
Real-Time Decision Making for Large POMDPs

Sébastien Paquet, Ludovic Tobin, and Brahim Chaib-draa

DAMAS Laboratory
Department of Computer Science and Software Engineering, Laval University

{spaquet;tobin;chaib}@damas.ift.ulaval.ca

Abstract. In this paper, we introduce an approach called RTBSS (Real-
Time Belief Space Search) for real-time decision making in large POMDPs.
The approach is based on a look-ahead search that is applied online each
time the agent has to make a decision. RTBSS is particularly interesting
for large real-time environments where offline solutions are not applicable
because of their complexity.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a very gen-
eral model for sequential decision problems in partially observable environments.
The main problem with POMDPs is that their complexity makes them applica-
ble only on small environments.

In this paper, we introduce a novel idea for POMDPs that, to our knowledge,
has not received a lot of attention. The idea is to use an online approach based
on a look-ahead search to find the best action to execute at each cycle in the
environment. By doing so, we avoid the overwhelming complexity of computing
a policy for every possible situation the agent could encounter. Since there is
no computation offline, the algorithm is immediately applicable to previously
unseen environments, if the environments’ dynamics are known. Also, since we
need a fast online algorithm, we opted for a factored POMDP representation
and a branch and bound strategy based on a limited depth first search instead
of classical dynamic programming. The tradeoff obtained between the solution
quality and the computing time is very interesting.

2 Belief State Value Approximation

The main idea of our online approach is to estimate the value of a belief state
by constructing a tree where the nodes are belief states and where the branches
are a combination of actions and observations (see Figure 1). To do so, we have
defined a new function δ : B × N → R which is based on a depth-first search.
The function takes as parameters a belief state b and a remaining depth d and
returns an estimation of the value of b by performing a search of depth d. For
the first call, d is initialized at D, the maximum depth allowed for the search.

δ(b, d) =

{

U(b) , if d = 0
R(b) + γmax

a

∑

o∈Ω

(P (o | b, a) × δ(τ(b, a, o), d − 1)) , if d > 0 (1)



b
0

b
1

b
2

b
3

a
1

a
2

a
n

o
1

o
2

o
n

...

...

Fig. 1. A search tree.

When d = 0, we are at the bottom of the search tree. In this situation,
we need a utility function U(b), that gives an estimation of the real value of
this belief state. If it is not possible to find a better utility function, we can
use U(b) = R(b). When d > 0, the value of a belief state at a depth of D − d

is the immediate reward for being in this belief state added to the maximum
discounted reward of the subtrees underneath this belief state.

Finally, the agent’s policy which returns the action the agent should do in a
certain belief state is defined as:

π(b,D) = argmax
a

∑

o∈Ω

P (o | b, a)δ(τ(b, a, o),D − 1) (2)

3 RTBSS Algorithm

We have elaborated an algorithm, called RTBSS (see Algorithm 1), that is used
to construct the search tree and to find the best action. Since it is an online
algorithm, it must be applied each time the agent has to make a decision.

To speed up the search, our algorithm uses a ”Branch and Bound” strategy
to cut some sub-trees. The algorithm first explores a path in the tree up to the
desired depth D and then computes the value for this path. This value then
becomes a lower bound on the maximal expected value. Afterwards, for each
node of the tree visited, the algorithm can evaluate with an heuristic function if
it is possible to improve the lower bound by pursuing the search (Prune function
at line 10). The heuristic function must be defined for each problem and it must
always overestimate the true value. Moreover, the purpose of sorting the actions
at line 13 is to try the actions that are the most promising first because it
generates more pruning early in the search tree.

With RTBSS the agent finds at each turn the action that has the maximal
expected value up to a certain horizon of D. As a matter of fact, the performance
of the algorithm strongly depends on the maximal depth D of the search.



1: Function RTBSS(b, d , rAcc)

Inputs: b: The current belief state.
d : The current depth.
rAcc: Accumulated rewards.

Statics: D : The maximal depth.
bestValue: The best value found up to now.
action: The best action.

2: if d = 0 then
3: finalV alue ← rAcc + γD × U(b)
4: if finalV alue > bestV alue then
5: bestV alue ← finalV alue

6: end if
7: return finalV alue

8: end if
9: rAcc ← rAcc + γD−d × R(b)

10: if Prune(rAcc, d) then
11: return −∞
12: end if
13: actionList ← Sort(b, A)
14: max ← −∞
15: for all a ∈ actionList do
16: expReward ← 0
17: for all o ∈ Ω do
18: b′ ← τ(b, a, o)
19: expReward ← expReward + γD−d × P (o|a, b)× RTBSS(b′, d − 1, rAcc)
20: end for
21: if (d = D ∧ expReward > max) then
22: max ← expReward

23: action ← a

24: end if
25: end for
26: return max

Algorithm 1: The RTBSS algorithm.

4 Experiments and Results

In this section we present the results we have obtained on two problems: Tag [1]
and RockSample [2]. If we compare RTBSS with different existing approaches
(see Table 1), we see that our algorithm can be executed much faster than all
the other approaches. RTBSS does not require any time offline and takes only a
few tenths of a second at each turn. On small problems the performance is not
as good as the best algorithms but the difference is not too important. However,
on the biggest problem, RTBSS is much better than HSVI.

Another advantage of RTBSS is its adaptability to environment changes,
which enable agents using RTBSS to be deployed immediately and obtain good
results even if the environment configuration has never been seen before. Offline



Problem Reward Time (s)

Tag (870s,5a,30o)
QMDP -16.75 11.8
RTBSS -10.56 0.231

PBVI [1] -9.18 180880
BBSLS [3] ∽ -8.3 ∽100000
BPI [4] -6.65 250
HSVI [2] -6.37 10113
Perséus [5] -6.17 1670

RockSample[4,4] (257s,9a,2o)
RTBSS 16.2 0.11

PBVI [2]2 17.1 ∼ 2000
HSVI [2] 18.0 577

RockSample[5,5] (801s,10a,2o)
RTBSS 18.7 0.11

HSVI [2] 19.0 10208

RockSample[5,7] (3201s,12a,2o)
RTBSS 22.6 0.11

HSVI [2] 23.1 10263

RockSample[7,8] (12545s,13a,2o)
RTBSS 20.1 0.21

HSVI [2] 15.1 10266
Table 1. Comparison of our approach.

algorithms require recomputing a new policy for each new configuration while
our algorithm could be applied right away.

Figure 2 compares our RTBSS algorithm with a version without pruning. On
the first graphic, we see that the heuristic can greatly improve the performance of
the search. The complexity is still exponential but it grows slower than the brute
force version. The second graphic presents the performance of our algorithm in
function of the depth of the search used. The rewards obtained are the same
whether we use the pruning or not; the slight variation comes from randomness
in the tests. We see that our algorithm does not require an heuristic to work
properly. However, if we are able to find a good heuristic for a problem, it greatly
improves the algorithm’s speed.

The two graphics on Figure 2 are also used to choose the maximal depth D

allowed. The depth is chosen experimentally depending on the problem and the
amount of time available to make a decision, considering that at a certain depth,
it might not be worth exploring much deeper. For example, on Figure 2, we can
see that the agent does not get much better after depth 8 and the time needed is
really small until depth 10, thus a depth of 10 would be a good maximal depth
for this problem.

1 It corresponds to the average time taken by the algorithm at each time it is called
in a simulation.

2 PBVI was presented in [1], but the result on RockSample was published in [2].



0

2

4

6

8

10

12

4 6 8 10 12 14
Depth

T
im

e
 (

s
)

without pruning

with pruning

-18

-16

-14

-12

-10

4 6 8 10 12 14

Depth

R
e

w
a

rd
s

without pruning

with pruning

Fig. 2. Average deliberation time and reward on Tag.

5 Related Work and Conclusion

For POMDPs, very few researchers have explored the possibilities of online al-
gorithms. [6] used a real-time dynamic programming approach to learn a belief
state estimation by successive trials in the environment. The main differences
are that they do not search in the belief state tree and they need offline time to
calculate their starting heuristic based on the QMDP approach.

To summarize, this paper introduces RTBSS, an online POMDP algorithm
useful for large, dynamic and uncertain environments. The main advantage of
such a method is that it can be applied to problems with huge state spaces
where other algorithms would take way too much time to find a solution. Our
results show that RTBSS becomes better as the environment becomes bigger,
compared to state of the art POMDP approximation algorithms. Also, because
of its adaptability, RTBSS is more suited for environments in which the ini-
tial configurations can change and when the agent has to be deployed rapidly,
compared to existing offline approaches.

References

1. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algo-
rithm for pomdps. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico (2003) 1025–1032

2. Smith, T., Simmons, R.: Heuristic search value iteration for pomdps. In: Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence(UAI-04), Banff,
Canada (2004)

3. Braziunas, D., Boutilier, C.: Stochastic local search for pomdp controllers. In: The
Nineteenth National Conference on Artificial Intelligence (AAAI-04). (2004)

4. Poupart, P.: Exploiting Structure to Efficiently Solve Large Scale Partially Ob-
servable Markov Decision Processes. PhD thesis, University of Toronto (2005) (to
appear).

5. Spaan, M.T.J., Vlassis, N.: A point-based pomdp algorithm for robot planning. In:
In Proceedings of the IEEE International Conference on Robotics and Automation,
New Orleans, Louisiana (2004) 2399–2404

6. Geffner, H., Bonet, B.: Solving large pomdps using real time dynamic programming
(1998)


