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Abstract Automatic speech recognition relies on ex-
tracting features at fixed intervals. In order to enhance
these features with dynamical (delta) components, dis-

crete derivatives are usually computed and added as
features. However, derivative operations tend to be sus-
ceptible to noise. Our proposed method alleviates this

problem by replacing these derivatives with nearby fea-
tures selected on a per-frequency basis. In particular, we
noted that, at low frequency, consecutive samples are

highly correlated and more information can be gath-
ered by looking at features farther away in time. We
thus propose a strategy to perform this frequency-based

selection and evaluate it on the Aurora 2 continuous-
digits and connected-digits tasks using MFCC, PLPCC
and LPCC standard features. The results of our experi-

mentations show that our strategy achieved an average
relative improvement of 32.10% in accuracy, with most
gains in very noisy environments where the traditional

delta features have low recognition rates.
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1 Introduction

Automatic speech recognition (ASR) is the transcrip-
tion of spoken utterances into text. A system that per-
forms ASR tasks takes an audio signal as input and clas-

sifies it into a series of words. In order to help the system
accomplish its task, it is essential to process the signal
and provide reliable features. The three most frequently

used features for ASR are the Mel frequency cepstral
coefficients (MFCC), the perceptual linear predictive
cepstral coefficients (PLPCC) and the linear predic-

tive cepstral coefficients (LPCC) (see [Shrawankar and
Thakare, 2013] for a review). These filter bank analysis
extraction methods use various transformations, such

as the Fourier transform, to convert a signal into a se-
ries of static vectors called feature frames. The coeffi-
cients in a feature frame are usually ordered from low-

frequency to high-frequency and this observation will
play a central role in our approach.

Classical feature extraction methods enhance each
feature frame with dynamical components by applying

discrete time derivatives. The idea of the concatenation
of first- and second-order derivatives, dubbed delta fea-
tures, was proposed (in a similar form) as a way to

improve the spectral dynamics of static features [Furui,
1986]. Even though it has been evaluated that the delta
features achieve great results [Zheng et al., 2001], it is

known from signal processing theories that the deriva-
tive of a noisy signal amplifies the noise, thus reducing
the quality of the extracted information [Oppenheim

et al., 1999]. This can be particularly detrimental for
situations where the presence of noise adversely affects
the recognition, such as when driving a car [Lockwood
and Boudy, 1992].

We have proposed, in a preliminary approach, that

the discrete time derivatives could be replaced with a
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mere concatenation of adjacent (in time) coefficients

based on frequency [Trottier et al., 2014]. This approach
will be referred to as Temporal Feature Selection (TFS).
The idea that the concatenation of dynamical features

should take into account the frequency of the compo-
nents comes from the fact that it is essential to model
inter-frame dependencies for speech utterances. Signal

processing theories suggest that the way the informa-
tion varies in a signal depends on frequency [Oppen-
heim et al., 1999]. For example, implosive consonants

will result in fast, high-frequency features, while vowels
will produce slow-changing, lower-frequency features. It
thus appears that frequency is a good metric of the vari-

ation of the information in a signal and could be used
to improve the dynamical features.

In this paper, we extend our TFS method by pro-

viding a simple framework to learn them. Our frame-
work uses the variance of the difference between feature
frames as a way to identify the time-delay at which fea-

tures are sufficiently decorrelated. We show experimen-
tally that our dynamical features improve the accuracy
over the classical delta features on the Aurora 2 [Pearce
et al., 2000] database.

The rest of the paper is organized as follows. Section
2 describes related approaches, Section 3 presents the
TFS method, Section 4 details the experimentations,

Section 5 contains a discussion of the results and Sec-
tion 6 concludes this work.

2 Related Work

To overcome the aforementioned problem of delta fea-
tures, recent attempts have been investigated. Thus, the
delta-spectral cepstral coefficients (DSCC) were pro-

posed in replacement of the delta features in order to
increase the robustness to additive noise [Kumar et al.,
2011]. Also, the distributed discrete cosine transform

has been proposed to replace the classical discrete co-
sine transform prior to the computation of delta fea-
tures [Hossan et al., 2010]. Finally, instead of concate-

nating the static and delta features, a weighted sum
combining them has been proposed [Weng et al., 2010].
However, the main drawback of all these methods is

that they still make use of derivatives and are prone to
being corrupted by noise.

Additional methods have tried to improve speech

features in various ways. In the context of deep learn-
ing, splicing followed by decorrelation and dimension-
ality reduction has been used to enhance the input of

deep neural networks (DNNs) [Rath et al., 2013]. Splic-
ing consists in concatenating all feature frames (with
delta features) in a context window of size c around

each frame [Bahl et al., 1994]. This approach is however

too conservative since the majority of the concatenated

features are either redundant or non-informative. The
other disadvantage of splicing is that the dimensional-
ity of the neural network input layer is very large which

makes the parameter inference unnecessarily harder.
Moreover, the benefits of depth in DNNs has been in-
vestigated and it was concluded that additional layers

allow more discriminative and invariant features to be
learned [Yu et al., 2013]. While we acknowledge that
deep learning is a promising avenue for feature extrac-

tion in ASR, we argue that better feature engineering
methods could facilitate the DNN learning process.

When adjacent feature frames are concatenated (as
in splicing), or when higher-order delta features are
used (e.g. up to the third), the inputs’ dimensionality

can be too large. Some researchers have proposed im-
proving speech features with dimensionality reduction
approaches. Principal Component Analysis (PCA) has

been applied to project the data while retaining maxi-
mum variance [Jolliffe, 1986]. To obtain subspaces that
discriminate better between the classes, Linear Discrim-

inant Analysis (LDA) has been proposed [Fukunaga,
1990]. The LDA criterion was further improved by using
the true class covariance matrices as in Heteroscedastic

Discriminant Analysis (HDA) [Saon et al., 2000], or by
employing Heteroscedastic LDA (HLDA) [Kumar and
Andreou, 1998] when the classes have the same means

but different covariances. Even though HLDA usually
out-performs LDA, it is more computationally expen-
sive in time and memory space [Kumar and Andreou,

1998]. While HLDA appears to be an essential tool for
speech feature extraction, we argue that dimensional-
ity reduction may be avoided by using a more expert

strategy when gathering the signal dynamics.

In the context of linear feature transformations un-
related to dimensionality reduction, Maximum Likeli-
hood Linear Transform (MLLT) [Gopinath, 1998] and

Global Semi-tied Covariance (GSC) [Gales, 1999] have
been proposed as decorrelation approaches. MLLT finds
a linear transformation that maximizes the likelihood

of the observations under isotropic Gaussian densities.
On the other hand, GSC decorrelates the features by
using the eigen decomposition of each state-specific co-

variance. Moreover, feature-space Maximum Likelihood
Linear Regression (fMLLR) [Leggetter and Woodland,
1995] and Constrained MLLR (CMLLR) [Gales, 1998]

have been proposed as linear transformation approaches
for speaker adaptation. fMLLR directly modifies the
parameters of the Gaussian densities while CMLLR

changes the features themselves. Even though these ap-
proaches are essential feature selection techniques, they
do not address the problem of modeling the dynamics

of speech.
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Fig. 1 Variance of the difference between a frame and its neighbors for MFCC features on the Aurora 2 [Pearce et al., 2000]
training dataset (best seen in colors). The coefficients are ordered from low frequency (1) to high frequency (13) for visual
convenience (the proposed method does not require a specific ordering). The color refers to the variance of the difference ΣM ,
where M was limited to 25 to reduce the computational burden.

3 Temporal Feature Selection

3.1 Definition

Let Φ(n) =
(
ϕ

(n)
:,1 . . .ϕ

(n)
:,Tn

)
, n = 1 . . . N, be a D × Tn

matrix of D-dimensional static features. N is the total

number of utterances and Tn denotes the number of
frames extracted from utterance n. For example, Φ(n)

could represent spectrograms as well as MFCC. We de-

note the column vector ϕ
(n)
:,t as the feature frame at

position t. The classical method of computing the delta
features uses the following equations:
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2
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, (2)

where K = 2 is a typical value for the summation. Al-

though this subtraction allows for the extraction of dy-
namical information about adjacent features, it is also
susceptible to noise.

The TFS features are, in contrast, coefficients taken
from adjacent feature frames based on the frame posi-
tion offsets z = [z1, . . . , zD]. We define them as:

τϕ
(n)
i,t =

(
ϕ

(n)
i,t+zi

,ϕ
(n)
i,t−zi

)
, (3)

where zi is a strictly positive integer that depends on
the frequency. z should try to select coefficients ϕ that
are dissimilar, but not too much. Too similar values

do not increase the amount of information the feature
frames carry, but increase its dimensionality, and this
makes the speech recognition task harder. If the coeffi-

cients are too far apart, then their temporal correlation
is meaningless.

3.2 Learning the TFS Features

We now present the proposed framework to learn the

offsets z. The method first computes the sample vari-
ance of the difference of neighboring feature frames. In
other words, for each position t and utterance n, the

difference between the feature frame ϕ
(n)
:,t and its corre-

sponding jth neighbor ϕ
(n)
:,t+j is computed. The variance

of these differences is then calculated for j ∈ {1 . . .M},
where M = min{T1 . . . TN} − 1. We define the matrix

containing those values as:

ΣM =


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...
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where the variances are taken over all positions t and

utterances n. The variance is then computed as follows:

ΣM
i,j =

1

N+
j

N∑
n=1

Tn−j∑
t=1

(
ϕ

(n)
i,t − ϕ

(n)
i,t+j − µi,j

)2

, (5)
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where µi,j corresponds to the mean of the difference:

µi,j =
1

N+
j

N∑
n=1

Tn−j∑
t=1

(
ϕ

(n)
i,t − ϕ

(n)
i,t+j

)
, (6)

and N+
j is the total number of frames:

N+
j =

N∑
n=1

Tn − j . (7)

The purpose of computing ΣM is to find the frame
position offsets z. Using the parameter Vthresh as a vari-
ance threshold, z is computed using the following equa-

tion:

zi = argmin
j

∣∣ΣM
i,j − Vthresh

∣∣ , (8)

where Vthresh is a hyper-parameter to choose.

The frame position offsets z represented in Fig. 1
by the black dots are based on Eq. 8 for Vthresh = 1

and M = 25. In this example, z1 = 8 and z13 = 2.
This implies that the TFS features of ϕ1,t and ϕ13,t

are (ϕ1,t+8,ϕ1,t−8) and (ϕ13,t+2,ϕ13,t−2).

What can be seen from this figure is that z depends

on frequency. High frequency components have small
offsets whereas low frequency components have large
offsets. As explained in Section 1, more reliable dynam-

ical information can be extracted from neighboring fea-
ture frames when frequency is taken into account. The
relevant dynamical information of high frequency co-

efficients can only be extracted from nearly adjacent
frames (z13 = 2). On the other hand, adjacent low fre-
quency coefficients share most of their information and

more time is needed to gather the relevant dynamics
(z1 = 8). Therefore, by using the variance of neigh-
boring feature frames, z now incorporates the wanted

characteristic of frequency dependency.

Once the configuration of z is inferred from the data,
it remains fixed. A further modification of our approach
is to compute the time offsets z for each utterance in-

dependently. In other words, the variances in Eq. 4 are
computed over t only for each n separately. This varia-
tion of the proposed method will be evaluated in Section

4.

3.3 Hand-Designed Offsets z

Notice that z could also be fixed by hand. However, the
main challenge of hand-design is to correctly choose the

offsets. For example, a randomly-selected z may not in-
corporate frequency dependency. In addition, searching
over all MD possible configurations would be cumber-

some. For these reasons, Bresenham, D-Rational and
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Fig. 2 Example of an experimental setup that uses a max-
imum position offset k = 7. For Bresenham, the offsets
z = [7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1].

U-Rational strategies were elaborated, as seen in Fig.
2. By defining a curve that depends on frequency, the

position offsets can be found using the closest points to
the curve.

For Bresenham, a maximum position offset k is fixed.
Then, Bresenham’s line algorithm [Bresenham, 1965]

is applied on the line that starts at coefficient 13 and
time offset 1, and ends at coefficient 1 and time offset k.
The points found by Bresenham’s algorithm correspond

to z.

For the *-Rational strategies, a maximum position
offset k and a curve point c are fixed. The offsets z can
then be inferred from the rational function that starts

at coefficient 13 and time offset 1, and ends at coeffi-
cient 1 and offset k, with the additional constraint that
it passes through the curve point c. When c is above

the line, we refer to this strategy as U-Rational, oth-
erwise as D-Rational. Depending on the degrees of the
polynomials used in the rational functions, the curves

will have distinct shapes and reflect different types of
frequency dependency.

3.4 Decorrelation

The most common inference model that is used in ASR

is the hidden Markov model (HMM), with a mixture
of Gaussian distributions for the observation density
(GMM-HMM). It is usually assumed that the multivari-

ate Gaussian distributions have a diagonal covariance
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Fig. 3 Pipeline of processing for TFS features. After computing the frame position offsets z using Eq. 8, the features are
concatenated and decorrelated (using DCT-II, ICA or whitening).

[Gales and Young, 2008]. This hypothesis is required so
that the model can scale to large-vocabulary continuous

speech recognition (LVCSR). The consequence of this
assumption is that the feature frames should be inde-
pendent, which is clearly not the case for TFS features.

Therefore, the feature frames are decorrelated after
the concatenation in order to accommodate them to

the independence hypothesis, as seen in Fig 3 . Three
methods of decorrelation have been used in our exper-
imentations: discrete cosine transform (DCT), whiten-

ing (W) and independent components analysis (ICA)
[Hyvärinen et al., 2004]. Specifically, the type 2 DCT
was chosen (DCT-II) and a logcoshG function was used

in the approximation of the neg-entropy for ICA.

4 Experimental Results

4.1 Experimental Setup

The database that we used for our experiments is Au-
rora 2 [Pearce et al., 2000] which contains a vocabulary

of 11 spoken digits (zero to nine with oh). The digits
are connected, thus they can be spoken in any order and
in any amount (up to 7) with possible pauses between

them. The training set contains 8,440 utterances, both
test set A and B have 28,028 and test C has 14,014
utterances. The utterances are noisy and the signal-to-
noise ratio (SNR) varies from -5 dB, 0 dB, . . . , 20 dB,

Inf dB (clean). Different kinds of noise are present such
as train, airport, car, restaurant, etc. On average, an
utterance lasts approximately 2 seconds.

Using the HTK [Young et al., 2006] framework pro-

vided with the Aurora 2 database, we performed two ex-

periments. In the first one, eighteen-states whole-word
HMMs were trained with a three-components GMM

as the state emission density. There was a total of 11
HMMs (one per class). In the second one, the whole-
word HMMs were replaced with five-states phoneme

HMMs. In other words, using the CMU pronouncing
dictionary, each digit was mapped to its ARPAbet in-
terpretation. There was a total of 19 HMMs (one per

phoneme).

In our experimentations, we compared TFS features
to first (-D) and second (-A) order delta features on
MFCC, PLPCC and LPCC. For all these features, 13

coefficients, including the energy (-E), excluding the 0th
coefficient, were extracted to be used as observations.
The performance of each method was averaged over all

test sets for each noise level separately.

We tested multiple configurations of z and decorre-
lation methods. First, we evaluated the proposed learn-
ing framework described in Section 3.2 with Vthresh = 1

using DCT decorrelation. In addition, when the config-
uration z is fixed for all utterances, we refer to it with
suffix -T (MFCC-T, PLPCC-T and LPCC-T). When it

is computed for each utterance independently (there-
fore variable), we refer to it with suffix -δT (MFCC-δT,
PLPCC-δT and LPCC-δT).

We also tested the three different hand-designed strate-

gies of Section 3.3. The reader can refer to Fig. 2 that
provides additional information relative to the different
approaches. For Bresenham, 20 maximum offsets k were

tested, k ∈ {1, . . . , 20}, and the one achieving the best
result is reported. For U-Rational, the curve is modeled
with a rational function using a polynomial of degree 1

over a polynomial of degree 1. For D-Rational, a poly-
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Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
MFCC-E-D-A - 98.54 97.14 96.02 93.27 84.86 57.47 23.35 78.66 -
MFCC-E-T [8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2] 97.64 97.46 96.68 94.39 88.03 71.31 38.93 83.49 22.63
MFCC-E-δT - 97.20 96.98 96.29 93.78 87.27 69.20 35.90 82.37 17.39

Bresenham DCT [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 97.53 97.48 96.58 94.26 87.99 71.22 39.08 83.45 22.45
U-Rational DCT [7, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1] 97.53 97.40 96.51 94.30 87.92 70.87 38.59 83.30 21.74
D-Rational DCT [8, 7, 7, 7, 6, 6, 5, 5, 5, 4, 3, 2, 1] 97.06 96.91 95.92 93.63 87.34 70.63 39.70 83.03 20.48
Bresenham ICA [6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1] 98.39 98.36 97.64 95.59 89.00 69.27 32.22 82.93 20.01
U-Rational ICA [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 98.45 98.34 97.56 95.47 88.94 69.12 32.47 82.91 19.92
D-Rational ICA [7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 1] 98.22 98.01 97.10 95.03 88.06 68.81 31.98 82.46 17.81
Bresenham W [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 96.96 96.77 95.56 92.74 86.42 69.54 39.92 82.56 18.28
U-Rational W [9, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1] 96.79 97.19 96.26 93.85 87.39 70.30 39.14 82.99 20.29
D-Rational W [7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 1] 96.23 95.99 94.85 91.93 85.37 69.65 41.22 82.18 16.49

Table 1 Word accuracy (%) of different z using 13 MFCC-E features on the Aurora 2 database for whole-word HMMs. The
results are averaged according to the noise level. The reference model is MFCC-E-D-A.

nomial of degree 1 over a polynomial of degree 2 was

used. 4 maximum offsets k, k ∈ {7, 8, 9, 10}, and 5 curve
points c were tested and the one achieving the best re-
sult is reported. For each strategy, the coefficients from

each feature frame are concatenated, transformed us-
ing one of the three decorrelation methods and each
utterance is standardized independently.

4.2 Experimental Results

The performances in word accuracy of the best con-

figurations of z are reported in Tables 1, 2 and 3 for
whole-word HMMs and Tables 4, 5 and 6 for phoneme
HMMs. In each table, the 7 noise levels from the Au-

rora 2 database are ordered from clean signals (SNR
Inf) to highly noisy signals (SNR -5). The average over
all noise levels is reported on the right. The last column

consists of the relative improvement of the method over
the reference model.

Based on these results, our approach for learning

the time offsets z achieved the best average relative im-
provement of 20.79% for whole-word HMM and 32.10%

for phoneme HMM. Also, it can be observed that the

TFS features increased the accuracy on almost all noisy
tasks (Table 3 shows that Bresenham DCT is better on
average). However, the TFS features did not improve

the performances of whole-word HMMs on clean sig-
nals. Nonetheless, these results support our initial in-
tuition that using a pure derivative approach leads to

inferior performances.
The variation of the word accuracy of MFCC-E-T,

PLPCC-E-T and LPCC-E-T, with respect to Vthresh,

is shown in Fig. 4 for whole-word HMMs. The perfor-
mance of the method is reported for the 7 noise lev-
els of the database. The crosses indicate the best re-

sult the method achieved for each noise level. This fig-
ure demonstrates the behavior of the performance of
our approach with respect to the parametrization of z.

We only reported the variation for -T features, but the
other methods displayed similar behavior.

Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
PLPCC-E-D-A - 98.65 97.56 96.48 93.85 85.93 59.83 25.36 79.66 -

PLP-E-T [8, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2] 97.40 97.36 96.60 94.52 88.43 71.98 40.23 83.79 20.30
PLPCC-E-δT - 97.33 97.18 96.55 94.24 87.96 70.28 36.99 82.93 16.08

Bresenham DCT [6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1] 97.63 97.44 96.67 94.49 88.32 71.84 39.14 83.65 19.62
U-Rational DCT [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 97.60 97.47 96.72 94.60 88.30 71.16 38.67 83.50 18.88
D-Rational DCT [7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 1] 97.18 97.05 96.19 94.00 88.02 71.81 40.45 83.53 19.03
Bresenham ICA [7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1] 98.46 98.38 97.46 95.39 88.70 69.29 33.92 83.08 16.81
U-Rational ICA [8, 6, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] 98.46 98.44 97.65 95.63 88.53 68.52 33.01 82.89 15.88
D-Rational ICA [7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 1] 98.22 98.04 97.06 95.06 88.22 69.46 34.19 82.89 15.88
Bresenham W [4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1] 97.32 97.46 96.42 93.62 85.83 65.49 32.06 81.17 7.42
U-Rational W [7, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1] 97.01 97.41 96.49 93.74 85.86 64.76 30.48 80.82 5.70
D-Rational W [7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 1] 96.71 96.76 95.50 92.44 84.32 64.44 32.97 80.45 3.88

Table 2 Word accuracy (%) of different z using 13 PLPCC-E features on the Aurora 2 database for whole-word HMMs. The
results are averaged according to the noise level. The reference model is PLPCC-E-D-A.
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Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
LPCC-E-D-A - 98.30 96.82 95.59 92.28 81.87 54.52 22.96 77.48 -
LPCC-E-T [8, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2] 96.74 96.90 95.90 93.30 85.91 67.86 36.39 81.86 19.45
LPCC-E-δT - 96.31 96.60 95.62 92.72 85.16 65.88 33.07 80.77 14.61

Bresenham DCT [7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1] 96.71 96.98 96.03 93.26 86.06 68.14 36.53 81.96 19.89
U-Rational DCT [7, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1] 96.53 96.85 95.86 93.02 85.83 67.93 36.32 81.76 19.01
D-Rational DCT [9, 8, 8, 7, 7, 6, 5, 5, 4, 4, 3, 2, 1] 96.30 96.68 95.51 92.70 85.24 67.83 36.75 81.57 18.16
Bresenham ICA [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 98.03 98.09 97.14 94.81 87.16 66.88 30.39 81.78 19.09
U-Rational ICA [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 97.82 97.87 96.93 94.63 87.01 66.62 30.11 81.57 18.16
D-Rational ICA [10, 9, 8, 7, 7, 6, 5, 4, 4, 3, 2, 2, 1] 97.80 97.32 96.24 93.54 85.92 67.53 34.02 81.77 19.05
Bresenham W [4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1] 96.71 96.66 95.46 92.26 84.70 66.00 34.93 80.96 15.45
U-Rational W [7, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1] 96.52 96.73 95.52 92.34 84.48 65.56 33.86 80.72 14.39
D-Rational W [8, 7, 7, 7, 6, 6, 5, 5, 5, 4, 3, 2, 1] 95.97 95.92 94.49 91.30 83.78 65.75 36.21 80.49 13.37

Table 3 Word accuracy (%) of different z using 13 LPCC-E features on the Aurora 2 database for whole-word HMMs. The
results are averaged according to the noise level. The reference model is LPCC-E-D-A.

5 Discussion

Based on the results in Tables 1–6, DCT is a better
decorrelation method than whitening and ICA. In most

cases, the average word accuracy is higher when DCT is
used to decorrelate the TFS features. The only excep-
tions were D-Rational in Table 3, Bresenham in Table 4

and both Bresenham and U-Rational in Table 6, where
ICA based features achieved higher average word ac-
curacy. ICA only achieved the best performances when

the utterances are slightly noisy (SNR greater than 5
dB). The susceptibility to noise is one of the method’s
limitations. Indeed, the standard definition of the ap-

proach does not define a noise term. This requires the
use of whitening prior to the decomposition when noisy
data are used. However, the results show that ICA can

not extract useful independent components when the
utterances have an SNR lower than 10 dB.

One limitation of the proposed TFS method is that
it does not outperform delta features for clean utter-

ances when using whole-word HMMs. This can be seen
in Tables 1–3 where, for clean utterances (SNR Inf), the

delta features achieve the best accuracy. These results
are consistent with the intuition given in Section 1 that

the derivative of a noisy signal amplifies the noise. In
the case of clean utterances, the derivative is a better
approach for extracting the dynamics of the signal.

However, when using phoneme HMMs, our results
suggest that the TFS method improves word accuracy

even in the absence of noise. This can be seen in Tables
4–6 where -T is always better than -D-A. These non
intuitive results could be related to using phonemes in-

stead of whole words to model speech. Indeed, TFS ap-
pears to simulate triphone modeling, where an HMM is
defined for every phoneme triplet. In other words, TFS

incorporates information about adjacent phonemes when
concatenating distanced coefficients. This was not the
case with whole-word HMMs because the state occu-

pancy of a phoneme HMM is usually much shorter.

Moreover, it can be seen that computing the posi-
tion offsets z for each utterance separately (-δT) yields
much lower word accuracy. The reason explaining these

bad performances may be related to the use of GMM as
the acoustic model. By changing the positions at which

Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
MFCC-E-D-A - 89.89 87.24 84.41 78.87 63.78 29.86 -5.82 61.17 -
MFCC-E-T [8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2] 93.02 94.15 92.65 88.84 79.22 56.42 19.58 74.84 35.20
MFCC-E-δT - 92.44 93.6 91.7 87.55 76.46 47.3 -0.88 69.74 22.07

Bresenham DCT [8, 7, 7, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1] 93.00 94.05 92.54 88.58 79.19 56.51 19.07 74.70 34.84
U-Rational DCT [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 93.03 94.07 92.6 88.82 78.88 56.07 19.66 74.73 34.92
D-Rational DCT [9, 8, 8, 7, 7, 6, 5, 5, 4, 4, 3, 2, 1] 93.01 93.58 91.86 88.01 78.74 57.13 21.49 74.83 35.17
Bresenham ICA [8, 7, 7, 6, 6, 5, 4, 4, 3, 3, 2, 2, 1] 94.45 95.02 93.47 89.36 78.46 52.83 20.02 74.80 35.10
U-Rational ICA [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 92.26 94.21 92.95 89.46 77.66 47.29 7.27 71.59 26.83
D-Rational ICA [7, 7, 7, 6, 6, 6, 6, 6, 6, 5, 5, 4, 1] 94.7 95.86 94.35 90.33 79.3 50.59 12.32 73.92 32.84
Bresenham W [6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1] 89.75 90.36 87.98 83.26 73.23 51.18 22.08 71.12 25.62
U-Rational W [8, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1] 89.57 90.54 88.21 83.74 73.55 49.18 17.76 70.36 23.67
D-Rational W [10, 9, 8, 7, 7, 6, 5, 4, 4, 3, 2, 2, 1] 88.33 89.18 86.78 82.18 72.11 50.88 21.09 70.08 22.95

Table 4 Word accuracy (%) of different z using 13 MFCC-E features on the Aurora 2 database for phoneme HMMs. The
results are averaged according to the noise level. The reference model is MFCC-E-D-A.
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Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
PLPCC-E-D-A - 88.99 87.92 84.78 78.97 64.18 32.96 -0.67 62.45 -
PLPCC-E-T [8, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2] 92.98 94.29 92.89 89.38 79.76 56.86 18.79 74.99 33.40
PLPCC-E-δT - 92.27 93.77 92.2 88.17 77.59 48.83 -1.96 70.12 23.05

Bresenham DCT [7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1] 92.6 94.52 93.13 89.24 80.08 57.05 18.09 74.95 33.29
U-Rational DCT [8, 6, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] 91.91 93.89 92.33 88.57 79.11 56.24 19.88 74.56 32.25
D-Rational DCT [8, 7, 7, 7, 6, 6, 5, 5, 5, 4, 3, 2, 1] 92.08 94.1 92.63 88.98 80.14 57.56 19.24 74.95 33.29
Bresenham ICA [9, 8, 8, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1] 93.8 94.3 92.71 89.02 78.26 52.6 19.19 74.26 31.45
U-Rational ICA [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 93.06 94.41 92.89 88.98 77.26 49.9 14.39 72.98 28.04
D-Rational ICA [7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 4, 3, 1] 94.57 95.85 94.38 90.39 78.97 51.2 13.55 74.12 31.08
Bresenham W [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 90.32 91.46 89.66 84.46 70.78 41.01 0.45 66.88 11.80
U-Rational W [9, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1] 88.41 90.63 89.09 84.36 71.24 41.32 -1.32 66.25 10.12
D-Rational W [7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 1] 90.14 90.52 88.92 83.75 69.64 40.9 -0.37 66.21 10.01

Table 5 Word accuracy (%) of different z using 13 PLPCC-E features on the Aurora 2 database for phoneme HMMs. The
results are averaged according to the noise level. The reference model is PLPCC-E-D-A.

adjacent coefficients are selected, the isotropic Gaus-
sian densities of the mixture no longer well represent

the speech. The reason is that the feature space defined
by all feature frames of all utterances does not accom-
modate the independence hypothesis (defined in Sec-

tion 3.4) even though decorrelation is performed. This
is not the case for the original formulation (-T).

The first interesting result that is worth noticing
from Fig. 4 is the convexity of the plots. The up and

down hill-shaped curves are experimental supports for
the idea of informative coefficients that was elaborated
in Sections 1 and 3. If the concatenated coefficients are

taken too close, or too far, from each other, the amount
of unrelated information added to the frame will be
greater than the amount of related information. This

phenomenon can be observed in Fig. 4 where the per-
formance increases as Vthresh increases, up to a certain
point where it starts to decrease.

The second result that is worth mentioning is the
behavior of the maximum accuracy with respect to the

noise level. As the noise increases, the maximum word
accuracy tends to occur for z that has greater time

offsets. For example, the best word accuracy for Fig.
4 (a) appears at Vthresh = 1 for the least noisy task

and at Vthresh = 1.4 for the noisiest one. It appears
that our approach acts like a noise reduction method by
smoothing the signal (like Gaussian blur). Smoothing

a highly noisy signal requires gathering information at
a farther distance. Our approach behaves similarly by
selecting coefficients that are farther apart.

It is also worth mentioning that this behavior is less

clearly identifiable for LPCC, as can be seen in Fig.
4(c). While the reason explaining this phenomenon is
not evident, the word accuracy of tasks with an SNR

lower than 10 dB does not vary significantly with re-
spect to Vthresh. This may suggest that the TFS ap-
proach extracts less relevant dynamical information from

LPCC. It could also be related to the fact that LPCC
almost always performs worse than PLPCC and MFCC,
as shown in Tables 1–6.

To sum up, our results suggest that the concatena-
tion of adjacent coefficients based on frequency helps

improve the accuracy, especially for noisy utterances.
It has been observed, based on our experimentations,

Features Frame position offsets z
SNR (dB) Accuracy (%)

Inf 20 15 10 5 0 -5 Avg R.I.
LPCC-E-D-A - 88.13 86.04 83.11 76.64 60.82 29.65 0.02 60.63 -
LPCC-E-T [8, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2] 91.09 93.26 91.24 86.98 76.45 50.90 10.79 71.53 27.69

LPCC-E-δT - 90.11 92.23 90.06 84.86 71.79 37.92 -25.48 63.07 6.20
Bresenham DCT [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 91.44 93.38 91.47 86.74 75.37 49.04 8.00 70.78 25.78
U-Rational DCT [8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1] 91.18 92.94 90.94 86.42 75.31 49.69 8.67 70.73 25.65
D-Rational DCT [10, 9, 8, 7, 7, 6, 5, 4, 4, 3, 2, 2, 1] 91.06 92.81 90.85 86.27 75.36 50.97 11.89 71.31 27.13
Bresenham ICA [5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1] 92.47 91.99 89.76 84.8 72.69 48.21 15.87 70.82 25.88
U-Rational ICA [7, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] 89.16 92.53 91.16 86.95 74.56 47.91 18.09 71.48 27.56
D-Rational ICA [10, 10, 10, 10, 10, 9, 9, 9, 9, 8, 7, 6, 1] 92.09 92.3 89.95 84.82 72.05 47.01 14.42 70.37 24.74
Bresenham W [6, 6, 5, 5, 4, 4, 3, 3, 3, 2, 2, 1, 1] 88.49 89.81 87.31 81.6 68.33 42.66 7.76 66.56 15.06
U-Rational W [7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1] 88.35 90.25 88.07 82.8 68.85 40.94 3.8 66.15 14.02
D-Rational W [7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 3, 1] 88.84 89.65 87.13 81.18 68.00 42.11 6.70 66.23 14.22

Table 6 Word accuracy (%) of different z using 13 LPCC-E features on the Aurora 2 database for phoneme HMMs. The
results are averaged according to the noise level. The reference model is LPCC-E-D-A.
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(c) Using LPCC features.

Fig. 4 Variation of the performance of -T features for whole-word HMMs on the Aurora 2 database. The crosses indicate the
maximum word accuracy for each noise level.

that our TFS features achieved a better over all per-

formance than the delta features. However, it is worth
mentioning that, for clean utterances with whole-word
HMMs, our method did not outperform the reference

features. Nonetheless, TFS appears to be a good choice
for dynamical features since it performed the best over-
all, can be learned rapidly from the data and is based

on a single specified parameter Vthresh.

6 Conclusion

A novel way of improving the dynamics of static speech
features was proposed. The issue that was addressed

was the susceptibility to noise of derivative operations
in the modeling of the dynamics of speech signals. The
proposed Temporal Feature Selection (TFS) features

have shown to improve the robustness of the state of
the art delta features in various types of noise. The
experimentations have shown that the three most stan-

dard features, MFCC, PLPCC and LPCC, combined
with the best TFS features achieved an average rela-
tive improvement of 20.79% and 32.10% in accuracy

for whole-word and phoneme HMMs on the Aurora 2
database.

For further study, we plan to evaluate our approach

using triphone HMMs. The results would indicate if
TFS can incorporate information about adjacent phonemes
when concatenating distanced feature frames. Addition-

ally, we intend to use a Deep Neural Network as the
acoustic model in order to evaluate the influence of TFS
on splicing. We believe that a smaller context window

could be used and thus reduce the input dimensionality.

Finally, more experiments could be performed on large

vocabulary continuous speech recognition tasks.
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