it is pointless to constantly change from one fire zone to an-
other, because by doing so, all zones would spread. A better
strategy is to choose a zone and stop the spreading or re-
ally slow it down, before choosing another zone.

Therefore, when an agent has to choose a building to ex-
tinguish, it firstly has to choose the fire zone. In other words,
agents are using a two level decision making process. First
of all, they look at the global view of the situation, look-
ing only at groups of buildings on fire. Afterwards, they use
more detailed information to choose which specific build-
ing to extinguish in the chosen fire zone.

Since each mobile agent has only a local view of the
situation, it is often hard for aFireBrigade agent to have
a good view of the global situation. Therefore, it is diffi-
cult for them to choose between the fire zones since they
don’t have a good knowledge of the fire zones that are far
from them. It is why it is the responsibility of theFireSta-
tion agent to allocate fire zones toFireBrigadeagents, be-
cause it can receive more messages, so it normally has a bet-
ter knowledge of the global situation compared to theFire-
Brigadeagents.

Our goal is to enable theFireBrigadeagents to learn how
many agents are needed to extinguish all kinds of fires. In

addition, the learning algorithm has to be resistant to noise
because of the uncertainty present in the RoboCupRescue
simulation environment. For example, two buildings on fire
could be identically described and give different rewards.

4. Selective Perception

To learn the expected reward of choosing one building on
fire, we have used a selective perception technique [3], be-
cause the description of our states is too big. With this tech-
nique, the agent learns by itself to reduce the number of pos-
sible states. In fact, the agent regroups all similar statesto-
gether and it does not distinguish between states of the same
group. It considers states to be similar if they have simi-
lar expected rewards. Since they have similar expected re-
wards, the agent does not have to distinguish them since it
would take the same decision in all of those situations.

To be more precise, it is worth mentioning that the al-
gorithm is not really trying to regroup states, it is trying to
divide them. To do that, the algorithm uses a tree structure
similar to a decision tree. At the beginning all states are con-
sidered to be the same, so there is only the root of the tree.
After some experiences, the agent tests if it would be inter-
esting to divide the different states, represented as the leaves
of the tree. To divide a leaf, it tries to divide its experiences,
stored in that leaf, by making a test on an attribute. By do-
ing so, the agent creates new states, by expanding a leaf of
the tree, and thus it refines its view of the state space.

An advantage of this algorithm is that it distinguishes
only states that really need to be distinguished. This has
the effect of reducing the state space of the learning algo-
rithm and thus facilitating the learning process. The follow-
ing subsections describe the algorithm in more details.

4.1. Recording of the Agent’s Experiences

At each time stept, the agent records its experience cap-
tured as an ”instance” that contains the observation it per-
ceives (ot) and the reward it obtains (rt). Each instance also
has a link to the preceding instance and the next one, thus
making a chain of instances. Consequently, an instance at
time t is defined as:

it = 〈it−1, ot, rt, it+1〉 (1)

In our case, we have one chain for each building that an
agent chooses to extinguish. A chain contains all instances
from the time an agent chooses to extinguish a building un-
til it changes to another building. Therefore, during the sim-
ulation, the agent records many instances organized in many
instance chains. It keeps all those instances until the end of
the simulation. There is no learning taking place during the
simulation since it would take too much time. Agents are

Building

composition

Fire

intensity

Number of

agents

LN Building

size

LN LN LN LN

LN LN

Wood

Steel frame
Reinforced concrete

Weak

Moderate
Strong

t
1 > t

1

t
2

> t
2

Figure 1. Structure of a tree.

evolving in a real-time environment and they cannot afford
to take time to learn during the simulation.

After the simulation, the agents are regrouping all their
experiences together, the tree is updated with all those new
instances and the resulting tree is returned to each agent.
By regrouping their experiences, agents can accelerate the
learning process. The next sections explain the tree struc-
ture and how it is updated with the instances recorded by all
agents.

4.2. Tree Structure

To learn how to classify the states, we use a tree structure
similar to a decision tree. The tree divides the instances in
clusters depending on their expected reward. The objective
is to regroup all instances having similar expected rewards.

The algorithm presented here is an instance-based algo-
rithm in which a tree is used to store all instances which are
kept in the leaves of the tree. To find the leaf to which an in-
stance belongs, we simply start at the root of the tree and
head down the tree choosing at each center node the branch
indicated by the result of the test on the instance’s attribute
value. Each leaf of the tree also contains the expected re-
ward if a fire that belongs to this leaf is chosen.

An example of a tree is shown in Figure 1. Each rectan-
gular node represents a test on the specified attribute. The
words on the links represent possible values for discrete
variables. A test on a continuous attribute has always two
possible results, it is either less or equal to the thresholdor
greater than the threshold. The oval nodes (LN) are the leaf
nodes of the tree, where the expected rewards are stored.

4.3. Update of the Tree

After a simulation, all agents put their new experiences
together. This set of new experiences is then used to update
the tree. First, all instances are added to the tree in their re-
spective leaf. Afterwards, we update the expected reward of
each leaf with the following equation:

Q(l)← R(l) + γ
∑

l′

Pr(l′|l)Q(l′) (2)

whereQ(l) is the expected reward if the agent tries to ex-
tinguish a building belonging to the leafl, R(l) is the esti-
mated immediate reward if a fire that belongs to the leafl

is chosen,Pr(l′|l) is the estimated probability that the next
instance would be stored in leafl′ given that the current in-
stance is stored in leafl. Those values are calculated di-
rectly from the recorded instances.R(l) is the average re-
ward obtained when a fire belonging to this leaf was cho-
sen andPr(l′|l) is the proportion of next instances that are
in leaf l′:

R(l) =

∑
it∈Il

rt+1

|Il|
(3)

Pr(l′|l) =
|{∀it ∈ Il|L(it+1) = l′}|

|Il|
(4)

whereL(i) is a function returning the leafl of an in-
stancei, Il represents the set of all instances stored in leaf
l, |Il| is the number of instances in leafl andrt+1 is the re-
ward obtained after the instanceit was chosen.

After all new instances have been added to the tree, we
check all leaf nodes to see if it would be useful to expand
some leafs and replace them with new center nodes con-
taining a new test, thus dividing the instances more finely.
To find the best test to divide the instances at a leaf node,
we try all possible tests, i.e. we try to divide the instances
according to each attribute describing a state. After all at-
tributes have been tested, we choose the attribute that max-
imizes the error reduction as shown in equation 5 [7]. In
fact, the test is chosen only if the expected error reduction
is greater than a certain threshold, if not, it means that the
test does not add enough distinction, so the leaf is not ex-
panded. The error measure considered is the standard devi-
ation (sd(Il)) on the instances’ rewards. If the standard de-
viation is reduced, it means that the rewards are closer to
one another, thus the tree is moving toward its goal of di-
viding the instances in groups with similar rewards. The ex-
pected error reduction obtained when dividing the instances
Il of leaf l is calculated using the following equation where
Id denotes the subset of instances inIl that have thedth out-
come for the potential test:

∆error = sd(Il)−
∑

d

|Id|

|Il|
× sd(Id) (5)

The standard deviation is calculated on the expected re-
ward of each instance which is defined as:

QI(it) = rt + γPr(L(it+1)|L(it))×Q(L(it+1)) (6)

wherePr(L(it+1)|L(it)) is calculated using equation 4
andQ(L(it+1)) is the value returned by equation 2.

As mentioned earlier, one test is tried for each possible
instance’s attribute. For a discrete attribute, we divide the
instances according to their value for this attribute. For in-
stance, if an attribute has three possible values, it generates
three subsets, thus adding three children nodes to the tree.
We then use the equation 5 and record the error reduction
for this test. For a continuous attribute, we have to test dif-
ferent thresholds to find the best one. A continuous attribute
always divides the instances in two subsets, the first one is
for the instances with a value less or equal to the thresh-
old for the specified attribute and the second subset is for
the instances with a value greater than the threshold.

To find the best threshold, we have used the technique
described by Quinlan [6]. The instances are first sorted ac-
cording to their value for the attribute being considered.
Afterwards, we examine allm − 1 possible splits, where
m is the number of different values. For example, with an
ordered list of values{v1, v2, ..., vm}, we try all possible
thresholds. So, we try the valuev1 as a threshold, thus di-
viding the instances in two subsets, those less or equal and
those greater thanv1. We calculate and record the error re-
duction for this division. Then, we do the same thing for the
other possible values,v2 to vm−1. At the end, we keep only
the threshold with the best error reduction value.

Finally, after the tree has been updated, we update theQ-
values again to take into consideration the new state space.

5. Use of the Tree

During the simulation, the agents are using the tree cre-
ated offline to choose the best fire zone and the best building
on fire to extinguish. Since theFireStationagent has a bet-
ter global view of the situation, it is its responsibility tosug-
gest fire zones toFireBrigadeagents. However, those agents
have a better local view, so they are choosing which partic-
ular building on fire to extinguish. By doing so, we can take
advantage of the better global view of theFireStationagent
and the better local view of theFireBrigade agent at the
same time. This process is illustrated on Figure 2.

5.1. Number of Agents Estimation

The tree learned is used to get an estimation on the num-
ber of agents that are needed to extinguish a fire. The situ-
ations that are stored in the tree contain some attributes de-
scribing a fire and the number of agents. However, when
we use the tree, we do not know the number of agents, it is

FireStation Agent

FireBrigade Agent FireBrigade Agent

- It looks at the global view (Fire zones)

- It uses the learned tree to allocate fire zones

- They look at the local view (Individual buildings on fire)

- They use the learned tree to choose a building on fire

Fire zone suggestionFire zone suggestion

Figure 2. Illustrates how the agents collab-
orate to choose the fires to extinguish.

what we want to estimate. More precisely, what we want is a
lower bound, i.e. the minimum number of agents needed to
extinguish a fire. To find this estimation, we find in the tree
all expected rewards for all number of agents until we reach
a certain threshold, see the algorithm on Figure 3. For ex-
ample, if we have to estimate the number of agents for a
fire f , we find the tree’s leaf corresponding at the descrip-
tion of f with one agent extinguishing it. Suppose we ob-
tain 10 and it is under the threshold, then we find the leaf
for two agents and the same firef . We continue like this
adding one agent each time and we stop if the expected re-
ward becomes greater or equal to the specified threshold.
This threshold represents the limit over which we think that
the agents are able to extinguish the fire. By doing so, we
can estimate the less number of agents that are needed to ex-
tinguish a fire, even if the number of agents is an attribute
describing a state.

If for one particular situation, the is no node ”number of
agents” on the path from the root to the leaf, that means that
the expected reward is independent of the number of agents.
In this case, there are two possibilities: the expected reward
is greater or equal to the threshold or less. If it is greater or
equal, the agent considers that one agent is enough to extin-
guish this fire. But, if the expected reward is less then the
threshold, the agent considers that it is impossible to extin-
guish the fire. In this last option, they will all go to the same
building, if there is no ”possible” fires left.

5.2. Fire Zones Allocation

To allocate the fire zones, theFireStationagent has a list
of all fire zones. For each fire zone, it has to estimate the
number of agents that are needed to extinguish this zone. To
do so, it makes a list of all the buildings that are at the bor-
der of the zone. For each of those buildings, the agent uses
the algorithm on Figure 3 to get an estimate of the num-
ber of agents needed to extinguish each fire. It then esti-
mates the number of agents needed to extinguish the fire

function NUMBER-AGENTS(tree, fireDescription, totalAgents) returns numberAgents, the estimated number of agents.

Inputs: tree, the learned tree.
fireDescription, a vector of attribute values describing a fire.
totalAgents, the total number of agents available.

for numberAgents = 1 to totalAgents do
expectedReward← FIND-EXPECTED-REWARD(tree, fireDescription, numberAgents)
if expectedReward ≥ THRESHOLD then

return numberAgents
end if

end for
return -1 {It is impossible to extinguish this fire with the available agents.}

Figure 3. Algorithm used to estimate the number of agents nee ded to extinguish a fire.

zone as the maximum number of agents returned for one
building in the zone. TheFireStationagent does the same
thing with all fire zones, ending up with a number of agents
for each zone. With this information, it then chooses the
zone for which the neededFireBrigadeagents are the clos-
est. When a zone is chosen, the assigned agents are those
that are closer to this zone. Afterwards, it removes this zone
and the assigned agents from its lists and continues the pro-
cess with the remaining agents and the remaining fire zones.
It continues until there is no agent or fire zone left. When it
is done, the center agent sends a message to eachFireBri-
gadeagent to inform them about their new fire zone assign-
ment.

5.3. Fires Allocation

Therefore, eachFireBrigadeagent receives a fire zone to
extinguish from theFireStationagent. Since all messages
are broadcasted, each agent also knows the assigned fire
zone of all other agents. When choosing a fire to extinguish,
theFireBrigadeagent has a list of buildings on fire it knows
about in the specified fire zone. More precisely, this list is
a sorted list of buildings on the border of the zone in which
each building at the positioni is the closest building, not al-
ready in the list, of the building in positioni − 1. The first
building is a reference building given by theFireStation.

All FireBrigadeagents have approximately the same list
of buildings on fire. To choose their building on fire they
go through the list, one building at a time. For each build-
ing, they use the tree to find the expected number of agents
needed to extinguish the fire by using the algorithm pre-
sented on Figure 3. Afterwards, each agent uses its prede-
fined position in the list of agents to find the building it has
to extinguish. For example, if five agents are needed for the
first building, the first five agent in the list of agents would
choose this building and the other agents would choose be-
tween the other buildings. In short, the agents are using

Figure 4. Evolution of the FireBrigade
agents efficiency over 90 simulations.

their predefined order to allocate themselves to a fire and
thus the coordination is obtained without any communica-
tion about their respective choices. They can do that because
they know which agents are with them to extinguish their
assigned fire zone.

6. Experimentations

In our experiments, we have started with an empty tree
and we have let the agents learn a tree to distinguish the
states. The graphic on figure 4 presents the evolution of the
agents efficiency over 90 simulations. The graphic shows
the percentage of intact buildings in average on 10 simu-
lations. As we can see the agents’ performances improved
gradually as the tree become better at dividing the expected
rewards.

By looking at the simulations, we could see that the
FireStationagent become better at estimating the number
of agents needed to extinguish a fire zone. At the same

time, theFireBrigade agents become better at estimating
the number of agents needed for one building. Because of
that, they were better coordinated and they were able to ex-
tinguish more than one fire at a time. It is the reason why
they were faster at extinguishing fire zones. At the begin-
ning, they were all extinguishing the same fire, but after
some time, they learned a better estimate of the number of
agents needed, so they were able to split themselves effi-
ciently on different fires.

Furthermore, the agents were able to attain such good
performances with trees having only approximately 1500
leafs. Therefore, they were just distinguishing 1500 states
out of the 30 000 possible states. In other word, they were
able to perform efficiently with an intern state space of only
5% of the complete state space. This shows a very good re-
duction of the state space, enabling the learning algorithm
to work on an easier state space. In our tests, the states were
described by:

• the intensity of the fire (3 values),

• the building’s composition (3 values),

• the building’s size (continuous attribute),

• the building’s degree of deterioration (4 values),

• the number ofFireBrigadeagents (15 values).

7. Related works

Other researchers have used tree structures to represent
and learn the state space of the agent. One of them is Mc-
Callum with its U-tree algorithm [3]. It used a tree struc-
ture to storeQ-values for every possible basic actions that
an agent can take. In our work, we use a similar tree struc-
ture to calculate the expected reward of a particular goal de-
cision of the agent. It still has to find the actions to accom-
plish this goal. In other words, the tree is used at the goal de-
cision level, not at the action decision level. Also, instead of
generating all possible subtrees, we use an error reduction
estimation measure, borrowed from the decision tree the-
ory [7], that enables us to find good tests. In our case, the
generation of subtrees would really be expensive since our
state space is very large.

Like Uther and Veloso [8] with their Continuous U-Tree
algorithm, we also support continuous attributes, but witha
different splitting criterion. Pyeatt has also tried othersplit-
ting criteria [5].

The way we manage our instance chains is also quite dif-
ferent. In our work, there is not only one chain, but many
chains, one for each attempt to extinguish a fire or a fire
zone. Our concept of instance chain is closer to the concept
of episodedescribed by Xuan, Lesser and Zilberstein [9].

8. Conclusion

This paper has presented a learning algorithm that en-
abled the agents to learn efficient expected rewards in a big
state space. The approach we have presented enabled the
agent to reduce the state space by distinguishing only states
that really need to be distinguished. The agents are using
the tree, with the expected rewards learned, in their alloca-
tion algorithm, enabling them to be well coordinated. Fur-
thermore, the coordination process we have presented re-
quires very few communications therefore it is effective in
real-time environments with limited bandwidth. The results
show that the agents were able to obtain good results with
trees having a very small number of leaves compared to the
total number of states before learning.

References

[1] H. Kitano. Robocup rescue: A grand challenge for multi-
agent systems. InProceedings of ICMAS 2000, Boston, MA,
2000.

[2] H. Kitano, S. Tadokor, H. Noda, I. Matsubara, T. Takhasi,
A. Shinjou, and S. Shimada. Robocup-rescue: Search and res-
cue for large scale disasters as a domain for multi-agent re-
search. InProceedings of the IEEE Conference on Systems,
Man, and Cybernetics (SMC-99), 1999.

[3] A. K. McCallum. Reinforcement Learning with Selec-
tive Perception and Hidden State. PhD thesis, University of
Rochester, Rochester, New-York, 1996.

[4] R. Nair, M. Tambe, and S. Marsella. Team Formation
for Reformation in Multiagent Domains like RoboCupRescue.
In G. Kaminka, P. Lima, and R. Roja, editors,Proceedings
of RoboCup-2002 International Symposium, Lecture Notes in
Computer Science. Springer Verlag, 2003.

[5] L. D. Pyeatt and A. E. Howe. Decision tree function
approximation in reinforcement learning. Technical Report
TR CS-98-112, Colorado State University, Fort Collins, Col-
orado, 1995.

[6] J. R. Quinlan.C4.5 Programs for Machine Learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

[7] J. R. Quinlan. Combining instance-based and model-based
learning. InProceedings of the Tenth International Confer-
ence on Machine Learning, pages 236–243, Amherst, Mas-
sachusetts, 1993. Morgan Kaufmann.

[8] W. T. B. Uther and M. M. Veloso. Tree based discretiza-
tion for continuous state space reinforcement learning. InPro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 769–774, Menlo Park, CA, 1998. AAAI-
Press/MIT-Press.

[9] P. Xuan, V. Lesser, and S. Zilberstein. Modeling Coop-
erative Multiagent Problem Solving as Decentralized Deci-
sion Processes.Autonomous Agents and Multi-Agent Systems,
2004. (under review).

