
Prediction-directed Compression of POMDPs

Abdeslam Boularias
Department of Computer Science

Laval University, Canada, G1K 7P4
boularias@damas.ift.ulaval.ca

Masoumeh Izadi
School of Computer Science

McGill University, Canada, H3A 2A7
mtabae@cs.mcgill.ca

Brahim Chaib-draa
Department of Computer Science

Laval University, Canada, G1K 7P4
chaib@damas.ift.ulaval.ca

Abstract

High dimensionality of belief space in Partially Observ-
able Markov Decision Processes (POMDPs) is one of the
major causes that severely restricts the applicability of this
model. Previous studies have demonstrated that the dimen-
sionality of a POMDP can eventually be reduced by trans-
forming it into an equivalent Predictive State Representa-
tion (PSR). In this paper, we address the problem of finding
an approximate and compact PSR model corresponding to a
given POMDP model. We formulate this problem in an op-
timization framework. Our algorithm tries to minimize the
potential error that missing some core tests may cause. We
also present an empirical evaluation on benchmark prob-
lems, illustrating the performance of this approach.

1 Introduction

A number of representations for dynamical systems have
been proposed during the past two decades beside Partially
Observable Markov Decision Processes (POMDPs). How-
ever, they either impose restrictions to the underlying en-
vironment, or they do not seem to provide any advantages
over POMDPs. Among these representations, PSRs (Pre-
dictive State Representations) [8] seem appealing for sev-
eral main reasons. First, PSRs are grounded in the se-
quence of actions and observations of the agent, and hence
relate the state representation directly to the agent’s experi-
ence. Another reason why the predictive approach is be-
lieved to be a good choice for state representation is re-
lated to the generalization problem. Indeed, the predictive
representation does not rely on a specific physical layout
of an unobservable environment, so it has the potential of
being useful for fast adaptation to a new similar environ-

ment. Finally, PSRs offer a representation for dynamical
systems which is as general as POMDPs, and can be poten-
tially more compact than POMDPs [7]. This is particularly
useful for planning and predicting observations in large do-
mains, where the dimensionality of the state space is a ma-
jor drawback. However, the equivalent PSR of a POMDP
model has generally almost the same dimensionality as the
original model [3]. Consequently, it is natural to look for
approximation algorithms which generate a subset of core
tests more appropriate for planning purposes. We are also
interested in reducing the uncertainty by having a problem
formulation as detailed as possible. These two goals in-
volve a trade-off between the dimensionality of the model
and the accuracy of the solution that can be obtained. The
reduced PSR model, which contains only a subset of core
tests, conveys this trade-off. In this paper, we address the
issue of dynamically generating a subset of core tests for
predictive representations in partially observable domains.
We are interested in a lossy compressed PSR with a number
of core tests fewer than the number of states in the corre-
sponding POMDP. We formulate this problem as an opti-
mization problem that minimizes the loss function related
to prediction of observations and rewards.

2 Background

2.1 POMDPs

Formally, a POMDP is defined by the following compo-
nents: a finite set of hidden states S; a finite set of actions
A; a finite set of observations Z; a set of transition functions
{T a}, such that T a(s,s′) is the probability that the agent
will end up in state s′ after taking action a in state s; a set
of observation functions {Oa,o}, such that Oa,o(s) gives the
probability that the agent receives observation o after taking

action a and getting to state s′; and a reward function R, such
that R(s,a) is the immediate reward received when the agent
executes action a in state s. Additionally, there can be a dis-
count factor γ ∈ [0,1], which is used to weigh less rewards
received farther into the future. To simplify notations, we
use the |S|× |S| transition and observation matrices {T a,o},
where T a,o(s,s′) is the probability that the agent will end up
in state s′ and observes o after taking action a in state s. We
also consider a reward vector R depending only on states,
R(s) is the reward received when the agent is in state s.

Instead of memorizing a complete history ht of interac-
tion with the system (a sequence of actions and observa-
tions), a probability distribution over hidden states, called
the belief state, is sufficient for making predictions about
the future observations and rewards. The belief state is an
|S|-dimensional vector bt , where bt(s) = Pr(st = s|ht),s∈ S.

After taking action a and receiving observation o, the
agent updates its belief state using Bayes’ Rule:

bt+1 =
bT

t T a,o

bT
t T a,oe|S|

(1)

where e|S| = (1,1, . . . ,1)T is an |S|-dimensional vector.
The expected reward for a belief state bt is given by:

R(bt) = bT
t R (2)

2.2 PSRs

PSRs [8, 7] are an alternative model for representing par-
tially observable environments without using hidden vari-
ables. The fundamental idea of PSRs is to replace the
probabilities on states by probabilities on future trajecto-
ries, called tests. A test q is an ordered sequence of actions
and observations a1o1 . . .akok. The probability of q starting
after a history ht is defined by:

Pr(q|ht) = Pr(o1, . . . ,ok|ht ,a1, . . . ,ak)

The probability of any test q depends linearly on the prob-
abilities of a few tests, called core tests. We use Q to in-
dicate the set of core tests. The reduced belief state is a
|Q|-dimensional vector b̃t , where b̃t(q) = Pr(q|ht),q ∈ Q.
The probability of any test q is given by:

Pr(q|ht) = b̃T
t mq

where mq is a Q-dimensional weigh vector which is specific
to the test q and independent on the history ht .
After executing action a and receiving observation o, the
reduced belief state is updated by using Bayes’ Rule:

∀q ∈ Q : Pr(q|htao) =
Pr(aoq|ht)
Pr(ao|ht)

So:

b̃t+1 =
b̃T

t Mao

b̃T
t mao

(3)

Mao is a |Q| × |Q| matrix where each column corresponds
to a weigh vector maoq used to calculate the probability of
the core test extension aoq. The weigh vector mao is used to
calculate the probability of ao, which is also an extension of
a special core test /0 corresponding to the empty sequence.

The matrix containing the predictions of all core tests
given the underlying states is called the transformation ma-
trix U (|S|×|Q|). We have U(s,q) = Pr(q|s),q∈Q,s∈ S. U
can be found by a simple search for the maximum number
of linearly independent vectors U(.,q). Littman et al. [8]
presented a polynomial time algorithm that finds incremen-
tally all core tests in an iterative fashion, given a POMDP
model. Since the columns of U are linearly independent,
then |Q|6 |S|. The matrix U can be used to map any belief
state bt in the POMDP model to a reduced belief state b̃t in
the corresponding PSR model:

b̃t = bT
t U (4)

2.3 Predicting rewards with PSRs

In order to predict observations, we need only to know
the core tests set Q, the initial belief b̃0, and the vectors maoq
and mao, but what about rewards? In previous work on plan-
ning with PSRs [2, 3], the immediate reward was treated as
a part of the observation. Consequently, the dimensionality
of the observation space is multiplied by the number of re-
ward values, which can be very high since the rewards are
real valued. To deal with this problem, we propose a new
method for predicting rewards in PSRs.

We first define the expected final reward of a test q by:

V (q|h) = Pr(q|h) ∑
s∈S

Pr(s|hq)R(s) (5)

V (q|h) represents the expected reward that we will get at
the end of the test q. The expected final reward of any test q
depends linearly on the expected final rewards of a few tests,
that we call reward core tests. We use Qr to indicate the set
of reward core tests. Notice that Qr is defined independently
from Q, and can be different from Q. The reduced reward
belief state is a |Qr|-dimensional vector b̃rt , where b̃rt (q) =
V (q|ht),q ∈ Qr. The expected final value of any test q is
given by:

V (q|ht) = b̃T
rt mq

where mq is a |Qr|-dimensional weigh vector. We also use
Bayes’ Rule to update V (q|h) when we execute an action a
and receive an observation o:

∀q ∈ Qr : V (q|htao) =
V (aoq|ht)
Pr(ao|ht)

2

then:

b̃rt+1 =
b̃T

rt M
r
ao

b̃T
t mao

(6)

Mr
ao is a |Qr| × |Qr| matrix where each column corre-

sponds to a weigh vector maoqr used to calculate the ex-
pected final value of the reward core test extension aoqr.
The PSR observation model is used to calculate Pr(ao|ht).

The matrix containing the expected final values of all re-
ward core tests given the underlying states is indicated by
Ur (an |S| × |Qr| matrix). As for U , Ur can be found by
a simple search for the maximum number of linearly inde-
pendent columns Ur(.,qr), and we have also |Qr|6 |S|. The
immediate reward is given by V (/0|h), the expected reward
of the empty test /0, so Ur(., /0) = R. We use mr, the empty
test weight vector, to find the expected immediate reward
V (/0|ht) = bT

rt mr given a reduced reward belief state brt .
In order to predict rewards, we need the PSR reward

model 〈Qr, b̃r0 ,mr,{maoqr : ∀a ∈ A,∀o ∈ Z,∀qr ∈Qr}〉, and
the PSR observation model 〈Q, b̃0,{maoq,mao : ∀a∈ A,∀o∈
Z,∀q ∈ Q}〉. The reduced belief of the observation model
is used to predict observations and to update the reduced
belief of the reward model.

3 PSRs and Krylov subspaces

PSRs are related to another compression method known
as Value-directed Compression (VDC) [6]. To show the link
between PSRs and VDC, we will first review a linear alge-
braic concept called Krylov subspace.
Let V be a vector space containing the vector v, a Krylov
subspace Kr(M,v) is the subspace of V that contains the
vector v and that is invariant with respect to the matrix
M, i.e. ∀u ∈ Kr(M,v) : Mu ∈ Kr(M,v). So Kr(M,v) =
{v,Mv,MMv,MMMv, . . .}. This definition can be gener-
alized to subspaces with many matrices M1,M2, . . . ,Mk, a
Krylov subspace Kr({Mi},v) is the subspace of V that
contains the vector v and that is invariant with respect to
the matrices {Mi}, i.e. ∀M ∈ {Mi},∀u ∈ Kr({Mi},v) :
Mu ∈ Kr({Mi},v). A basis of Kr(M,v) is constructed by
keeping the first linearly independent vectors of the list
{v,Mv,MMv, . . .}. In fact, one can prove that if Kr(M,v)
is n-dimensional then ∀m > n: the vector Mmv can be writ-
ten as a linear combination of the vectors Mkv,k < n.
VDC algorithm finds a basis matrix F for the Krylov sub-
space Kr({T a,o},R) by iteratively enumerating linearly in-
dependent vectors of this space. The first column of F is R,
then all the vectors T a1o1R,∀a1 ∈ A,∀o1 ∈ Z are generated,
and the linearly independent vectors are added to F . In step
k, we generate only the vectors T akok T ak−1ok−1 . . .T a1o1R
such that T ak−1ok−1 . . .T a1o1R are already in F , because we
know that the extensions of linearly dependent vectors in a
Krylov subspace are also linearly dependent vectors. This

minimize: c1 ∑
ao

εao + c2 ∑
aoq

εaoq

subject to:

∀a ∈ A,∀o ∈ Z :
‖T aoe|S|−Umao‖∞ 6 εao

∀a ∈ A,∀o ∈ Z,∀q ∈ Q :
‖T aoU(.,q)−Umaoq‖∞ 6 εaoq

(7)
minimize: c3εr + c4 ∑

aoqr

εaoqr

subject to:

‖R−Urmr‖∞ 6 εr

∀a ∈ A,∀o ∈ Z,∀qr ∈ Qr :
‖T aoUr(.,qr)−Urmaoqr‖∞ 6 εaoqr

(8)

Table 1. The two linear programs used to find the
approximate PSR parameters.

process is repeated until no more independent vectors can
be added to F . The basis matrix F is used as a transfor-
mation matrix for mapping belief states into reduced belief
states and planning within the reduced space.
By noticing that for any test q = a1o1 . . .akok we have
V (q) = Ur(.,q) = T akok . . .T a1o1R, we can conclude that
F = Ur. Consequently, VDC algorithm returns the reward
model of a PSR. As for the observation model, we can show
that the transformation matrix U returned by Littman et
al. [8] algorithm (which proceeds as in VDC) is in fact a
basis of the Krylov subspace Kr({T a,o},e|S|). The proba-
bility vector of the empty test is given by Pr(/0) = e|S|, and
the probability of any test q is given by Pr(q) = U(.,q) =
T akok . . .T a1o1e|S|.
VDC algorithm can make predictions about future rewards,
but cannot update the reduced belief states after receiving
an observation o, thus it cannot be used for online plan-
ning for example. Our approach, Prediction-directed Com-
pression (PDC), can be seen as a generalization of VDC
for making predictions about rewards (with the PSR reward
model) as well as about observations (with the PSR obser-
vation model), thus it can be used online.

4 Lossy compression of POMDPs with PSRs

Linear exact transformation is considered insufficient in
practice. This is a motivation to further investigate a lossy

3

transformation which scales better. Building on the lossy
compression version of VDC, we develop an algorithm for
finding compact PSRs. Given a POMDP model and the re-
quired reduced dimensions |Q| and |Qr|, our algorithm finds
the best parameters of an approximate PSR model that min-
imize the loss function, which measures the difference be-
tween the predictions of the accurate POMDP model and
the predictions of the approximate PSR model. We use here
the optimization equations (7) and (8) to find the parameters
of the approximate PSR. These equations are nonlinear, but
can be solved with a linear program by using an iterative
technique. To achieve that, we alternate between solving
the first LP presented in table (1) to find the parameters mao
and maoq while keeping U fixed, and solving the same LP
to find U while keeping the parameters mao and maoq fixed.
We do the same thing for the second LP, used to find the
reward model. In our first algorithm, the matrices U and
Ur are initialized with random values. The parameters c1,
c2, c3 and c4 are the weight associated to the errors on mao,
maoq, mr and maoqr respectively, they are fixed a priori.

This algorithm needs many iterations before converg-
ing to an optimum, and it is often a local optimum, so we
should try several random initializations before getting the
global optimum. To alleviate this problem, we initialize the
matrix U with the first |Q| linearly independent vectors of
Kr({T a,o},e|S|). Similarly, the matrix Ur is initialized with
the first |Qr| linearly independent vectors of Kr({T a,o},R).
These vectors can be found in polynomial time by a depth-
first search in the spaces Kr({T a,o},e|S|) and Kr({T a,o},R).
The remaining parameters of the approximate PSR model
are found in one iteration by using several small linear pro-
grams. This idea is illustrated in Algorithm 1. Notice that
if we set |Q| = |Qr| = |S| then our algorithm will return an
exact PSR model that is equivalent to the original POMDP.

5 Analysis of the value approximation error

In POMDPs, every policy π is characterized by an |S|-
dimensional vector called value function Vπ. Vπ(s) is the ex-
pected cumulated reward of executing π from state s. Simi-
larly, a reduced value function Ṽπ is a |Qr|-dimensional vec-
tor defining the value of π over the reduced belief space.

We define επt , the error of the value function for a given
policy πt with horizon t, as the difference between the value
vector Vπt of πt , according to the accurate POMDP model,
and the value vector UrṼπt of the same policy, according to
the approximate PSR reward model, returned by PDC. Also,
let επ∗t be the worst such error over the policies space.

επ∗t = max
πt

επt = max
πt
‖Vπt −UrṼπt‖∞ (9)

Input: A POMDP: (S,A,Z,T,R). The number of core tests
|Q|6 |S|. The number of reward core tests |Qr|6 |S|;

Output: The parameters U , Ur, mao, maoq, mr, maoqr of the
compressed model,∀a ∈ A,∀o ∈ Z,∀q ∈Q,∀qr ∈Qr;

U ← |Q| first independent vectors of Kr({T a,o},e|S|) ;
Ur ← |Qr| first independent vectors of Kr({T a,o},R);
for a ∈ A do

for o ∈ Z do
Find mao by solving the following LP:

minimize εao

s.t. ‖T aoe−Umao‖∞ 6 εao

for q ∈ Q do
Find maoq by solving the following LP:

minimize εaoq

s.t. ‖T aoU(.,q)−Umaoq‖∞ 6 εaoq

end
for qr ∈ Qr do

Find maoqr by solving the following LP:

minimize εaoqr

s.t. ‖T aoUr(.,qr)−Urmaoqr‖∞ 6 εaoqr

end
end

end
Find the vector mr by solving the following LP:

minimize εr

s.t. ‖R−Urmr‖∞ 6 εr

Algorithm 1: Prediction-directed Compression.

This error is bounded as follows:
επ∗t = max

a
‖(R−Umr)+ γ ∑

o∈Z
max
πt−1

(T aoVπt−1 −UrMr
aoṼπt−1)‖∞

6 max
a
‖R−Umr‖∞ + γ ∑

o∈Z
max
πt−1
‖T aoVπt−1 −UrMr

aoṼπt−1‖∞

6 εr + γ‖∑
o∈Z

max
πt−1

(T aoVπt−1 −T aoUrṼπt−1

−UrMr
aoṼπt−1 +T aoUrṼπt−1)‖∞

6 εr + γ‖∑
o∈Z

max
πt−1

(T aoVπt−1 −T aoUrṼπt−1)‖∞

+γ ∑
o∈Z

max
πt−1
‖T aoUrṼπt−1 −UrMr

aoṼπt−1‖∞

6 εr + γ‖∑
o∈Z

max
πt−1

((T ao)(Vπt−1 −UrṼπt−1))‖∞

+γ ∑
o∈Z

max
πt−1
‖T aoUr−UrMr

ao‖∞‖Ṽπt−1‖∞

6 εr + γεπ∗t−1
‖∑

o∈Z
T ao‖∞ + γ ∑

o∈Z
max
πt−1

εaoqr‖Ṽπt−1‖∞

6 γεπ∗t−1
+ γ|Z|εaoqr‖Ṽ ∗‖∞ + εr

6
εr + γ|Z|εaoqr‖Ṽ ∗‖∞

1− γ

4

Domain Network Shuttle Grid Coffee Reward Hallway Hallway2 Dialogue

Original dimension 7 8 16 32 60 92 433
Reduced dimension (RMSD) 1(0.1575) 1(0.3867) 1(0.4595) 1(1.3307) 5(0.1234) 5(0.1272) 2(0.0279)

2(0.1224) 2(0.3966) 2(0.3052) 2(1.3316) 10(0.0572) 10(0.1361) 3(0.0255)
3(0.0159) 3(0.3920) 3(0.1155) 3(0.3749) 15(0.0585) 15(0.0947) 5(0.0169)
4(0.0228) 4(0.3877) 4(0.1445) 4(0.1065) 20(0.0590) 20(0.0392) 8(0.0000)
5(0.0029) 5(0.2851) 5(0.1349) 5(0.1065) 25(0.0590) 25(0.0369) 10(0.0000)
6(0.0067) 6(0.1479) 6(0.1009) 6(0.0027)

Table 2. Average error of PDC on predicting observations, as function of the reduced dimension.

Domain Hallway Hallway2 Spoken Dialogue Coffee Observations Coffee Reward Coffee Total

Reduced dimension (time) 5 (20.59) 5 (20.46) 2 (350.93) 1(0.14) 1(0.22) 1(0.36)
10(35.42) 10(41.92) 3(557.09) 2(0.20) 2(0.36) 2(0.56)
15(60.87) 15(69.46) 5(759.2) 3(0.48) 3(0.68)
20(74.47) 20(107.28) 8(1166.04) 4(0.78) 4(0.98
25(94.93) 25(157.73) 10(1459.56) 5(0.95) 5(1.15)
30(114.9) 30(184.23) 6(0.98) 6(1.18)

Table 3. Runtime of PDC in seconds, as function of the reduced dimension.

where ‖Ṽ ∗‖∞ = maxπ ‖Ṽπ‖∞. In these substitutions, in-
spired by the proof of Poupart [5], we used the properties:
‖A+B‖∞ 6 ‖A‖∞ +‖B‖∞ and ‖AB‖∞ 6 ‖A‖∞‖B‖∞.

6 Empirical evaluation

6.1 Predicting observations and rewards

A complete model of a system should be able to pre-
dict the probability of an arbitrary observation o and the
expected immediate reward, after a history hi. After find-
ing the approximate PSR model of a given problem by the
means of Algorithm 1, we test the accuracy of this model
by simulating a train of t steps and compare the predic-
tions of the reduced model to the predictions of the original
POMDP. The initial belief state b0 of the POMDP is gener-
ated randomly, and the initial reduced belief states are given
by b̃0 = bT

0 U , b̃r0 = bT
0 Ur. At each step i, we sample an ac-

tion a uniformly, and calculate the prediction Pr(o|a,hi) of
the exact model and the prediction P̂r(o|a,hi) of the approx-
imate model, for each observation o ∈ Z. We also calculate
the expected rewards R(hi) and V (/0|hi). Then, we sample
the next underlaying state and generate an observation o ac-
cording to T ao. The observation o and the action a are used
by both models to update their internal beliefs, each one
using its own parameters and update function.

The root mean squired deviation (RMSD) computes the
deviation between the predictions of the reduced model and
the predictions of the accurate model. It is given by:

RMSDo =

√√√√ 1
t×|Z|

t

∑
i=1

|Z|

∑
o=1

(P̂r(o|hi,ai)−Pr(o|hi,ai))2

RMSDr =

√
1
t

t

∑
i=1

(V (/0|hi)−R(hi))2

In our experiments, we have considered t = 100, this is
sufficient because most of the planning algorithms generally
do not exceed this horizon. However, the error on the pre-
dictions become more important as the horizon grows, this
is due to the fact that the update function of reduced belief
states uses approximate values, so, after a long sequence,
the cumulated errors make the PSR belief state relatively
distant from the POMDP belief state.

We tested our compression algorithm on 7 different stan-
dard benchmarks taken from the literature [1, 6]: Coffee
domain (32 states, 2 actions, 3 observations), 4×4 grid (16
states, 4 actions, 2 observations), Shuttle (8 states, 3 ac-
tions, 5 observations), Network (7 states, 4 actions, 2 ob-
servations), Hallway problem (60 states, 5 actions, 21 ob-
servations), Hallway2 problem (92 states, 5 actions, 17 ob-
servations), and Spoken Dialogue problem (433 states, 37
actions, 16 observations). Table 2 presents the average er-
ror on predicting observations as function of the number of
core tests used for every problem. This error is contained in
the interval [0,1] because it measures a difference between
two probabilities. For Coffee problem, we reported only the
error on predicting rewards, the error on predicting observa-
tions becomes null by using only 2 core tests. For the other
problems, we reported the error on predicting observations,
because the error on rewards was almost null even when we
use only one core test. In these specific domains, all the
states have a null reward, except for the final state. With a
random policy, we could rarely get to these final states, so
the cumulated reward was null for both PSR and POMDP.

For small problems (Shuttle, Network and 4× 4 grid),
we used the first version of PDC, where all the parameters
of the approximate PSR are found by solving several LPs.
With larger domains (Coffee, Hallway, Hallway2 and Spo-

5

RTBSS with Approximate PSR RTBSS with POMDP
Domain |Q| |Qr| Runtime per step Average reward Runtime per step Average reward

Coffee 1 1 0.002 -1.99 0.35 -1.49
2 2 0.007 -1.49

Hallway 20 20 20.70 0.03 27.58 0.06
40 40 15.89 0.06

Hallway2 20 20 1.56 0.00 80.20 0.02
40 40 5.70 0.01

Table 4. Average reward and runtime in milliseconds of RTBSS using POMDP and Approximate PSR models, as
function of the reduced dimension.

ken Dialogue), this approach becomes untractable, so we set
the columns of U and Ur to the linearly independent vectors
of Kr({T a,o},e|S|) and Kr({T a,o},R) (see Algorithm 1).

The effective compression time for each large problem is
reported in Table 2, the experiments were performed using
ILOG Cplex 10 solver on an AMD Athlon machine with a
1.80 GH processor and 1.5 GB ram.

In all the experiments, the compression of the POMDP
was successful, because we needed a few core tests to con-
struct an approximate PSR model with low prediction error.
For the 4× 4 grid problem for example, we used only 6
core tests instead of 16 to make predictions on future obser-
vations with an average error of 0.10 over the 100 steps. A
random prediction makes an average error of 0.55 in most of
the problems. For Network problem, we can predict the fu-
ture observations of the system by using only 3 tests, while
the prediction error is nearly null (0.02). For the Coffee
domain, PSR model is able to predict the expected reward
with an almost null error, by using 6 core tests. This gain is
even more interesting in larger domains, such as Hallways
and Spoken Dialogue. For this latter domain, the prediction
error was almost null with a few core tests, because the ob-
servations depend only on the initial belief state, which is
a uniform distribution over states (In this problem, the final
state is reached after only 2 or 3 actions in general).

We notice also that in general, the average error de-
creases when the number of core tests grows, because with
more variables, the LP has higher degree of freedom, and
can adjust the parameters in order to minimize more the loss
function. The error becomes null when |Q|= |Qr|= |S|.

6.2 Online planning

We tested our approach on the problem of online plan-
ning. To do so, we implemented RTBSS (Real-Time Belief
Space Search) [4] algorithm and updated it for dealing with
approximate PSRs. RTBSS is based on a look-ahead search
that is applied online each time the agent has to make a de-
cision, i.e. after each observation. RTBSS is particularly
interesting for large real-time environments where offline
solutions are not applicable because of their complexity. In
our case, we set the search depth to 3, and used Blind Policy

as lower bound heuristic and Q-MDP as upper bound. The
adaptation of RTBSS for dealing with approximate PSRs is
straightforward, since we already provided a mechanism for
updating reduced belief states, and calculating the expected
reward corresponding to such belief states. However, Blind
Policy and Q-MDP heuristics are defined on states and it is
not obvious how to use these heuristics in PSRs since the
states are replaced by core tests. Nevertheless, these val-
ues can be treated in the same way we treated immediate
rewards and preserved during the compression. Let U and
L be two |S|-dimensional vectors such that U(S) is an up-
per bound on the value of state s and L(S) is a lower bound
on the value of state s. L and U are calculated offline by
using the provided POMDP model. Let u and l be two |Qr|-
dimensional vectors such that b̃T

rt u and b̃T
rt l are respectively

an upper and a lower bounds on the value of the reduced
belief state b̃rt . The vectors u and l are found by adding the
following constraints to the linear program (8) of Table 1:

‖L−Url‖∞ 6 εl

‖U−Uru‖∞ 6 εu

Table 4 illustrates the reward and runtime per decision step
of RTBSS using both POMDP and Approximate PSR mod-
els, as function of the reduced dimension. These values are
averaged over 100 decision steps. For the Coffee domain,
we can see that we need at most two observation core tests
and two reward core tests to get the same average reward as
the exact POMDP model, while the runtime per step is sig-
nificantly reduced. The results for Hallways are also very
promising. In fact the runtime is always reduced and the
average reward is close to the reward of POMDP. Notice
that for Hallway2, we apparently need higher dimensions in
order to achieve the same results as with the exact POMDP.

7 Conclusions and future work

Current work on planning methods for POMDPs demon-
strates that finding optimal policies for POMDPs is un-
tractable in practice. In this paper, we investigated the pos-
sibility of finding an approximate reduced PSR model from

6

a given larger POMDP. We formulated this problem in lin-
ear programming framework. We illustrated a theoretical
bound for value function error using the approximate PSR
model. Using an approximate model seems to have a def-
inite advantage in PSRs as confirmed by our experimental
results. Our results show that the reduced model can pre-
dict the observations probabilities and rewards values with
high precision compared to the exact model. The impact
of this method is more pronounced for problems with spe-
cial structure. However, there are more potential advanta-
geous in applying reduced PSRs instead of POMDPs for
planning. Preliminary results on using approximate PSR in
online planning show that we can always find a reduced di-
mension where planning with approximate PSR takes less
time than with the original POMDP, without important loss
in reward. The immediate next step to this research is to
perform more elaborated experiments on using the approx-
imate PSR in planning, with larger and structured domains.
The other extension is to study how to efficiently select the
most promising independent vectors of Krylov subspaces
that are used to initialize the matrices U and Ur.

References

[1] A. Cassandra. Exact and Approximate Algorithms for Par-
tially Observable Markov Decision Processes. PhD thesis,
Brown University, Providence, USA, 1998.

[2] M. Izadi. On Knowledge Representation and Decision Mak-
ing under Uncertainty. PhD thesis, McGill University, Mon-
treal, Canada, 2007.

[3] M. James, S. Singh, and M. Littman. Planning with Pre-
dictive State Representations. In Proceedings of 2004 Inter-
national Conference on Machine Learning and Applications
(ICML’04), pages 304–311, 2004.

[4] S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP
algorithm for complex multiagent environments. In Pro-
ceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems (AAMAS’05), pages
970–977, 2005.

[5] P. Poupart. Exploiting Structure to Efficiently Solve Large
Scale Partially Observable Markov Decision Processes. PhD
thesis, Toronto, Canada, 2005.

[6] P. Poupart and C. Boutilier. Value-Directed Compression of
POMDPs. In Advances in Neural Information Processing
Systems (NIPS’02), pages 1547–1554, 2002.

[7] S. Singh, M. James, and M. Rudary. Predictive State Repre-
sentations: A New Theory for Modeling Dynamical Systems.
In Uncertainty in Artificial Intelligence: Proceedings of the
Twentieth Conference (UAI’04), 2004.

[8] S. Singh, M. Littman, N. Jong, D. Pardoe, and P. Stone.
Learning Predictive State Representations. In Proceedings of
the Twentieth International Conference on Machine Learning
(ICML’03), 2003.

7

