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A B S T R A C T

In this work, we tackle the domain generalization (DG) problems aiming to learn a universal predictor
on several source domains and deploy it on an unseen target domain. Many existing DG approaches
were mainly motivated by the domain adaptation techniques, which only aligned the marginal feature
distribution but ignored conditional relations and label information in the source domains. Although
some recent advances started to take advantage of conditional semantic distributions, theoretical
justifications were still missing. To this end, we investigate the theoretical guarantee for a successful
generalization process by focusing on how to control the target domain error. Our results reveal that
to control the target risk, one should jointly control the source errors that are weighted according to
label information and align the semantic conditional distributions between different source domains.
The theoretical analysis then leads to an efficient algorithm to control the label distributions as well as
match the semantic conditional distributions. To verify the effectiveness of our method, we evaluate
it against recent baseline algorithms on several benchmarks. Empirical results show that the proposed
method outperforms most of the baseline methods and shows state-of-the-art performances.

1. Introduction
Recent machine learning and deep learning progresses

usually depend on a large amount of labelled data, which is
expensive to annotate. To alleviate this issue, many transfer
learning (Maurer et al., 2013) related approaches, e.g.,
multi-task learning (MTL) (Long et al., 2015; Zhou et al.,
2021c,a), domain adaptation (DA) (Ben-David et al., 2010;
Wen et al., 2019; Guan et al., 2021; Achituve et al., 2021;
Fang et al., 2020) and domain generalization (DG) (Dou
et al., 2019; Matsuura and Harada, 2020; Zhou et al., 2021e;
Zhao et al., 2020; Zhou et al., 2021d), have been proposed
to take advantage of shared knowledge from different but
related data sources. The key idea behind these transfer
learning-related methods is to discover transferable feature
representations that generalize well to new domains.

Most existing DA and MTL approaches have been
devoted to adopt discrepancy metric minimization (Li et al.,
2017), statistic distance minimization (Long et al., 2015,
2017) or adversarial training (Ganin et al., 2016; Shen et al.,
2018a) methods to learn the transferable features (Li et al.,
2020; Shui et al., 2019; Mao et al., 2020), which only
control the marginal feature distributions. In addition, in the
context of DA, the target data are usually partially available
during training. However, we cannot always expect such
a setting holds in practice. For example, considering an
autonomous driving system, the training and deploying
environments could differ from each other, and the model
would not be able to expect to access the deploying (target)
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Figure 1: General workflow domain generalization: The
model is trained on several source domains (1,2,…𝑚)
while deployed on an unseen target domain. During the
training phase, the source data are mixed as input and feed
into the model, during which both the source feature ℙ(𝐱) and
label ℙ(𝑦) are available to the learner. During the deployment
phase, the model is frozen and tested on the target domain
𝑡, which is inaccessible to the model during the training
phase.

data during training. To this end, we tackle the DG problem,
which aims to extract the knowledge from source domains
that generalizes well to an unseen target (test) domain. We
illustrate a general workflow of DG in Fig. 1.

Due to the similar problem settings with DA, many DA
methodologies, especially the adversarial training (Ganin
et al., 2016) based approaches (Li et al., 2017; Dou et al.,
2019; Zhou et al., 2021b), were borrowed for DG. However,
these approaches only align the feature distribution ℙ(𝐱)
and rely on the theoretical results under the assumption that
the combined error between the source and target domain
is small (Ben-David et al., 2010), which could not hold
in practice. Zhao et al. (2019) showed that conditional
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shift problems can degrade the prediction performance.
Besides, if we only align the feature distribution ℙ(𝐱) while
ignoring the conditional semantic ℙ(𝐱|𝑦) and labelling ℙ(𝑦)
distribution, the class information for each category among
different domains can be lost, which leads to indiscrimina-
tive features, a.k.a. semantic misalignment problem (Dou
et al., 2019; Zhou et al., 2021b). As a consequence, the
model may suffer from ambiguous classification bound-
aries (Zhou et al., 2021b), which hinders the generalization
performance.

To address this issue, some recent studies (e.g. Dou
et al., 2019; Zhou et al., 2021b) have leveraged the label
information to explore the semantic relation for the DG.
However, the theoretical justifications for the benefits of
semantic alignment remain elusive. Existing theoretical re-
sults (e.g. Zhao et al., 2020; Li et al., 2018c) only focused
on minimizing the conditional distribution divergences from
an optimization perspective, while the analysis for the gen-
eralization properties are still missing.

In this work, we aim to develop theoretical insights
into how to ensure a successful generalization process by
investigating the test error on the target domain. Our results
reveal the necessity of controlling the semantic conditional
distributions as well as the label distribution divergence
across all the source domains. The contributions of our work
are three-fold:

1. We build a theoretical analysis framework to under-
stand the domain generalization process upon bound-
ing the test error on the target domain with total varia-
tion distance, which provides a deeper understanding
of the role of semantic alignment for general DG
problems.

2. Our analysis also reveals the importance of control-
ling the label distribution divergence for each domain
to minimize the generalization error.

3. On the algorithmic side, our theoretical results in-
spire a novel DG algorithm that jointly minimizes
the source errors as well as semantic distribution
matching for all the source domains.

Specifically, we propose to simultaneously match the se-
mantic distributions via minimizing the centroid statis-
tics across distributions and controlling the label distribu-
tion losses. We conduct extensive experiments and the re-
sults show that the proposed algorithm outperforms various
strong baselines, especially when label shift occurs.

2. Related Works
2.1. Domain Adaptation

Domain Adaptation (DA) has been an active research
area in recent years. We refer the reader to some existing
literature surveys (Wang and Deng, 2018; Redko et al.,
2020) to have a comprehensive summary of the recent
progress. Specifically, the label shift problem tackled in this
work has some connections with the heterogeneous domain

adaptation (Liu et al., 2020a) and open set domain adapta-
tion (Fang et al., 2020) problems. In this context, Liu et al.
(2020a) theoretically analyzed the guarantees of the correct-
ness of transferring knowledge together with an angle-based
metric to measure the distance between the source and target
domains under a heterogeneous DA setting. Latterly Liu
et al. (2020b) investigated the multi-source heterogeneous
DA problems with a shared-fuzzy-equivalence-relation neu-
ral network model. In the case of the open set learning sce-
nario, it will be more challenging to match the features. In
this context, some practical approaches have been devoted
to the open set learning problems (Liu et al., 2019; Shu et al.,
2021), and theoretical justifications (Fang et al., 2021a,b)
for the open set domain adaptation problems.

2.2. Domain Generalization
Similar to DA problems, the underlying assumption

of DG is that there exists an invariant feature distribu-
tion across all the domains, which consequently gener-
alizes well to an unseen domain. From a methodologi-
cal perspective, existing DG approaches can be catego-
rized into three groups: 1) Distribution matching-based
approaches, 2) Episodic training-based approaches, and 3)
Data augmentation-based approaches.

The distribution matching methods were mainly moti-
vated by the theoretical results in the DA literature Ben-
David et al. (2010); Redko et al. (2017), where the domains
were aligned via some distribution matching, distribution
distance minimization or adversarial training methods to
discover the shared knowledge. For example, maximum
mean discrepancy (MMD) was adopted in Li et al. (2018b)
as a distribution regularizer together with the adversarial
autoencoder (AAE) to learn the invariant features. Muan-
det et al. (2013) proposed the kernel-based Domain In-
variant Component Analysis (DICA) algorithm, where a
kernel-based optimization algorithm was adopted to learn a
domain-invariant transformation by minimizing the dissim-
ilarities between domains. Ghifary et al. (2015) proposed
to use adversarial training techniques to extract domain-
invariant features under a multi-task learning style set-
ting. Li et al. (2018c) proposed a DG approach by leveraging
deep neural networks for domain-invariant representation
learning.

Recently, some approaches addressed the DG prob-
lem in a meta-learning manner via the episodic training
paradigm. The notions of meta-train and meta-test are
used to simulate the distribution shift during each train-
ing iteration on the source domain datasets. Specifically,
MetaReg Balaji et al. (2018) explored the regularization
functions for DG within a learning-to-learn framework.
Meta Agnostic Meta-Learning (MAML) Finn et al. (2017)
was adopted by Li et al. (2018a) to back-propagate the
gradient of the losses of the meta-test tasks Dou et al.
(2019) for DG. Du et al. (2020) proposed to model the
shared classifier model parameters as a probabilistic meta-
learning model. Sharifi-Noghabi et al. (2020) also adopted
meta-learning to simulate the domain shift and adopted
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an entropy-based loss to give pseudo-labels together with
class-level centroids to ensure semantic properties. Gong
et al. (2021) introduced an interesting setting where the
target domain was assumed as a compound of several
unknown domains that were treated as sub-target domains.
Then, a meta-learning algorithm was adopted to fuse the
sub-target domains together with the MAML algorithm for
handling the generalization process.

We also notice that some recent works Zhou et al.
(2020b); Mancini (2020); Xu et al. (2021) started to im-
plement some data augmentation methods to generate new
instances for training. This kind of work typically relies
more on the new data rather than transferring the knowl-
edge, which is somehow out of the problem scope of our
work.

In terms of theoretical analysis, Blanchard et al. (2011)
firstly proposed the notion of average risk for a binary
classification problem. Albuquerque et al. (2019) derived
the target domain bound using  divergence by assuming
the target domain is within the convex hull of the source
domains. However, they both only focused on aligning
the feature marginal distributions, ignoring the semantic
information in the source domains. More recently, Zhao
et al. (2020) proposed the conditional matching algorithm
by minimizing the prediction entropy 

(

ℙ(𝑦|𝑥)
)

across
all the source domains, but the theoretical analysis therein
was developed from an optimization perspective, without
examining the generalization performance in the target
domain. In contrast, our work provides the generalization
bounds to understand the DG process, which also motivates
an efficient algorithm to control the semantic conditional
distributions, which then enables us to design a novel
semantic matching algorithm.

2.3. Conditional Matching for DA and DG
Learning and leveraging the semantic conditional distri-

bution ℙ(𝐱|𝑦) is an important aspect of machine learning,
which has been prevalent in different learning paradigms
such as few-shot learning (Motiian et al., 2017; Luo et al.,
2017), transfer learning (Long et al., 2014), etc. In the
context of DA, Xie et al. (2018) theoretically analyzed
the semantic transfer method with pseudo labels using -
divergence Ben-David et al. (2010). Zhang et al. (2019) ex-
plored the class-specific prototype semantic feature learning
using a symmetric network. In the context of DG, seman-
tic misalignment problems could hinder the generalization
performance. Aiming to solve this issue, Dou et al. (2019)
adopted the triplet loss as an auxiliary learning objective
on top of the meta-learning based DG approach (Li et al.,
2018a). Matsuura and Harada (2020) proposed to adopt an
unsupervised learning objective to explore the class-level
similarities to enhance the semantic separation. Zhou et al.
(2021b) adopted the Wasserstein adversarial training (Shen
et al., 2018a) to achieve the domain level alignment while
exploring the class-level similarities to force the instances
from the same class to be close to each other and push the
instances from different classes away from each other, i.e.,

achieving the semantic separation with a metric learning
objective (Wang et al., 2019). Even though these works have
shown the benefits of considering the semantic conditional
distributions, however, the theoretical justifications are still
missing. In this work, we provide the first theoretical analy-
sis on the benefits of controlling the semantic conditional
distributions and provide a concrete algorithm to jointly
minimize the label and semantic distribution divergence.

3. Notations and Preliminaries
We start by introducing some preliminaries with nota-

tions and definitions. Then we analyze the importance of
leveraging the label and semantic distribution. After that,
we show the harm of label and semantic distribution shifts
in domain generalization.

3.1. Notations and Definitions
Let (𝐱, 𝑦) ∈  ×  be a training example drawn from

some unknown distribution , where 𝐱 is the data point,
and 𝑦 is its label. A hypothesis is a function ℎ ∈  that
maps  to the set  ′ sometimes different from  , where
 is a hypothesis class. For a non-negative loss function
𝓁 ∶  ′ ×  ↦ ℝ+, we denote by 𝓁(ℎ(𝐱), 𝑦) the loss
of hypothesis ℎ at (𝐱, 𝑦). Let 𝑆 = {(𝐱𝑗 , 𝑦𝑗)}𝑁𝑗=1 be a set
of 𝑁 training examples drawn independently from . The
empirical loss of ℎ on 𝑆 and its generalization loss over 
are defined, respectively, by �̂�(ℎ) = 1

𝑁
∑𝑁

𝑗=1 𝓁(ℎ(𝐱𝑗), 𝑦𝑗),
and 𝑅(ℎ) = 𝔼(𝐱,𝑦)∼𝓁(ℎ(𝐱), 𝑦).

In the context of DG, we are given 𝑚 source tasks
{𝑆𝑖}𝑚𝑖=1, where 𝑆𝑖 = {(𝐱(𝑖)𝑗 , 𝑦(𝑖)𝑗 )}𝑁𝑖

𝑗=1 is drawn from a
distribution 𝑖. The objective of a DG algorithm is to learn
a feature representation that extracts the knowledge that can
be shared across all the known source domains so that it can
also generalize well to an unseen target domain distribution
𝑡.

3.2. Distribution Distance Measure
To measure the marginal and conditional distributions,

we need a tool to measure the distribution distances, which
is crucial in recent domain adaptation or generalization
methodologies. In this paper, we adopt the Jensen-Shannon
divergence in our analysis, which has been extensively
studied in recent literature in transfer learning (Dou et al.,
2019; Matsuura and Harada, 2020; Zhao et al., 2019).

Definition 1 (Jensen Shannon (J-S) Divergence Lin (1991)).
Let 𝑖(𝐱, 𝑦) and 𝑗(𝐱, 𝑦) be two distribution over × , and
let  = 1

2 (𝑖 + 𝑗), then the J-S divergence between 𝑖
and 𝑗 is defined as

𝐷JS(𝑖‖𝑗) =
1
2
[𝐷KL(𝑖‖) +𝐷KL(𝑗‖)] (1)

where 𝐷KL(𝑖‖𝑗) is the Kullback–Leibler divergence. The
square root of Jensen-Shannon Divergence, i.e.,

√

𝐷𝐽𝑆 is
also know as Jensen-Shannon Distance Fuglede and Topsoe
(2004).
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Figure 2: A example in semantic shift. The dashed lines
indicate the matching process. Let the feature marginal
distribution as the color of the instance while the label dis-
tribution as positive (+) or negative (-), i.e., 𝑋 = {red,blue},
𝑌 = {+,−}. For the source distribution 1, ℙ1 (𝑋 = red|𝑌 =
+) = 1 while for the source distribution 2, ℙ2 (𝑋 = red|𝑌 =
+) = 0.

In our analysis, we also consider the Total Variation
Distance, which is an upper bound of 𝐷JS, we provide the
definition below.

Definition 2 (Total Variation Distance Lin (1991)). Let
𝑖(𝐱, 𝑦) and 𝑗(𝐱, 𝑦) be two distribution over  ×  , then
the total variation distance could be measured by

𝑑𝑇𝑉 (𝑖,𝑗) =
1
2
|𝑖 −𝑗| (2)

The J-S divergence, J-S distance and TV distance are
usually studied together when bounding the distances be-
tween different data distributions (Zhou et al., 2021a) since
they enjoy the bounding properties (Shui et al., 2022;
Polyanskiy and Wu, 2019) that can provide us with good
theoretical analysis tools.

3.3. The Value of Label and Semantic Information
In the context of DG, a learner can only access the data

from the source domains (seen), while no target data is
available during the training phase (unseen). As aforemen-
tioned, many DA techniques have been introduced to DG
problems due to the similar setting. Early approaches (e.g.
Li et al., 2018a,b; Carlucci et al., 2019) usually only focused
on aligning the feature distribution ℙ(𝐱) while ignoring
the labeling ℙ(𝑦) and semantic ℙ(𝐱|𝑦) distributions. Some
previous work (e.g. Dou et al., 2019; Zhou et al., 2021b)
pointed out that only aligning the feature distribution via
distribution matching or adversarial training can lead to
the semantic misalignment problems (Zhou et al., 2021b,a).
Though some recent methods (e.g. Dou et al., 2019; Mat-
suura and Harada, 2020; Zhou et al., 2021b) start to con-
sider the semantic distribution matching, their theoretical
justifications remain elusive. Our work provides a complete
framework to understand DG’s generalization properties,
enabling us to design an efficient semantic conditional
matching algorithm.

On the other hand, many of the current DG approaches
assumed that the label distribution across all the domains
is the same. However, this assumption is not necessarily

held in practice. A long-neglected issue is the label shift
problem, which has been explored in the literature of multi-
task learning and domain adaptation Panareda Busto and
Gall (2017); Geng et al. (2020); Azizzadenesheli et al.
(2019) but missing in domain generalization. More for-
mally, the label shift between two domains 𝑖 and 𝑗
indicates 𝐷JS(𝑖(𝑦),𝑗(𝑦)) ≠ 0 Zhou et al. (2021a).

We present an example to show the necessity of con-
trolling semantic divergence in Fig. 2. Suppose we have
two source distributions 1(𝐱, 𝑦) and 2(𝐱, 𝑦), and hope to
match to the target distribution  (𝐱, 𝑦). The feature marginal
distribution is represented by the color of the region while
the label distribution is indicated by positive (+) or negative
(-), i.e., 𝑋 = {red, blue}, 𝑌 = {+,−}. For the source
distribution 1, ℙ1

(𝑋 = red|𝑌 = +) = 1 while for the
source distribution 2, ℙ2

(𝑋 = red|𝑌 = +) = 0. In this
case, if we only use the general adversarial training or MMD
based approaches to align the marginal distribution, it will
be difficult to fix the semantic shift problem. We should
also consider to match the semantic distributions for each
domain. Another practical example can be the multi-source
generalization problems on the digits problems. Let MNIST,
which is a grey-scaled digits dataset, be 𝑖, and let SVHN
dataset, which consists of colorful images of street numbers,
be 𝑗 . If we consider a specific class 𝑌 = 𝑦𝑘, we can easily
see that 𝑖(𝐱|𝑦) ≠ 𝑗(𝐱|𝑦) since the color and digits styles
are obviously different from each other.

On the other hand, label shift problem may also hurt
the generalization performance. For example, for a health
diagnostic learning task using DG Liu et al. (2021), when
collecting the data from different hospitals, the labels may
vary from each other across different datasets. The ultimate
goal of DG is to align ℙ(𝐱, 𝑦) = ℙ(𝐱|𝑦)ℙ(𝑦) between do-
mains, if ℙ(𝑦) changes, even we can match ℙ(𝐱|𝑦) properly
for all the domains, the prediction of the classifier can still
diverge since the label distribution is not necessarily aligned
during either the supervised classification process or the
semantic matching process.

All these examples indicate that we need to consider
both the label and semantic distribution alignments when
designing DG algorithms. In the next section, we develop
the theoretical justifications for controlling the conditional
semantic and label distributions. Moreover, our results also
lead to an efficient algorithm for DG problems.

4. Theoretical Analysis and Methodology
4.1. Theoretical Analysis

One fundamental assumption of DG is that all the
domains are not far from each other in terms of distribution
distances (Zhou et al., 2021b). More formally, among all
the source domains, let ⋆ be the nearest one to the
target domain, i.e., 𝜖⋆ ≜ 𝑑𝑇𝑉 (⋆,𝑡) ≤ 𝑑𝑇𝑉 (𝑖,𝑡),∀𝑖.
Then, it’s reasonable to assume that 𝜖⋆ is small for DG
problems since if the distance between the source and target
is arbitrarily large, the learner will fail to generalize to
the target domain. Note that the nearest domain ⋆ is not
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Figure 3: The domain generalization process where there
are several source domains and a target domain. In case
we have limited number of source domains, there exists a
source domain ⋆ that is the nearest to the target domain.
At the training phase, we implement the alignment process
for all the source domains to learn the transferable features
that could be generalized to the target domain.

known yet always exists when we have a finite number of
source domains. Later we show that the empirical algorithm
can be designed without relying on the nearest domain ⋆.
The assumption 𝜖⋆ ≜ 𝑑𝑇𝑉 (⋆,𝑡) ≤ 𝑑𝑇𝑉 (𝑖,𝑡),∀𝑖
shares the similar assumption of the common assumption
of DG that source domains and target domain come from
the same meta-distribution. Then, we can also assume
⋆ and 𝑡 satisfy a semantic conditional distance, i.e.,
𝑑𝑇𝑉

(

⋆(𝐱|𝑦),𝑡(𝐱|𝑦)
)

≤ 𝜅⋆ where 𝜅⋆ is a constant that
is not arbitrarily large.

We show a generalization process in Fig. 3 where we
have several source domains, and the target domain is
unseen but assumed not to be far away from the source
domains. Then, we can bound the learning risk on the target
domain 𝑅𝑡

(ℎ) as shown in Theorem 1.

Theorem 1. Suppose we have m source domains 1,…𝑚,
and ⋆ is the nearest source domain to the target 𝑡, and
𝜖⋆ ≜ 𝑑𝑇𝑉 (⋆,𝑡). Then the target domain risk is bounded
by,

𝑅𝑡
(ℎ) ≤ 1

𝑚

𝑚
∑

𝑖=1
𝑅𝑖

(ℎ) + 𝜖⋆

+ 1
𝑚
∑

𝑖
𝑑𝑇𝑉 (⋆(𝐱, 𝑦),𝑖(𝐱, 𝑦))

(3)

Remark: The first term in Eq. 3 is the averaged source
error which can be approximated by the empirical risk min-
imization. The second term is unobservable but is assumed
to be small and can be ignored. The third term can also
not be estimated directly since we don’t know which source
domain is the nearest one to the target. However, it can be
minimized by pair-wised distribution matching between all
source domains.

Theorem 1 bounds the target generalization error in
terms of the joint distributions between source domains. To
motivate a more concrete DG algorithm that leverages the
label ((𝑦)) and semantic conditional ((𝐱|𝑦)) information,
we have the following Corollary.

Corollary 1. Following the assumptions of Theorem 1, then
the target domain risk could be bounded by,

𝑅𝑡
(ℎ) ≤ 1

𝑚

𝑚
∑

𝑖=1
𝑅𝑖

(ℎ) + 𝜖⋆

+ 1
𝑚
∑

𝑖

[
√

𝐷𝐽𝑆 (⋆(𝑦)||𝑖(𝑦))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐈

+
√

𝔼𝑦∼⋆(𝑦)𝐷𝐽𝑆 (⋆(𝐱|𝑦)||𝑖(𝐱|𝑦))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐈𝐈

+
√

𝔼𝑦∼𝑖(𝑦)𝐷𝐽𝑆 (⋆(𝐱|𝑦)||𝑖(𝐱|𝑦))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐈𝐈𝐈

]

(4)

In order to minimize Eq. 4, except for minimizing the
source domain risks 1

𝑚
∑𝑚

𝑖=1𝑅𝑖
(ℎ) we need to consider the

last three terms I: J-S distance between the label distribution
⋆(𝑦) and 𝑖(𝑦), as well as II and III, which are the J-S
distance between the semantic distributions.

For I in Eq. 4, we could adopt a reweighted loss
̂𝜶
𝑖

(will be introduced in Eq. 8) to balance the la-
bel distribution for each pair of source domains so that
𝐷𝐽𝑆 (𝑖(𝑦)||𝑗(𝑦)) = 0 for all the domain pairs 𝑖, 𝑗. In this
case, term II and III will be identical to each other and we
can bound the generalization risk on the target domain as
follows,

Corollary 2. Following the assumptions of Theorem 1
and assume the semantic distribution between the near-
est source domain to the target domain is a constant,
i.e., 𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑡(𝐱)|𝑌 = 𝑘) ≤ 𝜅⋆. Let ̂𝜶

𝑖
(ℎ)

be the reweighted loss and the prediction loss function is
bounded by [0, 1], then the target domain risk could be
bounded by,

𝑅𝑡
(ℎ) ≤ 1

𝑚

𝑚
∑

𝑖=1
𝔼𝑥∼𝑖

̂𝜶
𝑖
(ℎ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Re-weighted source risks

+ 𝜅⋆
⏟⏟⏟
Constant

+ 1
𝐾

𝐾
∑

𝑘=1

[ 1
𝑚

𝑚
∑

𝑖=1
𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑖(𝐱|𝑌 = 𝑘))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Achieved by pair-wise semantic matching

]

(5)

Remark: The first term is the balanced source errors
that can help to handle the label distributions shift. The
second term is a small constant. The third term could be
minimized by a pair-wised semantic matching scheme, and
we will elaborate this point in the next section.

Now, we show that by aligning the semantic conditional
distributions (𝐱|𝑦), we could also align the marginal dis-
tributions (𝐱). We notice that, for a pair of source domain
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Reweighting loss according to label frequencies

ClassifierFeature Extractor

Features

ℙ(𝑥)

ℙ(𝑦) ℙ(𝑥|𝑦)

Figure 4: The overall model architecture. The feature ex-
tractor is trained to find out the shared features, and the ex-
tracted features are also used for computing the centroids of
the semantic distributions to compute the semantic objective.
The classifier is trained using the source domain data and is
committed to performing well on the unseen target domain.
For all the domains, the model parameters are shared with
each other and trainable on all the source domains.

distributions 𝑖 and 𝑗 ,

𝔼𝑥|𝑖(𝐱) −𝑗(𝐱)| = 𝔼𝑥
∑

𝑦
|𝑖(𝑦)𝑖(𝐱|𝑦) −𝑗(𝑦)𝑗(𝐱|𝑦)|

= 𝔼𝑥

𝐾
∑

𝑘=1
|𝑖(𝑌 = 𝑘)𝑖(𝐱|𝑌 = 𝑘) −𝑗(𝑌 = 𝑘)𝑗(𝐱|𝑌 = 𝑘)|

= 1
𝐾
𝔼𝑥|

∑

𝑦
(𝑖(𝐱|𝑦) −𝑗(𝐱|𝑦))|

≤ 1
𝐾

∑

𝑦
𝔼𝑥|𝑖(𝐱|𝑦) −𝑗(𝐱|𝑦)|

= 2
𝐾

∑

𝑦
𝑑TV(𝑖(𝐱|𝑦),𝑗(𝐱|𝑦))

(6)

Eq. 6 shows that by minimizing the total variation distance
between the two semantic conditional distributions 𝑖(𝐱|𝑦)
and 𝑗(𝐱|𝑦), we could also take care of the marginal
distribution of these two domains 𝑖(𝐱) and 𝑗(𝐱). That is,
when matching the semantic conditional distributions, we
could also align the marginal features simultaneously.

Now, based on the analysis above, we could summarize
that to minimize the target risk, we need to follow the two
principles:

• minimizing the weighted source risks (will be intro-
duced in Eq. 8).

• matching the semantic divergences between each
source domains (will be introduced in Eq. 14).

With these two principles, we could introduce our
methodology in the next section.

4.2. Methodology
4.2.1. The overview of our model

The model architecture is presented in Fig. 4. It consists
of two parts: feature extractor and classifier. The feature
extractor, parameterized by 𝜽𝑓 , is trained to extract both
feature and semantic information that is shared across the

sources domains. Once the domains are aligned properly,
the classifier, parameterized by 𝜽𝑐 , is trained to make uni-
versal predictions for all the domains. For classification, we
adopt the cross-entropy loss.

𝓁 = −
𝑚
∑

𝑖=1

𝑁𝑖
∑

𝑗=1
𝑦(𝑖)𝑗 log(ℙ(𝜽𝑐(𝜽𝑓 (x(𝑖)𝑗 )))) (7)

As analyzed before, to minimize the risk of the pre-
diction on the target domain, we should both control the
semantic conditional distance and the label distribution
divergence. In case of the label distributions differ from each
other, some minor classes may be regarded as noise, and
the minor classes will be neglected Zhou et al. (2021a). In
order to alleviate the impacts of the source domains’ label
space shifts, we could re-weigh the importance of each class
to correct the loss based the total instance number in that
category Lipton et al. (2018),

̂𝜶
𝑖
(ℎ) =

∑

(𝐱𝑖,𝑦𝑖)∈̂𝑖

𝛼(𝑦𝑖)𝓁(ℎ(𝐱𝑖), 𝑦𝑖)) (8)

where 𝜶 = [𝛼1,… 𝛼𝑘,… , 𝛼𝐾 ]𝑇 is the weighting vector for
all 𝐾 classes in each domain. For a certain class 𝑘, suppose
we have 𝑚𝑘 instances in that category, we could compute
the weight by,

𝛼𝑘 =
∑

|1[𝑦 = 𝑦𝑘]|
𝑚𝑘

(9)

Through Eq. 9, the cross-entropy loss could be reweighted
via the frequency of the number of instances from a specific
class, which could ensure the data from different classes
among all the domains could have the same probability to
be sampled during training. By this process, the learner will
be guided to pay attention to the classes with few instances,
which could help to handle the label distribution drift. Then,
the classification objective could be computed as,

𝜶
𝐶 =

𝑚
∑

𝑖=1
̂𝜶
𝑖

=
𝑚
∑

𝑖=1

∑

(𝐱𝑖,𝑦𝑖)∈̂𝑖

𝛼(𝑦𝑖)𝓁(ℎ(𝐱𝑖), 𝑦𝑖)) (10)

Except for the reweighted loss, we also need to guide the
learner to leverage the semantic distributions (𝐱|𝑦) across
the domains. To this end, we adopt the extracted features
𝑧𝑖 from domain 𝑖, to condition the semantic distributions
ℙ(𝑧|𝑦).

To align the semantic distributions, i.e., minimizing
𝐷𝐽𝑆

(

𝑖(𝐱|𝑦)‖𝑗(𝐱|𝑦)
)

for all domains pairs 𝑖, 𝑗, one could
have several solutions (e.g. conditional GAN training, mo-
ment matching, etc.). We adopted an alternative yet popular
approach: class-level feature mean matching method that
is prevalent in the general machine learning literature (e.g.
Dou et al., 2019; Chopra et al., 2005; Xie et al., 2018; Zhou
et al., 2021a).

The semantic minimization objective is computed across
all the source domains. We can take out the extracted
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features and compute the corresponding semantic centroids.
For instances from source domains 𝑆𝑖 = {(𝐱𝑗 , 𝑦𝑗)}

𝑁𝑖
𝑗=1 from

all the categories 𝑘 ∈ {1…𝐾}, similarly with Dou et al.
(2019), we condition the extracted features on each class 𝑘
to measure the semantic conditional distributions. Then, the
empirical semantic centroid is estimated by,

�̂�𝑘𝑐𝑖 =
1

|𝑘
𝑖 |

∑

𝑥𝑖∈𝑘
𝑖

𝑧𝑘𝑖 = 1
|𝑘

𝑖 |

∑

𝑥𝑖∈𝑘
𝑖

𝜽𝑓 (𝐱𝑗)

≈ 𝔼𝑖
[𝜽𝑓 (𝐱𝑖)|𝑌 = 𝑘]

(11)

Through this process, we compute the feature centroids.
We then follow the strategy of (Xie et al., 2018; Zhou et al.,
2021a) to maintain a global matrix 𝑖

for each source
domain to maintain the semantic centroids,

𝑘
𝑖

← 𝛾�̂�𝑘𝑐𝑖 + (1 − 𝛾)�̂�𝑘𝑐𝑖 (12)

Eq.12 defines a moving averaging method for the batch
training of , where 𝜆 is a coefficient to control the mov-
ing average temperature. Then, we could maintain a ma-
trix 𝑖 = [1

𝑖
,… ,𝐾

𝑖
]𝑇 to trace the semantic rela-

tions between domains, through which we could match
the semantic distributions via minimize the Euclidean dis-
tance Φ(𝑘

𝑖
,𝑘

𝑗
) between two centroids in the embedding

space, which is computed as,

Φ(𝑘
𝑖
,𝑘

𝑗
) = ‖𝑘

𝑖
−𝑘

𝑗
‖

2 (13)

Here the function Φ(𝑘
𝑖
,𝑘

𝑗
) is the approximation

of the total variation 𝑑𝑇𝑉 (𝑘
𝑖
,𝑘

𝑗
), which is the upper

bound of 𝐷𝐽𝑆 (𝑘
𝑖
‖𝑘

𝑗
). Then for each training epoch, the

semantic loss 𝑆 is updated by,

𝑆𝑒𝑚 ← 𝑆𝑒𝑚 + Φ(𝑖
,𝑗

) (14)

By minimizing the semantic objectives of all the do-
mains, we could achieve semantic invariant features.

Now, with the components described above, we could
summarize the learning objective of our method as,

 = 𝜶
𝐶 + 𝜆𝑠𝑆𝑒𝑚 (15)

where 𝜶
𝐶 is the modified classification objective defined

in Eq. 10, 𝑆𝑒𝑚 is the semantic learning objective defined
in Eq. 14 and 𝜆𝑠 is a coefficient to regularize the semantic
learning objective.

Remark: The learning objective 𝑆𝑒𝑚 can be viewed
as an extra regularization term on top of the classification
objective, which can ensure semantic invariance, leading to
better generalization performances.

We show the whole learning process in Algorithm 1
and the model architecture in Fig. 4. The algorithm mainly

Algorithm 1 The proposed SMDG algorithm
Require: Samples from different source domains {𝑖}𝑚𝑖=1
Ensure: Neural network parameters 𝜽𝑓 , 𝜽𝑐

1: for mini-batch of samples {(𝐱(𝑖)𝑠 , 𝑦(𝑖)𝑠 )} from source
domains do

2: Compute the classification loss 𝜶
𝐶 over all the do-

mains according to Eq. 10
3: Mix the instances and compute the semantic match-

ing objective 𝑆𝑒𝑚 via Eq. 14
4: Update 𝜃𝑓 , 𝜃𝑐 by solving Eq. 15 with learning rate 𝜂:

𝜽𝑓 ← 𝜽𝑓 − 𝜂
𝜕(𝜶

𝐶 + 𝜆𝑠𝑆𝑒𝑚)

𝜕𝜽𝑓
,

𝜽𝑐 ← 𝜽𝑐 − 𝜂
𝜕(𝜶

𝐶 + 𝜆𝑠𝑆𝑒𝑚)
𝜕𝜽𝑐

5: end for
6: Return the optimal parameters 𝜽𝑓⋆ and 𝜽𝑐⋆

Table 1
Empirical Results (accuracy %) on each target domain on
PACS dataset. (Some results of the proposed method in this
table are under double check)

Method Art Cartoon Sketch Photo Avg.
Deep All 63.30 63.13 54.07 87.70 67.05
CDANN 62.70 69.73 64.45 78.65 68.88
MLDG 66.23 66.88 58.96 88.00 70.01
D-SAM 63.87 70.70 64.66 85.55 71.20
JiGen 67.63 71.71 65.18 89.00 73.38
MMLD 𝟔𝟗.𝟐𝟕 𝟕𝟐.𝟖𝟑 66.44 88.98 74.38
VREx 67.04 67.97 89.74 59.81 71.14
Ours 67.87 72.14 𝟕𝟎.𝟏𝟔 90.45 𝟕𝟓.𝟏𝟔

consists of several parts: first, to measure the label distri-
butions and compute the reweighted classification objective
to enforce the class-level alignment, and second to enforce
the domain-level semantic alignment for all the domains.
We then evaluate the effectiveness of our method in the next
part.

5. Experiments and Results
We verify the effectiveness of the proposed approach

on several common-used benchmarks, including the PACS,
VLCS and Office-home dataset, comparing with several
baselines using common evaluation protocols. Furthermore,
apart from these aforementioned benchmarks, we also eval-
uate the algorithm on the recent DomainBed framework. We
first evaluate the results compared with baselines showing
the state-of-the-art performance on benchmarks. To further
understand the method, we then do the ablation studies,
evaluations under label distributions shift as well as time
efficiency evaluations to confirm the effectiveness of our
method.
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Table 2
Empirical Results (accuracy %) on VLCS dataset with pre-
trained AlexNet as Feature Extractor.

Method Caltech LabelMe Pascal Sun Avg.

Deep All 92.86 63.10 68.67 64.11 72.19
D-MATE 89.05 60.13 63.90 61.33 68.60
CDANN 88.83 63.06 64.38 62.10 69.59
TF 93.63 𝟔𝟑.𝟒𝟗 69.99 61.32 72.11
MMD-AAE 94.40 62.60 67.70 64.40 72.28
D-SAM 91.75 56.95 58.95 60.84 67.03
MLDG 94.4 61.3 67.7 65.9 73.30
JiGen 96.93 60.90 70.62 64.30 73.19
MMLD 96.66 58.77 𝟕𝟏.𝟗𝟔 𝟔𝟖.𝟏𝟑 73.88
S-MLDG 96.40 64.80 64.00 68.70 73.50
VREx 96.72 60.40 63.68 70.49 73.30
Ours 𝟗𝟕.𝟓𝟒 63.41 69.36 65.63 𝟕𝟑.𝟗𝟖

5.1. Baselines and Implementation Details
We test our algorithm on the benchmark datasets with

the following principled domain generalization approaches.
Specifically, we consider several principled approaches:
1) matching-based approaches, 2) meta-learning-based ap-
proaches and 3) conditional alignment approaches. Spe-
cially, we compared the following baselines on the bench-
marks: Deep All: Train the model on source domains only.
We implement the pre-trained AlexNet or ResNet-18 as
the feature extractor and aggregate the classification loss of
all source domains as the learning objective; CDANN (Li
et al., 2018c): We adopt the conditional alignment method
by (Li et al., 2018c), which targets to extract the conditional-
invariant feature via varying the class prior so that the
conditional distributions among domains could be matched;
MLDG (Li et al., 2018a): MLDG is a meta-learning based
domain generalization method. It stimulates the domain
shift by splitting the source data into meta-train, and meta-
test sets to learn the invariant features for generalization; D-
SAM (D’Innocente and Caputo, 2018): It is a method that
aggregates several domain-specific modules, which allows
the model to merge general and specific information from
all the domains to generalize to a new domain; MMD-
AAE (Li et al., 2018b): is a Mean-Max Discrepancy (MMD)
based approach to map the latent features to kernel space
for the MMD minimization. The model is combined with
the Adversarial AutoEncoder (AAE) model with shallow
layers, and later in this work, we adopt their MMD map-
pings with a deep model while relaxing the reconstruction
objective. MixUp (Yan et al., 2020): It proposes to leverage
the feature level consistency to facilitate the inter-domain
regularization. JiGen (Carlucci et al., 2019): It leverages the
Jigsaw puzzle under an unsupervised task to achieve domain
invariant features for generalization. MASF (Dou et al.,
2019): MASF is also a meta-learning-based approach that
combines the MLDG with the Constrictive Loss and Triplet
Loss to encourage class-level alignment. MMLD (Matsuura
and Harada, 2020): MMLD is an approach that mixes all
the source features together with an unsupervised objective
to extract domain-independent feature space. DGER (Zhao

Table 3
Empirical Results on Office-home dataset with pre-trained
ResNet-18 as feature extractor

Art Clipart Product Real-World Avg.
Deep All 52.15 45.86 70.86 73.15 60.51
D-SAM 58.03 44.37 69.22 71.45 60.77
JiGen 53.04 𝟒𝟕.𝟓𝟏 71.47 72.79 61.20
JAN-COMBO 48.09 45.20 66.52 68.35 57.04
SagNets 60.20 45.38 70.42 73.38 62.34
WADG 55.34 44.82 72.03 73.55 61.44

Ours 𝟓𝟖.𝟕𝟔 45.49 𝟕𝟐.𝟒𝟔 𝟕𝟓.𝟐𝟏 𝟔𝟐.𝟗𝟖

Table 4
Empirical Results (accuracy %) on PACS dataset with pre-
trained ResNet-18 as feature extractor.

Method Art Cartoon Sketch Photo Avg.
Deep All 77.87 75.89 69.27 95.19 79.55
D-SAM 77.33 72.43 77.83 95.30 80.72
JiGen 79.42 75.25 71.35 96.03 80.51
MASF 80.29 77.17 71.69 94.99 81.04
MMLD 81.28 77.16 72.29 96.09 81.83
S-MLDG 80.50 77.80 72.80 94.80 81.50
DGER 80.70 76.40 71.77 𝟗𝟔.𝟔𝟓 81.38
DDAIG 84.20 78.10 74.70 95.30 83.10
SagNets 83.58 77.66 76.30 95.47 83.25
WADG 𝟖𝟏.𝟓𝟔 78.02 78.42 95.82 83.45
Ours 81.10 𝟕𝟗.𝟔𝟔 𝟕𝟖.𝟗𝟐 95.87 𝟖𝟑.𝟖𝟗

et al., 2020): DGER is an approach that focuses on mini-
mizing the prediction entropy. DDAIG (Zhou et al., 2020a):
DDAIG is a generation-based method that consists of a
domain transformation module to the unseen domain. Do-
mainBed (Gulrajani and Lopez-Paz, 2021): DomainBed is
a unified framework that compromises several recent base-
lines with standard evaluation benchmarks; We adopt the
baselines provided therein. WADG (Zhou et al., 2021b): is
a method that combines the Wasserstein adversarial training
with a metric similarity learning objective to achieve both
the domain-level and class-level alignment.

We first adopt the pre-trained AlexNet model as the
feature extractor to evaluate the algorithms on the PACS
and VLCS datasets. For the PACS and VLCS datasets on
AlexNet, we train the model with mini-batch size 64 and test
batch-size 16. The model is trained with Adam optimizer
with a learning rate of 2 × 10−4 for a total of 180 epochs.
For the AlexNet backbone, we extract the intermediate layer
feature with size 256 to match the semantic features.

The results on PACS and VLCS benchmarks with
AlexNet are represented in Table. 1 and Table. 2, re-
spectively. We refer to the results of the baseline using
the original value reported in their manuscripts. From the
results, we could see that our method could outperform
the baselines on these two benchmarks by achieving state-
of-the-art performance. We then follow the evaluation
protocols of (Zhou et al., 2021b; Dou et al., 2019; Matsuura
and Harada, 2020) to implement the experiments on the
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Table 5
Empirical Results on Office-Home Dataset with pre-trained
ResNet 50 as the feature extractor.

Method Art Clipart Product Real-World Avg.

ERM 61.3 52.4 75.8 76.6 66.5
IRM 58.9 52.2 72.1 74.0 64.3
GroupDRO 60.4 52.7 75.0 76.0 66.0
MMD 60.4 53.3 74.3 77.4 66.3
DANN 59.9 53.0 73.6 76.9 65.9
CDANN 61.5 50.4 74.4 76.6 65.8
MTL 61.5 52.4 74.9 76.8 66.4
ARM 58.9 51.0 74.1 75.2 64.8
VREx 60.7 53.0 75.3 76.6 66.4
RSC 60.7 51.4 74.8 75.1 65.5
Ours 58.9 55.1 75.3 77.1 66.6

PACS dataset and Office-home with deeper backbones as
the feature extractor to show the benefits of our method.
We adopted the pre-trained ResNet-18 model as the feature
extractor and trained the model with mini-batch size 64
and test batch size 16. The model is optimized with Adam
optimizer with a learning rate of 2 × 10−4 to 5 × 10−5 on
PACS and VLCS datasets while 3 × 10−3 on the Office-
home dataset. For the ResNet backbone, we extract the
intermediate layer feature with size 256 for computing the
semantic matching objective. The test results on PACS and
Office-Home benchmarks with ResNet-18 feature extractor
are reported in table 4 and Table 3, respectively. For the
experimental results on all the datasets, we empirically set
𝜆 = 0.1 and 𝛾 = 0.3.

We then evaluate our algorithm on a more recent
challenging framework, namely DomainBed Gulrajani and
Lopez-Paz (2021), to verify the empirical performances.
Following the setting of DomainBed, we opt for the pre-
trained ResNet-50 model as the feature extractor and con-
duct the experiments on OfficeHome. The results are dis-
played in Table 5. We set the learning rate as 5× 10−5 using
the Adam optimizer. More details for the experiments are
delegated to the Appendix files.

From the test result, we could observe an improvement
on the benchmarks performances achieving the state-of-
the-art performances. Furthermore, here we would like to
note that, compared with the methods based on the metric
learning objectives (e.g., Dou et al. (2019); Zhou et al.
(2021b)), our method doesn’t require a large batch size for
the triplet property to achieve better performances. For ex-
ample, on the Office-Home benchmark, to ensure the triplet
property, one needs a batch size of at least 195. When we
adopt some deeper backbones (e.g., ResNet-50) as feature
extractors, the computational cost will be prohibitive. This
also confirms the effectiveness of our method.

5.2. Further Analysis
Except for the standard benchmark evaluations, we then

further investigate our method in several aspects, including
the t-SNE visualizations, ablation studies, performance un-
der label shift and time efficiencies.

Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(a) Source only

Source: Art
Source: Cartoon

Source: Sketch
Target: Photo

(b) Full method

Figure 5: t-SNE visualizations of our method on PACS
dataset
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Figure 6: Performance comparison under label shift situa-
tion on PACS dataset with respect to the four target domains.

t-SNE Visualization We first show the t-SNE visualiza-
tion of our method to show the alignment performance on
the PACS dataset, comparing the source-only training only
and the full method. The results on PACS is illustrated on
Fig. 5. The results show that our method could well align
the features, which confirms the effectiveness of our method
on category alignment.

Ablation studies To confirm the effectiveness of each
component of our proposed method, we did the ablation
studies on each part of our proposed work. We implement
the following ablations: 1) Cls. only: only train the model
on the source domains using the classification objectives
without the re-weighting technique; 2) No Sem. We omit
the semantic alignment objective while keeping the classi-
fication objective with the re-weighting technique; 3) No
Re-weighting: We omit the re-weighting technique in the
classification objective while keeping the semantic match-
ing and original cross-entropy classification objective. To
better evaluate the effectiveness of our method with depth
understanding, we implement the ablations on PACS dataset
with AlexNet and ResNet-18 model as feature extractor, as
well as the ablation studies on Office-Home dataset with
ResNet-18 as the feature extractor. The results of ablation
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Table 6
The ablation studies on PACS and Office-Home datasets.

Benchmark PACS-AlexNet PACS-ResNet18 Office-Home

Ablation A P C S Avg. A P C S Avg. Ar Cl Pr Rw Avg.

Deep-All 63.30 87.7 63.13 54.07 67.05 77.87 95.19 75.89 69.27 79.55 52.15 45.86 70.86 73.15 60.51
No-sem. 64.40 87.37 67.55 65.36 71.71 80.08 94.68 79.26 76.75 82.69 57.37 43.37 71.51 73.93 61.54

No re-weight 64.55 86.55 68.33 68.70 72.03 79.17 94.91 78.85 76.71 82.41 58.35 45.06 72.21 75.05 62.67
Full 67.87 90.45 72.14 70.16 75.16 81.10 79.66 78.92 95.87 83.89 72.46 58.76 45.49 75.21 62.98
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Figure 7: Performance comparison under label shift situa-
tion on Office-Home dataset with respect to the four target
domains for each generalization task.

studies are presented in Table 6. As we could observe from
the ablation results, semantic domain alignment is crucial to
our method. If we omit the semantic alignment objective,
there could be a rapid drop-off in the performance. Besides,
the label correction objective could also help to improve
the performance compared with the original cross-entropy
learning objective.

Performance under label distribution shift As our the-
oretical analysis (section 4.1) demonstrates the necessity of
controlling the label shift and our algorithm is committed
to handling label distribution shift. To confirm the effec-
tiveness of overcoming label shift problems, we conduct
the experiments to check the DG algorithms’ performance
under label shift scenarios where the label distributions from
all the domains drift from each other, i.e., we randomly
remove a certain percentage of instances from each domain.
We implement the label drift process on PACS and Office-
Home datasets. We compared our method with the follow-
ing four principled methods: 1) The conditional alignment
method, namely the CDANN method Li et al. (2018c),
2) The meta learning-based method, namely the MLDG
method Li et al. (2018a), 3) The Mean-Max Discrepancy
(MMD) minimization based method Li et al. (2017) and 4)

P

A

C

S

0% 25% 50% 75% 100%

CDANN MLDG MMD MixUp Ours

(a) PACS dataset

A

C

P

R

0% 25% 50% 75% 100%

CDANN MLDG MMD MixUp Ours

(b) Office-Home dataset

Figure 8: Relative time comparison on PACS and Office-
Home dataset.

The MixUp method Yan et al. (2020). For the PACS dataset,
for each source domain, we remove a certain ratio (10% ∼
90%) of instances from 2 classes. For the Office-Home
dataset, for each source domain, we remove a certain ratio
(10% ∼ 90%) of instances randomly from 15 categories.
The compared results curves on PACS and Office-Home
datasets with different target domains are illustrated in Fig. 6
and Fig. 7, respectively.

From the results, we could observe that our method
could outperform the baselines under all the drift ratios.
Specifically, on the PACS dataset, we could observe that
the MLDG method and MixUp method could have a similar
performance comparing with ours under certain shift ratios
when choosing Art and Sketch as the target domain. How-
ever, on the Office-Home dataset, our method could have
obvious improvements compared with all the baselines,
which confirmed the effectiveness of our method. Since
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the number of classes of the PACS dataset (7) is obvi-
ously smaller than the number of classes of Office-Home
dataset (65), the simulated label shift does not have obvious
changes to the data distribution, which may lead to similar
performances on the shift on PACS dataset. Furthermore,
the number of instances in each domain of PACS dataset is
relatively more than the number of instances in each domain
of the Office-Home dataset. Thus, the baseline methods are
more sensitive to label shift on the Office-Home benchmark
than PACS benchmark. This also confirms the effectiveness
of our method when handling a minor number of instances
when the label shift problem occurs.

Time efficiency We then evaluate the time efficiency of our
method, comparing it with the four principled baselines on
both the PACS and Office-Home benchmark to demonstrate
the effectiveness of our method. We demonstrate the time
efficiency by comparing the relative average time, setting
our time as the unit time for one training round. The results
are presented as a relative percentage bar chart by setting
the time costs of our method as a unit in Fig. 8. From the
results, we could observe that our method has similar time
efficiency with MMD and MixUp methods while has better
time efficiency than CDANN and MLDG.

6. Conclusion
In this work, we considered the generalization property

in DG problems via exploring the value of the label and
semantic information across domains, which were mostly
neglected by the previous work. We investigated the theo-
retical guarantee for a successful generalization process by
focusing on how to control the target domain error. Our
results revealed that to control the target risk, we should
jointly control the source errors that are weighted according
to label information and align the semantic conditional
distributions between different source domains. The theoret-
ical analysis then inspired an efficient algorithm to control
the label distributions and match the semantic conditional
distributions The empirical results showed that our method
outperformed most of the baselines, achieving state-of-
the-art performances on the benchmarks. Furthermore, the
time efficiency of the method showed that our method
could achieve better benchmark performances with better
time efficiencies. Besides, our method also showed better
performances under the label shift situations, which could
not perfectly be handled by the baselines.
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Supplementary Materials

A. Proof to the theoretical results
In this section we provide the proof to Theorem 1,

Corollary 1 and Corollary 2.

A.1. Proof to Theorem 1
Proof. Let’s first consider the risk on the target domain w.r.t
to the nearest source domain ⋆,

𝑅𝑡
(ℎ) ≤ 𝑅⋆ (ℎ) + 𝑑𝑇𝑉 (𝑡,⋆)

= min
1,…,𝑚

𝑅𝑖
+ 𝑑𝑇𝑉 (𝑡,𝑖)

(16)

In the context of DG, the learner has no access to the target
domain, so we have no idea about which source domain is
the nearest one to the target. In this case, we try to find out
the minimization over all the source domains,

𝑅𝑡
≤ 𝑅1

(ℎ) + 𝑑𝑇𝑉 (𝑡,1) ≤ 𝑅1
+ 𝑑𝑇𝑉 (⋆,1)

+ 𝑑𝑇𝑉 (⋆,𝑡)
…

𝑅𝑡
≤ 𝑅𝑖

(ℎ) + 𝑑𝑇𝑉 (𝑡,𝑖) ≤ 𝑅𝑖
+ 𝑑𝑇𝑉 (⋆,𝑖)

+ 𝑑𝑇𝑉 (⋆,𝑡)
…

𝑅𝑡
≤ 𝑅𝑚

(ℎ) + 𝑑𝑇𝑉 (𝑡,𝑚) ≤ 𝑅𝑚
+ 𝑑𝑇𝑉 (⋆,𝑚)

+ 𝑑𝑇𝑉 (⋆,𝑡)
(17)

Sum over all the source domain 𝑖, we have,

𝑚 ⋅ 𝑅𝑡
(ℎ) ≤𝑅1,…,𝑚

(ℎ) + 𝑚 ⋅ 𝑑𝑇𝑉 (⋆,𝑡)

+
∑

𝑖
𝑑𝑇𝑉 (⋆,𝑡)

(18)

Then, we have,

𝑅𝑡
(ℎ) ≤ 1

𝑚
𝑅1,…,𝑚

(ℎ) + 𝑑𝑇𝑉 (⋆,𝑡)

+ 1
𝑚
∑

𝑖
𝑑𝑇𝑉 (⋆,𝑡)

(19)

Note 𝑑𝑇𝑉 (⋆,𝑡) = 𝜖⋆ and 1
𝑚𝑅1,…,𝑚

(ℎ) is the averaged
source errors, we conclude the proof.

A.2. Proof to Corollary 1
Since Theorem 1 is represented by the joint distribution,

in order to show the insights that can motivate the benefits
on controlling the semantic and label distribution, we can
further provide the proof of Corollary 1.

Proof. Since 𝑑𝑇𝑉 (⋆,𝑖) ≤ 2
√

𝐷𝐽𝑆 (⋆
‖𝑖), plug into

Eq. 3, we have
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𝑅𝑡
(ℎ) ≤ 1

𝑚

𝑚
∑

𝑖=1
𝑅𝑖

(ℎ) + 𝜖⋆

+ 1
𝑚

𝑚
∑

𝑖
𝑑𝑇𝑉 (⋆(𝐱, 𝑦),𝑖(𝐱, 𝑦))

≤ 1
𝑚

𝑚
∑

𝑖=1
𝑅𝑖

(ℎ) + 𝜖⋆

+ 2
𝑚

𝑚
∑

𝑖
[
√

𝐷𝐽𝑆 (⋆(𝐱, 𝑦)||𝑖(𝐱, 𝑦))]

(20)

Now we need to bound the third term of Eq. 20. Similar
with (Zhou et al., 2021a; Shui et al., 2020), we can introduce
an intermediate distribution (𝐱) = 1

2 (
⋆(𝐱)+𝑖(𝐱)), then

supp(𝑖) ⊆ supp() we notice that,

2𝐷JS(⋆(𝐱, 𝑦)‖𝑖(𝐱, 𝑦)) =
𝐷KL(⋆(𝐱, 𝑦)‖(𝐱, 𝑦)) +𝐷KL(𝑖(𝐱, 𝑦)‖(𝐱, 𝑦))
= 𝐷KL(⋆(𝑦)‖(𝑦)) + 𝔼𝑥∼⋆(𝑦)𝐷KL(⋆(𝐱|𝑦)‖(𝐱|𝑦))
+𝐷KL(𝑖(𝑦)‖(𝑦)) + 𝔼𝑥∼𝑖(𝑦)𝐷KL(𝑖(𝐱|𝑦)‖(𝐱|𝑦))
= 2𝐷JS(⋆(𝑦)‖𝑖(𝑦)) + 𝔼𝑥∼⋆(𝑦)𝐷KL(⋆(𝐱|𝑦)‖(𝐱|𝑦))
+ 𝔼𝑥∼𝑖(𝑦)𝐷KL(𝑖(𝐱|𝑦)‖(𝐱|𝑦))

(21)

Then, we provide two bounded term for the last two KL
divergence based terms,

𝔼𝑦∼⋆(𝑦)𝐷KL(⋆(𝐱|𝑦)‖(𝐱|𝑦))
≤ 𝔼𝑦∼⋆(𝑦)𝐷KL(⋆(𝐱|𝑦)‖(𝐱|𝑦))
+ 𝔼𝑦∼⋆(𝑦)𝐷KL(𝑖(𝐱|𝑦)‖(𝐱|𝑦))
= 2𝔼𝑦∼⋆(𝑦)𝐷JS(⋆(𝐱|𝑦)‖𝑖(𝐱|𝑦))

Similarly, we could also have,

𝔼𝐱∼𝑖(𝑥)𝐷KL(⋆(𝐱|𝑦)‖(𝐱|𝑦))
≤ 2𝔼𝐱∼𝑖(𝑥)𝐷JS(⋆(𝐱|𝑦)‖𝑖(𝐱|𝑦))

Plug these two terms into Eq 21, we have

𝐷JS(⋆(𝐱, 𝑦)‖𝑖(𝐱, 𝑦)) ≤ 𝐷JS(⋆(𝑦)‖𝑖(𝑦))
+ 𝔼𝑦∼⋆(𝑦)𝐷JS(⋆(𝐱|𝑦)‖𝑖(𝐱|𝑦))
+ 𝔼𝑦∼𝑖(𝑦)𝐷JS(⋆(𝐱|𝑦)‖𝑖(𝐱|𝑦))

(22)

Now we have
√

R.H.S. of Eq. 22 ≤
√

𝐷𝐽𝑆 (⋆(𝑦)||𝑖(𝑦))

+
√

𝔼𝑦∼⋆(𝑦)𝐷𝐽𝑆 (⋆(𝐱|𝑦)||𝑖(𝐱|𝑦))

+
√

𝔼𝑦∼𝑖(𝑦)𝐷𝐽𝑆 (⋆(𝐱|𝑦)||𝑖(𝐱|𝑦))

(23)

Plug Eq. 23 into Eq. 20, we conclude the proof.

A.3. Proof to Corollary 2
Now we show the proof to Corollary 2.

Proof. First consider the risk in the testing phase, i.e., the
prediction loss on the target domain,

𝑅𝑡
(ℎ) = 1

𝐾

𝐾
∑

𝑘=1
∫𝑥

𝑡(𝐱|𝑌 = 𝑘)(ℎ(𝐱), 𝑦)

≤ 1
𝐾

∑

𝑘=1

[

𝔼𝑥∼⋆ (𝐱|𝑌 = 𝑘)(ℎ(𝐱), 𝑦)

+ 𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑡(𝐱|𝑌 = 𝑘))
]

(24)

Similar with the proof of Theorem 1, we could bound the
two items in Eq. 24,

𝔼𝑥∼⋆(ℎ(𝐱), 𝑦) ≤𝔼𝑥∼1
(ℎ(𝐱), 𝑦)

+ 𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),1(𝐱|𝑌 = 𝑘))
…

𝔼𝑥∼⋆(ℎ(𝐱), 𝑦) ≤𝔼𝑥∼𝑖
(ℎ(𝐱), 𝑦)

+ 𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑖(𝐱|𝑌 = 𝑘))
…

𝔼𝑥∼⋆(ℎ(𝐱), 𝑦) ≤𝔼𝑥∼𝑚
(ℎ(𝐱), 𝑦)

+ 𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑚(𝐱|𝑌 = 𝑘))
(25)

Sum this Eq. 25 and plug into Eq. 24, we have,

𝑅𝑡
(ℎ) ≤ 1

𝐾

𝐾
∑

𝑘=1

[ 1
𝑚

𝑚
∑

𝑖=1
𝔼𝑥∼𝑖

(ℎ)

+ 1
𝑚

𝑚
∑

𝑖=1
𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑖(𝐱|𝑌 = 𝑘))

+ 1
𝑚

𝑚
∑

𝑖=1
𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑡(𝐱)|𝑌 = 𝑘)

]

≤ 1
𝑚

𝑚
∑

𝑖=1
𝔼𝑥∼𝑖

̂𝜶
𝑖
(ℎ) + 𝜅⋆

+ 1
𝐾

𝐾
∑

𝑘=1

[ 1
𝑚

𝑚
∑

𝑖=1
𝑑𝑇𝑉 (⋆(𝐱|𝑌 = 𝑘),𝑖(𝐱|𝑌 = 𝑘))

]

(26)

Then we could conclude the proof.

B. Experimental Details
B.1. Datasets and Preparation

We compare our method with some baseline meth-
ods on VLCS, PACS and Office-home dataset. The VLCS
dataset Torralba and Efros (2011) consists of four domains
of images from LabelMe(L), PASCAL-VOC2007(V), SUN-
09(S) and Caltech-101(C) with total five categories in each
domain. Unlike some previous work (Li et al., 2018b; Dou
et al., 2019), which adopts the DeCAF model (Donahue
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et al., 2014) features (DeCAF6 features), we use the original
dataset with images so that the model could explore the
semantic features. The PACS dataset (Li et al., 2017) is a
recent standard benchmark for DG which consists images
from four domains: Art (A), Cartoon (C), Photo (P) and
Sketch (S). Office-Home Venkateswara et al. (2017) is a
more challenging dataset, which was widely investigated in
recent DA and DG research. It contains images from four
different domains: Art (Ar), Clipart (Cl), Product (Pr) and
Real World (Rw). Images from all the domains have 65
categories. DomainNet Gulrajani and Lopez-Paz (2021) is
a recent framework that provides a bundle of baselines with
a standard evaluation framework.

For the PACS and VLCS set, we adopt the following
pre-process pipeline: 1) for the training set, firstly resize the
image to 224×224 using RandomResizedCrop function and
then apply the RandomHorizontalFlip function. 2) for the
testing set, only resize the image to 224 × 224 using using
RandomResizedCrop function.

For the experiments results presented in Table 3, we
follow the data pre-processing protocols of (Zhou et al.,
2021b). For the evaluations presented in Table 5, we directly
follow the data processing protocols of DomainBed Gulra-
jani and Lopez-Paz (2021) with the MultipleDomainDataset
class provided therein. We report the results with training
domain validation criteria.

B.2. Neural Networks model and
Hyperparameters

We first implement the experiments on PACS and VLCS
datasets with pre-trained AlexNet provided by PyTorch.
We extract the intermediate layer feature with size 4096
to match the semantic features. The architecture of the
classifier is implemented as follows,

• (Layer 0): Linear layer (in = 4096, out = 256, bias =
True)

• (Layer 1): Linear layer (in = 256, out = # classes, bias
= True)

• (Layer 2): Softmax (dim=-1)

The model is trained with Adam optimizer with a
learning rate 2 × 10−4 with mini-batch size 64 for a total
of 180 epochs.

We then conduct the experiments on PACS and Office-
Home with the pre-trained ResNet-18 model as the feature
extractor. With the ResNet-18 model, the output size of the
feature extractor is 512. The classifier is implemented as
follows,

• (Layer 0): Linear Layer (in = 512, out=256, bias =
True)

• (Layer 1): Linear Layer (in = 256, out # classes, bias
= True)

• (Layer 2): Softmax (dim=-1)

The intermediate layer features with size 256 are extracted
to match the semantic features. The learning rate is set as
3 × 10−3 on the Office-home dataset and is set as 2 × 10−4
with ResNet-18 backbones.

# classes of PACS data sets is 7, # classes of VLCS is 5
and # classes of Office-home is 65.

For the experiments conducted with DomainBed frame-
work with ResNet-50 backbone on Office-Home dataset.
The feature extractor and classifier are implemented as per
the default model provided therein. We train the model with
mini-batch size 24 due to the computation limitations. The
model is trained with Adam optimizer with a learning rate
5 × 10−5 as per the default setting of DomainBed.

The value of 𝜆 and 𝛾 are determined by reverse vali-
dation. We set 𝜆 = 0.1, which is a common setting for
regularization term of the DA (Ganin et al., 2016; Shen
et al., 2018b) and DG (Zhou et al., 2021b). The value of 𝛾 ,
the coefficient to control the moving average temperature, is
set as 0.3, which we found can have stable results.
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