
To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

1

MAGS Project: Multi-Agent GeoSimulation and Crowd
Simulation1

Bernard Moulin, Walid Chaker, Jimmy Perron, Patrick Pelletier, Jimmy Hogan,
Edouard Gbei

Computer Science Department and Center for Research in Geomatics,
Laval University, Ste Foy, QC G1K 7P4, Canada

{bernard.moulin, walid.chaker, jimmy.perron, patrick.pelletier, edouard.gbei} @ift.ulaval.ca,

Abstract. Geosimulation aims at modeling systems at the scale of individuals
and entity-level units of the built environment and provides a new way to simu-
late how geographic spaces can be used by their future users, particularly in ur-
ban environments. In the MAGS Project we are developing a generic software
platform for the creation of Multi-Agent Geo-Simulations involving several
thousand agents interacting in virtual geographic environments (in 2D and 3D)
and endowed with spatial cognitive capabilities (perception, navigation, reason-
ing). Our approach is currently applied to the simulation of crowd behaviors in
urban environments.

1 Introduction

Constrained by the structure of space and communication networks, urban regions
form a complex system of interactions which evolves over time. Actors in the system
strategically adapt their behaviors according to their own priorities among perceived
opportunit ies. Government agencies need tools that take into account these complex in-
teractions in order to compare planning scenarios on the basis of their global and long-
term effects. However, statistical modeling remains unable to simulate these urban
processes appropriately. The ‘traditional’ urban simulation models have been criticized
[20] because of their centralized approach, a poor treatment of dynamics, a reduced
flexibility and a lack of realism [31]. In addition, an increasing number of researchers
think that an adequate forecast of transportation demand should be based on the study
of individual mobility behaviors [6]. In such an approach, individual behaviors should
be modeled at a spatio-temporal scale which is appropriate for characterizing the nature
and importance of the decision processes influencing the transformation of the urban
environment. However, applying such an approach involves the development of simu-
lation systems that are able to deal with the simultaneous actions of thousands of ac-
tors, integrating their interactions [7], and taking into account the structural constraints

1 The MAGS project is supported by GEOIDE, the Network of Centers of Excellence in Geomat-

ics, Defense Research and Development-Valcartier, the Natural Science and Engineering
Council of Canada and le Fonds Québécois de Recherche sur la nature et les technologies

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

2

of the urban environment (transportation network, localization of infrastructures, dis-
tribution of activities and services, etc).

Geo-simulation is an approach which aims at modeling systems at the scale of indi-
viduals and entity-level units of the built environment. It provides a new way to simu-
late how geographic spaces can be used by their future users, particularly in urban en-
vironments. Torrens [31] indicates that geo-simulation models are in their relative in-
fancy as applied to urban simulation and constitute a new class of simulation models
which borrow heavily from developments in geographic information science, artificial
intelligence, artificial life, complexity studies and simulation in natural sciences and
social sciences outside geography. Applied to urban design, geo-simulation provides
the means to study the characteristics of the urban environment by analyzing the inter-
actions of moving agents simulating the behavior of various actors (such as pedestrians
and automobiles) in a urban landscape. In distributed artificial intelligence, researchers
developed techniques that are used to create multi-agent systems (MASs) composed of
agents which are autonomous programs collaborating together to solve problems [18]
[32]. MASs are particularly adapted to the simulation of population dynamics in large-
scale environments [22] [8] [11]. They are well suited to the exploration of dynamic
phenomena in which the interactions of individual entities can be studied at a micro-
level and the emergence of behavioral patterns can be observed at a macro-level [29]
[27].

Microsimulation has been frequently used in the field of transportation systems
analysis during the past decade, especially to model urban travel behaviors in order to
predict the spatial and temporal distributions of trips in urban areas. For example, the
TRANSIMS system [1], a generic platform for modeling and simulating complex be-
haviors using actors, provides a series of integrated transportation and air quality
analysis models and attempts to simulate the aspects of human behavior that are rele-
vant to transportation planning. Although traffic models often use a multi-actor ap-
proach, they typically do not contain models of cognitive aspects of human spatial be-
havior2 [8] [31]. Indeed, most traffic models simulate urban phenomena [24] using a
cellular automata approach [33] in which space is represented as a uniform lattice of
cells. Each cell may be in a finite number of discrete states and can change its state at
discrete time steps during the simulation. The cells are subject to a uniform set of rules
which drive the overall behavior of the system. Such an approach does not enable ac-
tors to move in space autonomously and does not provide mechanisms to simulate ba-
sic spatial cognitive capabilities such as perception and memory. Introducing agent’s
autonomy and cognitive spatial capabilities in geo-simulation models would offer new
possibilities for the analysis of phenomena resulting from the decisions and actions of a
large number of actors resulting from their interactions with their spatial environment
and other actors.

In the MAGS Project we aim at developing a generic software platform for the crea-
tion of Multi-Agent Geo-Simulations (MAGS) involving several thousands of agents
interacting in virtual geographic environments and endowed with spatial cognitive ca-

2 In this paper we cannot review the large body of literature dealing with the cognitive aspects of

human spatial behavior. The interested reader can consult an in-depth review on the subject in
[21] as well as several papers in the proceedings of the COSIT Conference.

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

3

pabilities. The application domain in which we are currently applying our geo-
simulation approach is the simulation of crowd behaviors in urban environments.

Section 2 presents the requirements that we selected for the development of the
MAGS platform in the context of recent work on the simulation of crowd behavior and
pedestrian flows. As an illustration of the agent’s cognitive spatial capabilities, Sec-
tions 3 and 4 present the main characteristics of the perception and navigation mecha-
nisms implemented in the MAGS platform. Section 5 briefly outlines the other main
agents’ characteristics (needs, objectives, etc.) and presents an example of a simulation
involving several hundreds of agents moving in a portion of Quebec city. Section 6
presents some performance results and concludes the paper.

2 Requirements for the MAGS Project

Several studies have been carried out on crowd movements in a portion of a urban
environment represented on a 2D map and successful simulations have been created on
the basis of mathematical models used in physics to simulate flows of particles in con-
strained environments. At medium and high pedestrian densities, the motion of pedes-
trian crowds shows similarities with the motion of fluid particles, giving rise to self-
organization phenomena [15]. Such approaches have been used to simulate the forma-
tion of lanes of pedestrians on busy pavements [14] and to study evacuation strategies
[13]. These approaches, which model the interactions between individuals in a quite
simplified way (in terms of physical interactions of particles) are successful when
simulating the flow of dense crowds in various situations. However, they cannot differ-
entiate between different types of individuals with different goals and behaviors. Jager
and his colleagues [17] developed a multi-agent system to simulate clustering and
fighting behaviors of two -party crowds. They provided agents with simple rules based
on the recognition of own-party agents and other-party agents (as a result of scanning
an area 40 by 40 cells around the agent) and the agent’s level of aggression motivation.
Some simple clustering behaviors emerged from the simulations, which resembled
real-world crowd phenomena.

Several systems have been designed to study pedestrian flows and movement at a
strategic level. The STREETS System [28] applies an approach similar to the TRA N-
SIMS model in which the simulation of the activities of pedestrians in urban districts
follows a two-stage approach. In the first stage, the system exploits socio-economic
data sets to predetermine the pedestrians’ intended activity schedules which are used to
“load” the agents into the simulation component. In the second stage, a simulation gen-
erates the movements of a population of agents representing pedestrians [12]. The
simulation is influenced by the urban district’s spatial configuration, pre-determined
activity schedules and the distribution of land-uses. The PEDFLOW System [19] is an-
other multiagent microsimulation system which is used to study conflicting pedestrian
flows on a section of sidewalk or in an open or enclosed space with obstacles. Each pe-
destrian is represented as a single process which makes decisions about the pedestrian’s
movements. The simulated space is mapped onto a grid. A pedestrian agent occupies a
grid element for a length of time required by its walking speed. A shared data structure

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

4

is used to record the current position of every pedestrian as well as location information
about obstacles and the pavement. Displacement behavior is specified in the form of
rules which take into account a number of parameters such as preferred gap size, de-
sired walking speed and personal space measure.

The currently available systems for crowd and pedestrian flow simulation rely on
very simple agent movements on grids (possibly directed by cellular automata) which
do not take into account terrain characteristics and environmental factors that may in-
fluence the agents’ perception and navigation. In addition, their decision making capa-
bilities are quite basic (simple displacement rules) and group behaviors are non existent
or at best very simple. In order to allow agents to simulate cognitive spatial activities in
geosimulation systems we agreed upon basic principles: 1) an agent should be able to
perceive the spatial environment as well as the objects and other agents surrounding it;
2) the spatial environment and the static objects it contains should be generated from
data contained in geographic information systems (GIS) and related databases; 3)
agents should be able to efficiently plan their activities based on their internal states
and goals as well as the information they perceive in the virtual space.

Taking advantage of our previous experience with the development of PADI-Simul,
a multi-agent system simulating basic navigation behaviors of hundreds of agents in a
2D sketch of a natural park [5] [23], we selected a set of requirements which involve
integrating several technologies into the MAGS platform: GIS, multi-agent systems,
3D real-time animation engine and parallel processing. The set of requirements that we
selected is as follows:

We need to create a virtual geographic environment (VGE) in 2D (and possibly 3D)
from reliable GIS sources.

We need to create agents of various types, each agent being individualized.
An agent must be able to perceive its environment, to navigate autonomously and to

react to changes occurring in the VGE.
The agents’ characteristics must reflect various possible states (static, dynamic,

possession, etc.) and the agents’ behaviors must offer efficient planning capabili-
ties (reactive planning based on objectives).

Agents must be able to display group behaviors and to communicate with other
agents.

The system must be optimized and allow simulations involving several thousand
agents in relatively large spaces (a portion of a city for example).

An agent needs a memory capability in order to organize the knowledge about the
VGE that it obtained from past experience.

Simulation scenarios must be specified easily, including the initialization of agents
and the VGE and the introduction of specific events influencing the simulation.

Several teams work on the development of digital representations of urban spaces (see
for example [4]) in order to create “virtual cities” that can be explored by designers,
urban planners and citizens in order to assess various chara cteristics of urban projects.
People explore these virtual cities thanks to a 3D visualization engine that enables them
to control a point that moves in the virtual space as well as virtual cameras that are
used to observe the landscape. However, we do not know any system that enables a
large number of virtual agents to move in a virtual city, perceiving the landscape
around them and acting according to their perceptions. So, we first worked on an ap-

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

5

proach to generate the VGE as a 3D model in which agents can navigate. To this end,
we elaborated a suite of transformation processes based on Geomedia [16] and 3ds
Max software [3]. The VGE used in our current simulation is created from topographic
data of a portion of Quebec city (scale: 1:20000), a dig ital elevation model and a data
base giving the characteristics of the main buildings. In addition, a module of the
MAGS System generates a collection of bitmaps which are used by the agents to obtain
knowledge about the space surrounding them (Section 3). At the heart of the MAGS
simulation engine there are 5 main modules: 1) a thread manager which coordinates the
activities of the other modules; 2) a 3D engine which manages the display of the 2D or
3D VGE and cameras; 3) the agent manager and related modules; 4) the VGE manager
and 5) the user interface manager.

As an illustration of the agent’s cognitive spatial capabilities, the two following sec-
tions present the main characteristics of the perception and navigation mechanisms im-
plemented in the MAGS platform.

3 Agent Perception

Perception is an important agent ability which must be carefully simulated in a 3D
VGE if we want that agents exhibit plausible cognitive spatial behaviors [8]. We must
bear in mind that simulating visual perception is a resource intensive process wh ich
must be optimized if we want to enable thousands of agents to perceive the VGE in
real-time. By analogy to human spatial perception, we identified several perception
modes for MAGS agents: 1) perception of terrain characteristics (elevation and slopes)
in the area surrounding the agent; 2) perception of the landscape surrounding the agent
(including buildings and static objects); 3) perception of other mobile agents navigating
in the agent’s range of perception; 4) perception of dynamic areas with specific proper-
ties such as a smoky area or zones having pleasant odors; 5) perception of special
events (detonation, explosion, etc.) occurring in the agent’s vicinity; 6) perception of
messages communicated by other agents. We developed several mechanisms that en-
able MAGS agents to take advantage of these perception modes.

Encoding spatial data. Spatial information is recorded in a raster mode which enables
agents to access the information contained in various bitmaps that encode different
kinds of information about the terrain characteristics and the objects contained in the
VGE. The HeightMap is a 2D matrix (or grid) which represents the space of the VGE.
It is generated from data contained in a digital elevation model and different layers of
the GIS data base defining buildings and all the information that may influence the
agents’ perception and navigation. Every cell contains a single value indicating the
height of the corresponding point relative to the point of lowest elevation in the VGE.
Figure 2 presents the plan (x, z) of section A shown in the Height Map of Figure 1. We
can observe that building2’s height is higher than building1’s height. But, the Height
Map encodes that the top of building1 is higher than the top of building2 relative to sea
level. The agent perception module uses this simple structure to determine the visibility
of the matrix cells (using the elevation information). Hence, an agent can perceive the

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

6

terrain characteristics (slope, elevation) as well as objects that are in its range of
perception. The agents’ positions are recorded and updated in another data structure
called LocationMap, a 2D matrix of cells in which every cell contains a pointer to the
agent occupying the corresponding position. If an agent has a dimension allowing it to
occupy several cells, several pointers refer to the same agent. Hence, it is possible to
analyze the visibility of a cell using the HeightMap and to determine, using the
LocationMap , if an agent located at the corresponding position is visible.

Visual perception. Several researchers have already studied the problem of

simulating perception in an environment represented by a height map [9] [2]. The goal
of these techniques was to determine the visibility of all the cells of the height map
which are in an observer’s field of vision. They use lines of sight in order to test the
cells’ visiblity (labelled as visible or not) from the observer’s location. If the observer
moves, it is necessary to compute the visibility map corresponding to the new position.
This technique is by far too inefficient to simulate the perception of thousands of
agents moving in real time. We propose a solution extending Franklin’s algorithm in a
way that enables agents to perceive the environment as well as other agents in real
time. The agent’s perception field is represented by an isosceles triangle, the main
vertex being at the agent’s location, the congruent sides of the triangle limiting the
perception field and the bisector of the main angle corresponding to the agent’s
direction of movement. The length of the bisector corresponds to what we call the
perception radius. The angle of perception (Figure 3B) is a parameter that can be
adjusted (currently set at 90 degrees).

Fig.1. Height Map of a part of Quebec city Fig.2. Plan (x,z) of section A in Fig. 1

We developed an algorithm which computes, for each cell in the agent’s field of

perception, the line of sight linking the agent’s position to the cell in order to determine
if the cell is visible or not. This computation takes into account the cell’s height and the
visibility of the other cells that may block the line of sight. As an illustration, our
algorithm browses an environment of 300x300 cells and computes a visibility map in
27 ms on a Pentium 1000Mhz. This algorithm has a complexity O (n2) in which n
represents the perception radius. During a simulation, each agent must compute its own

A

90m
B2

50m B1

Point 0

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

7

visibility map at every iteration of the simulation engine. It is obviously impossible to
allocate 27 ms to each agent in order to browse a height map of 300x300, using a
perception radius of 300 cells. The solution is to reduce the length of the perception
radius in order to decrease the computing time. Figure 3A shows how the perception
computing time increases when we increase the perception radius. In the context of our
simulator in which one pixel represents one meter approximately, we can think about
limiting the perception of an agent’s immediate neighborhood to 20 meters. In these
conditions, the necessary time to process an agent’s perception is 0,12 ms with a 90
degree angle of vision and a perception radius of 20 cells. If 1000 agents are moving at
the same time, the global perception time would be 120 ms. Considering that a cycle in
the simulator takes 33ms (to emulate real time), we would allow approximately 250
agents to perceive at every cycle, knowing that in a real-time 3D engine we use 30 cy-
cles per second (hence, 33 ms / cycle).

Fig.3A. Calculation time for the vision algorithm Fig.3B. Agent’s field of perception

However, limiting the perception to 20 meters does not correspond to people’s

experience in the real world. Buildings distant from several kilometers can been seen in
good visibility conditions. However, it is rather rare that we can distinguish smaller
objects moving several kilometers away. Thus, we had the idea to compute a static
visibility map in a pre-processing phase taking place before the simulations. Each cell
of the static visibility map has a list of pointers to the static objects that are visible from
this cell. Hence, an agent can directly access the static visibility map in order to
determine which static objects (buildings, etc.) can be perceived from its position. This
perception mode which is called static perception complements the dynamic perception
mode that allows an agent to perceive in real time all the objects located within its
perception radius. It is clear that this perception radius can be increased depending on
the performance of the computer and the number of agents that need to perceive during
each cycle of the simulation engine. Our approach allows an agent to have a global
vision of the VGE (static perception) while keeping a focus on what is happening in
front of it (dynamic perception).

Environment

Vision field Direction of move

Agent
0

0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8

0 10 20 30 40 50 60
Radius (in pixels)

Time
 (ms)

A B

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

8

Perception of roads, paths and regions. In order to optimize the agent navigation
function, we generate a bitmap called an Ariadne Map from the GIS data. In this bit-
map streets and paths are colored in red (Figure 4A), and an agent can directly access it
to determine which cells around it correspond to a street or path. The Ariadne Map can
be generated in several colors in order to differentiate particular categories of ways
such as sidewalks, roads, paths, bike paths, etc. Specific areas such as public squares
can be perceived by the agents in the VGE. These areas are identified in the GIS and a
bitmap called the Zone Map is automatically generated (Figure 4B). Each area is asso-
ciated with a list of properties recorded in an auxiliary file. When an agent enters such
a zone, it can access the corresponding information and act accordingly.

Perception of dynamic areas (or volumes). Certain gaseous phenomena such as

smoke, dense gases and odors are related to the VGE atmosphere and cannot be mo d-
eled using static objects or moving agents. They are associated with areas or volumes
whose properties (boundaries, local density, etc.) change dynamically under the influ-
ence of external forces like the wind. A good way to simulate such phenomena is to use
particle systems [30]. We developed such a module, but we will not go into detail
about it in this paper. What is of interest here is the way that agents perceive these phe-
nomena. Our particle system encodes the position of each particle in a Gas Bitmap as
well as a pointer to a file in which the particle characteristics are encoded (particle
type, density). An agent can access this gas bitmap in order to determine if there are
some particles at its location. If yes, it can get the information about the particles di-
rectly and this information is taken into account by the agent behavior module. Indeed,
gaseous phenomena are dynamic and the areas/volumes that they occupy change. Our
particle system computes the particles’ trajectories and takes snapshots of their posi-
tions (encoded in the Gas Bitmap) and sends them to the simulation system every k
simulation cycles (k depends on how rapidly the phenomenon changes).

 Fig.4A. Ariadne Map of Quebec city Fig.4B. Portion of a Zone map

Perception of the effects of field-generating objects. Agents may react to events

occurring in the VGE such as the detonation of a fire cracker and the explosion of a
tear gas canister. These events are simulated by what we call field-generating objects,
which emulate the propagation of sound or light in the atmosphere. The user may
specify in the simulation scenario when and where in the VGE such an object will be

paths

zones

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

9

triggered in order to study crowd behavior characteristics through the reactions of
individual agents. These objects may also be created by agents in the VGE such as a
policeman throwing a tear gas canister or using an ultra-sound whistle to call his dog.
Hence, agents may react in different ways to the effects of field-generating objects. A
dog will react to the sound of the ultra-sound whistle, but a person will not. In the
MAGS system a field-generating object is implemented as a special type of agent
whose behavior reflects the consequences of triggering the object. The field-generating
object identifies which agents are susceptible to perceive its effects according to the
distance and to the agents’ perception capabilities, and sends them a message to warn
them about the occurrence of the corresponding event. We chose this approach3 for
efficiency purposes, because it would have been very costly to use a function that
enables agents to scan the VGE in order to monitor the activation of field-generating
objects. In fact, the messages emitted by field-generating objects simply simulate the
transmission of information to the agents perceiving the associated phenomenon and
mimic the transmission of sound or light in the atmosphere. A field-generating object
such as the explosion of a tear gas cannister may also trigger a particle system which
generates a gazeous phenomenon (see previous sub-section). Consequently, an agent
may first react to the perception of a canister’s explosion (after receiving the message
from the corresponding field-generating object) and then to the perception of the tear
gas emitted by the canister (after accessing the corresponding gas bitmap).

Communication between agents. In the real world people communicate verbally in

different ways, speaking or shouting for example. We simulate verbal communications
in a simple way: a MAGS agent can send messages to one or several agents if it wants
to communicate with them. A simple computation can limit the maximum distance at
which a message broadcasted by an agent can be perceived by other agents depending
on the distance separating them from the emitting agent.

4 Agent Navigation

While navigating, agents may either follow paths (we call this navigation mode « fol-
lowing -a-path-mode ») or move through open spaces (we call this navigation mode
« obstacle-avoidance-mode »). When an agent is in the obstacle-avoidance-mode, the
navigation module accesses the Height Map’s portion which is visible by the agent (ob-
tained from the dynamic perception function) in order to evaluate the difficulty of
crossing the space separating the agent from its destination. When an agent is in the fol-
lowing -a-path-mode, the navigation module accesses the Ariadne Map’s portion which
is visible by the agent (obtained from the dynamic perception function) in order to
compute its next move: this navigation mode requires less computational resources
than the obstacle-avoidance-mode. An agent can opportunistically change its naviga-
tion mode in order to draw nearer to its destination in the VGE. We also developed a

3 There is a similarity with the notion of affordance [10]. Affordances are defined as what
objects or things offer people to do with them. In the same way field-generating objects indicate
to the agents how to react to the events that they trigger.

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

10

function for collision avoidance which is used to manage the agents’ local interactions
when they move on the Ariadne Map. As an illustration, Figure 5 shows 12 agents in
different situations and aiming at the same destination. Some of them (n° 1 to n° 5) are
in the following-a-path-mode and the others (n° 6 to n° 12) are in the obstacle-
avoidance-mode. Let us briefly comment upon the agent navigation behavior using this
example. In order to determine its next move, an agent must choose one of the eight
cells surrounding its current position. To this end, the agent goes through 6 steps :
Step 1: Direct beam computing
Using a ray tracing function, the system computes the direction of the direct Beam
originating from the agent’s current position and aiming at its current destination
Step 2: Path_mode checking
Whenever it is possible, an agent tries to follow a path. Hence, when the agent is not
following a path (it is in the obstacle-avoidance-mode) the system calls the perceptual
function that tries to return the nearest visible position on the path of the Ariadne map.
If such a position is found, the agent switches to the following-a-path-mode and takes
this position as an intermediate destination (ex: agent n° 9 in Figure 5).
Step 3: Beam Tracing
A beam is traced in the direct beam direction until reaching a predetermined distance
(for example 20 pixels) called the Beam_range which is less than or equal to the per-
ception radius. The Beam_range value is much less important when the agent is fol-
lowing a path (ex: agents n° 1 to n° 5 in Figure 5) than when it is moving in an open
space (ex: agents n° 6 to n° 12). In the following-a-path-mode, the tracing function
succeeds when the beam crosses an Ariadne pixel (ex: agents n° 4 to n° 5). In the ob-
stacle-avoidance-mode the tracing function succeeds when the beam does not hit an
obstacle (ex : agent n° 10).
In both navigation modes, when the beam tracing function fails, the system sends a
second beam to the right of the direct beam, changing its direction by a
Beam_variation_angle. If this new beam also fails, the system sends a third beam
symmetrical to the second, but this time to the left of the direct beam. This process
goes on until either the beam tracing succeeds, or the angle between the beam direction
and the direct beam direction goes beyond a given threshold called the
Beam_maximum_angle4. In Figure 5, agents n° 1, 2 and 3 are following a path, each of
them moving in a direction (represented by its beam on the figure) which enables it to
stay on the path, since the corresponding Beam_maximum_angle is not yet exceeded.
Agents n° 6, 7 and 8 are in the obstacle-avoidance-mode: the function looks for the di-
rection nearest to the direct beam that can be followed without hitting an obstacle.
Step 4: Beam Tracing Exception
If Step 3 failed to trace a beam and the agent is in the following-a-path-mode, it goes
into the obstacle-avoidance-mode. This is the case of agent n° 11 for which the

4 The Beam_variation_angle and the Beam_range are parameters that are associated to the agent

profile and can be adjusted. The average_beam_range value is 20 pixels. The average beam
_variation_angle is π/32 (or 5.625 degrees). The Beam_maximum_angle is another parameter
that can be adjusted. The average value is 45 degrees on each side of the direct beam.

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

11

Beam_maximum_angle is exceeded: it is now in the obstacle-avoidance-mode. If the
agent is already in the obstacle-avoidance-mode, it is blocked by an obstacle because
the Beam_maximum_angle is exceeded. In that case a function called GetOutOfBlock -
age moves the agent away from the obstacle. This is the case of agent n° 12 which is
currently blocked. The function GetOutOfBlockage will enable it to jump to the
neighboring Ariadne path.
Step 5: Oscillation detection
In order to avoid certain critical situations in which the agent could get lost by follow-
ing cyclic trajectories, we call a function that detects oscillations. This function records
the agent’s last position every k steps and analyzes the evolution of the distance be-
tween this position and the agent’s current position. If an oscillation is detected, we call
the GetOutOfBlockage function.
Step 6: Collision detection and agent displacement
CollisionDetection and AgentDisplacement are functions accessing the Location Map.
If the location l chosen for the agent’s displacement is already occupied by another
mobile agent, a simple displacement algorithm determines a position next to location l .

Fig. 5. Different navigation modes

To sum up, the agent navigation module takes advantage of the Height Map, the
Ariadne Map, the Location Map and the ray tracing function in order to move the
agents to their destinations by opportunistically choosing either the following a path or
the obstacle avoidance modes. This simple mechanism allows the system to perform
the simultaneous navigation of a large number of agents (several thousands of agents
on a grid of 2048 x 2048 pixels). Besides this navigation mechanisms, we developed a
set of basic navigation functions that can be used by the behavior mo dule:

lChangeDesiredSpeed : change the agent’s desired speed
lFlee : flee from another agent’s position or from a given location
lMoveInsideDisc : useful to keep an agent moving in a circular area

Open space

Ariadne paths

Obstacles

Agent

Agent’s current beam

Agents’ destination

10

8

5

6

7

4 9

1
2

3

11 Destination

12

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

12

lMoveAroundDisc : useful to keep an agent moving around a circular area
lGoto : go to an object’s location or to a given location on the map
lFollow : follow a mobile agent
lWalk : walk around the VGE by choosing destinations randomly.

5 The Agent’s Knowledge

In order to behave autonomously, agents must be able to interact with their envi-
ronment (VGE, objects and other agents), make decisions with respect to their own
states and preferences and act accordingly. We consider five types of agents: mobile,
object, field-generating object, cluster and group. Mobile agents such as persons and
cars are able to move in the VGE. Object agents such as buildings and trees are not
able to move. Cluster agents are dynamically created when several agents gather in a
definite area for a certain duration. Moreover, clusters allow mo re control over member
agents at a higher level of abstraction. Group agents associate agents having a common
characteristic such as policemen. We can also define a group containing other groups.
For example, a buildings group contains the different groups of buildings having the
same type such as residential, industrial, governmental and commercial buildings. Each
agent of any type has its own behavior which depends on its profile.

An agent is characterized by a number of variables whose values describe the

agent’s state at any given time. We distinguish stable states and dynamic states. A sta-
ble state does not change during the simulation and is represented by a variable and its
current value. For example, the fact that an agent is respectful of city regulations will
not change during the simulation. A dynamic state is a state which can possibly change
during the simulation. For example, an agent’s tiredness can change during the simula-
tion. A dynamic state is represented by a variable associated with a function which is
used to compute how this variable changes values during the simulation. The variable
is characterized by an initial value, a maximum value, an increase rate, a decrease rate,
an upper threshold and a lower threshold which are used by the function. Using these
parameters, the system can simulate the evolution of the agents’ dynamic states and
trigger the relevant behaviors. An agent is also associated with a set of objectives that it
tries to reach. The objectives are organized in hierarchies such that elementary objec-
tives are associated with actions that the agent can perform. Each agent owns a set of
objectives corresponding to its needs. An objective is associated with rules containing
constraints on the activation and completion of the objective. Constraints are dependent
on time, on the agent’s states, and on the environment’s states. The selection of the cur-
rent agent’s behavior relies on the priority of its objectives. Each need is associated
with a priority which varies according to the agent’s profile. An objective’s priority is
primarily a function of the corresponding need’s priority. It is also subject to modifica-
tions brought about by the opportunities that the agent perceives and by the temporal
constraints applying on the objective. Each agent of any type has its own behavior de-
pending on its profile. A profile contains a set of roles that an agent can play during a
simulation. It is also used to personalize the agent’s needs. A role is represented as a
tree of objectives. The tree structure allows us to define a behavior at different levels of
abstraction. The root nodes are composite objectives and leafs are elementary objec-
tives. The actions are associated with the elementary objectives.

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

13

Fig. 6. The buskers’ tree of objectives

As an illustration we developed a simple scenario in which mobile agents represent

people wandering in a VGE of a portion of Quebec city. We also specified a group of
buskers who try to find spots in order to entertain the passers -by. Figure 6 presents the
simple objective tree of buskers. The main (composite) objective (1.0) is activated if
the busker’s need for money is greater than a given threshold. Four elementary objec-
tives are associated with Objective 1.0 . Objective 1.1 is activated when Objective 1.0 is
active and aims at finding a presentation spot: it triggers an action that makes the
busker wander through the city in search of a presentation spot. If the busker perceives
a free presentation spot, it reserves this spot, starts to move around it and Objective 1.1
is completed with success. Objective 1.2 is activated when Objective 1.1 is completed
with success. The action triggered by Objective 1.2 is the sending of messages to
agents passing by in order to advise them that a show will start soon at this spot. If at
least 5 passers -by stay near the spot, Objective 1.2 is completed with success. If after a
certain time there are not enough spectators around the busker’s spot, Objective 1.2 is
completed without success. Objective 1.3 is activated when Objective 1.2 is completed
with success. The action makes the busker agent present its show for a given period of
time. Then, Objective 1.3 is completed with success, Objective 1.4 is activated and the
busker agent sends a message to the spectator agents which are still near the presenta-
tion spot in order to ask them for some money.

Composite objective 1.0 :
To have performed a

street play
Activation Rule : If the need for
money is greater than a threshold

Completion Rule : If the
objective 1.4 is completed with

success, then the objective 1.0 is
completed with success

Elementary objective 1.1 :
To have found a
presentation spot

Activation Rule : There is no
precondition, the objective will be

active when its super-objective
becomes active

Action : Search a zone for a
presentation spot

Completion Rule : If a presentation
spot is perceived and this presentation

spot is free, then make the spot not
free, move around the spot and the

objective 1.1 is completed with success
Elementary objective 1.2 :

To have attracted a
crowd of spectators

Activation Rule : If the objective 1.1 is
completed with success and the objective 1.3

isn't active, ongoing or completed with
success

Action : Send message to gather spectators
Completion Rule 1 : If there are enough
(5) spectators around, then the objective

1.2 is completed with success
Completion Rule 2 : If there are not
enough spectators around, then the

objective 1.2 is completed without success

Elementary objective 1.3 :
To have performed a show

Activation Rule : If the objective 1.2
is completed with success
Action : Perform a show

Completion Rule : If the show was
performed for its predefined duration

time, then the objective 1.3 is
completed with success

Elementary objective 1.4 :
To have collected money

Activation Rule : If the objective
1.3 is completed with success
Action : Send message to ask
spectators to pay for the show

Completion Rule : If there is no
spectator around, then the need for

money is reduced, make the
presentation spot free and the

objective 1.4 is completed with
success

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

14

Fig. 7. Busker and audience

After a certain time the busker agent’s need for money decreases, it frees the spot and
completes Objective 1.4 with success which leads to the completion with success of
Objective 1.0 . Then, the busker activates another need (which takes the highest prior-
ity) that makes the agent wander around in the VGE until its need for money reaches
the threshold that triggers Objective 1.0 again. Passers-by also have an objective tree
that emphasizes their need for being entertained by buskers. Space limitations prevent
us from presenting this tree in this paper.

Figure 7 presents a snapshot of the simulation which displays the passers -by gath-
ered around a busker in a 3D model of the city. On the left -hand side of the screen we
see various characteristics of the selected agent (the busker in this case). At the bottom
of this part of the screen, the Last Action section shows that the busker has completed
Objective 1.3 and is performing the actions of Objective 1.4.

Figure 8 presents a 2D view of people (little dots on the streets) marching in a por-
tion of Quebec city. Figure 9A offers a 3D view that shows people marching and gath-
ering on a square of the city. Figure 9B presents the agent’s point of view when mo v-
ing among other agents. Our system enables the user to manipulate a camera to explore
the 3D VGE according to various modes. In Figure 9A we view the scene from above
(third person view). In Figure 9B we view the scene from the position of an agent (first
person view). The user may view the landscape from any agent’s point of view.

Busker

Busker’s action
trace

Spectators Busker’s need
levels

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

15

Fig. 8. A peace walk in Quebec city (2D)

The 3D characters associated with the agents are not elaborate since the emphasis of

the MAG project was not put on the creation of character animations.

Fig. 9A. Observing a march Fig. 9B. Observing the scene from an
 in Quebec city (from above) agent’s point of view

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

16

6 Discussion and conclusions

Since perception and navigation are the two fundamental spatial cognitive capabili-
ties available to MAGS agents, we wanted to assess the efficiency of our current im-
plementation with respect to the durations of the navigation and perception cycles. Let
us recall that navigation and perception are performed by two separate threads in our
architecture. We carried out tests on the example of agents marching from one location
to another in Quebec city (represented on an image of 2048x2048 pixels). The tests
were performed on a Pentium P4, 2.66 GHz with 2 Go of RAM and a Radeon 9700 Pro
graphic card. We grouped agents in clusters in order to lessen the load on the percep-
tion thread. In each cluster we have a leader that fully perceives (Beam_range of 30
pixels in the obstacle-avoidance-mode and 13 pixels in the following-a-path-mode).
Agents playing the role of followers in the cluster follow the leader and have a
Beam_range of 1 pixel. We carried out the tests with various populations of agents
(1000, 2000, 3000, 5000, 10 000 agents) and with different cluster sizes (100, 50, 25
and 15 agents per cluster). In order to make the measurements, we had to run the sys-
tem in a debug mode which is less efficient than the normal simulation mode. The
navigation and perception cycles do not have the same duration because they require
different computing resources. Figure 10 shows the duration of the navigation cycle for
the various populations and cluster sizes. Since an agent moves at most one pixel
(equivalent to about one meter according to the map scale) per cycle, this means that in
the worst case (10 000 agents clustered in groups of 100), the agents move 6.25 pixels
per second. Considering that the average speed of a fast walking person is 5 km/hour or
1.38 m/s (corresponding to 1.38 pixel/s in the simulation), our simulation shows dis-
placements accelerated by an average factor of 4.5. This leaves time for the system to
devote computing resources to the behavior thread.

Fig. 10. Duration of a navigation cycle

Duration of a Navigation Cycle

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1000 2000 3000 5000 10000

Number of Agents

100 50 25 15Number of agents per clu ster

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

17

Perception takes more time than navigation. Figure 11 shows the ratio of the naviga-
tion cycle duration and the perception cycle duration in the different cases of our ex-
periments. Since the navigation and perception threads run in parallel, a ratio of 4
means that an agent will be able to move 4 pixels at most before it gets new informa-
tion from the perception module. This is not a problem since basic functions such as
collision avoidance are part of the navigation cycle. Hence, it is quite acceptable that an
agent moves 4 to 6 pixels (equivalent to 4 to 6 meters) before taking into account new
information from the dynamic perception function. However, for the worst case of 15
agents per clusters (see Figure 11) the ratio value varies between 9 and 15 times. This
is too much. Hence, in our current implementation clusters of at most 25 agents give
acceptable results in the debug mode. The performance is better in the simulation
mode. Considering the improvement of hardware performance anticipated for the com-
ing years, we expect that the current performance limitations of the MAGS platform
will be overcome.

Fig. 11. Ratio of the navigation and perception cycles’ durations

The MAGS system is not fully completed and optimized. For example, we are cur-

rently working on the development of the scenario specification module and on the
agent’s spatial memory capability. We are also exploring various alternatives to dis-
tribute the computing load on networked computers. For example, the particle systems
used to simulate dynamic areas, such as dense gaz and smoke, require a large amount
of computing resources, especially when simulating several phenomena at once (i.e.
several tear gaz cannisters exploding in front a group of demonstrators). We developed
an initial version of a distributed system in which MAGS and the particle system simu-
lator are on two different computers, the particle system simulator, sending an update
of the gas bitmap (see Section 3) at regular time intervals that can be adjusted by the
user. However, we need to dedvis e a complete distributed solution for MAGS consider-
ing the possible distribution strategies available for this kind of applications [25] [26].
However, the current version of the MAGS system and its application to the simulation
of crowd behavior show the interest of building agent-based geo-simulation environ-

Proportion Navigation Cycle / Perception Cycle

0

2

4

6

8

10

12

14

16

1000 2000 3000 5000 10000

Number of Agents

100 50 25 15Number of agents per cluster

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

18

ments as well as the potential of this kind of approach for various kinds of simulations
in which agents should exhibit plausible cognitive spatial behaviors [8].

References

1. Beckman, R. J. (ed.): “The Dallas – Fort Worth Study”, Los Alamos unclassified
report LAUR-97-4502LANL, Los Alamos National Laboratory, Los Alamos NM,
available at http://transims.tsasa.lanl.gov/ (1997)

2. De Floriani, L, Magillo, P.: Visibility algorithms on DTMs, International Journal of
Geographic Information Systems , 8(1), 13–41(1994)

3. Discreet: http://www.discreet.com/products/3dsmax/ , (Last visit March 2003)
4. Dodge, M., Doyle, S., Smith, A., Fleetwood, S.: Towards the Virtual City: VR &

Internet GIS for Urban Planning, Virtual Reality and Geographical Information
Systems Workshop, Birkbeck College (1998)

5. Epstein, S. L., Moulin, B., Chaker, W., Glasgow, J., Gancet, J.: Pragmatism and
spatial layout design, in D. Montello (edt.), Spatial Information Theory:
Foundations for Geographic Information Science, Springer Verlag LNCS
2205,189-205 (2001)

6. Ettema, D., Timmermans, H.: Activity Based Approaches to Travel Analysis,
Elsevier Science, Amsterdam (1999)

7. Fotheringham, A. S., O’Kelly, M. E.: Spatial Interaction Models : Formulation and
Applications, Kluwer Academic Publishers, Dordrecht (1989)

8. Frank, A.U., Bittner, S., Raubal, M.: Spatial and cognitive simulation with multi-
agent systems, in D. Montello (edt.), Spatial information Theory: Foundations for
Geographic Information Science , Springer Verlag, LNCS 2205,124-139 (2001)

9. Franklin, W.R.: Applications of analytical cartography, Cartography and
Geographic Information Systems , 27(3), 225–237 (2000)

10. Gibson, J.: The Ecological Approach to Visual Perception , Houghton Mifflin
Company, Boston (1979)

11. Gimblett, H. R.: Integrating Geographic Information Systems and Agent-Based
Modeling Techniques for Simulating Social and Ecological Processes , Oxford
University Press (2002)

12. Hacklay, M., O’Sullivan, D., Thurstain-Goldwin, M ., Schelhorn, T.: « So go
downtown » : simulating pedestrian movements in town centres, Environment and
Planning B: Planning and Design, 28(3), 343-359 (2001)

13. Helbing, D., Farkas, I. J., Vicsek, T.: Simulating dynamic features of escape panic,
Nature, n. 407, 487-490 (2000)

14. Helbing, D., Molnar, P., Schweitzer, F. Computer simulation of pedestrian
dynamics, In proceedings of the 3rd International Symposium of SFB 230,
Evolution of Natural Structures, Sonderforschungsbereich, Stuttgart, Germany,
229-234 (1999)

15. Helbing, D., Molnar, P., Farkas, I. J., Bolay, K.: Self-organizing pedestrian
movements, Environment and Planning B: Planning and Design, 28(3), 361-383
(2001)

16. Intergraph: Geomedia Professional, http://www.intergraph.com/gis/gmpro (2003)

To be published in the Proceediings of the COSIT’03 Conference
Ittingen (Switzerland) September 2003, Kuhn, Timpf, Worboys (eds.)
Springer Verlag Lecture Notes in Computer Science

19

17. Jager, W., Popping, R., van de Sande, H.: Clustering and fighting in two-party
crowds: simulating approach-avoidance conflict, Journal of Artificial Societies and
Social simulation, vol.4 n.3, http://jasss.soc.surrey.ac.uk/JASSS/4/3/7.html (2001)

18. Jennings, N., O’Hare, G.: Foundations of Distributed Artificial Intelligence, Wiley
(1996)

19. Kerridge, J., Hine, J., Wigan, M.: Agent–based modelling of pedestrian
movements: the questions that need to be asked, Environment and Planning B:
Planning and Design , 28(3), 327-341 (2001)

20. Lee, D. B.: Retrospective on large-scale urban models, Journal of the American
Planning Association , 60, 35-40 (1994)

21. Mark, D.M., Freksa, C., Hirtle, S.C., Lloyd, R., Tversky, B.: Cognitive models of
geographic space, International Journal of Geographical Information Science, vol.
13 no. 8, 747-774 (1999)

22. Moss, S., Davidsson, P.: Multi-Agent-Based Simulation, Proc. of the 2nd Internat.
Workshop MASB 2000, Springer Verlag, LNAI, n.1979 (2000)

23. Moulin, B., Chaker, W., Gancet, J. : PADI-Simul, an agent-based software which
simulates the behaviors of hundreds of actors in a geographic space, To appear in
Journal on Computers, Environment and Urban Systems (2003)

24. O’Sullivan, D., Torrens, P.: Cellular models of urban systems, in S. Bandini and T.
Worsch (edts.), Theoretical and Practical Issues on Cellular Automata, Springer
Verlag, also available from Centre for Advanced Spatial Analysis, Working Paper
22, June 2000, www.casa.ucl.ac.u k (2000)

25. Ray, C., Claramunt, C.: Atlas : A distributed system for the simulation of large-
scale systems, In Chen, S.-C. et Voisard, A.(edts.), Proceedings of 10th ACM
International Symposium On Advances In Geographic Information Systems, 155–
162, McLean, VA, ACM Press (2002)

26. Righter, R., Walrand, J. C.:Distributed simulation of discrete event systems.
Proceedings of the IEEE , 77(1), 99–113 (1989)

27. Sawyer, R.K.: Artificial societies: multiagent systems and the micro-macro link in
sociological theory, Sociological Methods and Research, vol 31 n3, 325-363 (2003)

28. Schelhorn, T., O’Sullivan, D., Haklay, M., Thustain-Goodwin, M.: STREETS : An
agent-based pedestrian model, CASA Working Paper 9, www.casa.ucl.ac.uk (1999)

29. Schillo, M., Fischer, K., Klein, C.T.: The micro-macro link in DAI and sociology,
in S. Moss & P. Davidsson (edts.), Multi-Agent Based Simulation, Springer Verlag,
Lectures Notes in Artificial Intelligence, n. 1979, 133-148 (2000)

30. Stam, J. : Interacting with Smoke and Fire in Real Time, Communications of the
ACM, vol 43, n 7, 76-83(2000)

31. Torrens, P.M.: Can geocomputation save urban simulation? Throw some agents in
the mixture, simmer and wait…, CASA Working Paper 32, www.casa.ucl.ac.uk
(2001)

32. Weiss, G. (ed.): Multi-Agent systems, MIT Press (1999)
33. Wolfram, S.: Cellular Automata and Complexity : Collected papers, Addison-

Wesley (1994)

