
Clustering Sensor Data for Terrain Identification
using a Windowless Algorithm
Philippe Giguere

Centre for Intelligent Machines
McGill University

Montreal, Quebec, Canada H3A 2A7
Email: philg@cim.mcgill.ca

Gregory Dudek
Centre for Intelligent Machines

McGill University
Montreal, Quebec, Canada H3A 2A7

Email: dudek@cim.mcgill.ca

Abstract— In this paper we are interested in autonomous
systems that can automatically develop terrain classifiers without
human interaction or feedback. A key issue is clustering of sensor
data from the same terrain. In this context, we present a novel off-
line windowless clustering algorithm exploiting time-dependency
between samples. In terrain coverage, sets of sensory measure-
ments are returned that are spatially, and hence temporally
correlated. Our algorithm works by finding a set of parameter
values for a user-specified classifier that minimize a cost function.
This cost function is related to change in classifier probability
outputs over time. The main advantage over other existing
methods is its ability to cluster data for fast-switching systems
that either have high process or observation noise, or complex
distributions that cannot be properly characterized within the
average duration of a state. The algorithm was evaluated using
three different classifiers (linear separator, mixture of Gaussians
and k-NEAREST NEIGHBOR), over both synthetic data sets and
mobile robot contact feedback sensor data, with success.

I. INTRODUCTION

Identifying the local terrain properties has recently become
a problem of increasing interest and relevance. This has been
proposed with both non-contact sensors, as well as using
tactile feedback. This is because terrain properties directly
affect navigability, odometry and localization performance.
As part of our research, we are interested at using simple
internal sensors such as accelerometers and actuator feedback
information to help discover and identify terrain type. Real
terrains can vary widely, contact forces vary with locomotion
strategy (or gait, for a legged vehicle), and are difficult to
model analytically. Therefore, the problem seems well suited
to statistical data-driven approaches.

We approach the problem using unsupervised learning (clus-
tering) of samples which represent sequences of consecutive
measurement from the robot as it traverses the terrain, perhaps
moving from one terrain type to another. Since those signals
are generated through a physical system interacting with a
continuous or piece-wise continuous terrain, time-dependency
will be present between consecutive samples. The clustering
algorithm we are proposing in this paper explicitly exploits this
time-dependency. It is a single-stage batch method, eliminating
the need for a moving time-window. The algorithm has been
developed for noisy systems (i.e., overlapping clusters), as
well as for systems that change state frequently (e.g., a robot
traversing different terrain types in quick succession).

The paper is organized as follow. In Section II, we present
an overview related work on the subject, pointing out some
limitations with these methods. Our algorithm is then de-
scribed in Section III, with theoretical justifications. In Sec-
tion IV-A, Section IV-B and Section IV-C, we evaluate the
performance of the algorithm on synthetic data with a linear
separator classifier, a mixture of Gaussians classifier and k-
NEAREST NEIGHBOR classifier, respectively. We compare our
algorithm with a window-based method in Section IV-D. We
then show in Section V how applying this method on data
collected from a mobile robot enables robust terrain discovery
and identification. This is followed by Section VI where we
further point at differences between this algorithm and others.

II. RELATED WORK

Other techniques have been developed to exploit time
dependencies for segmenting time-series or clustering data
points. In Pawelzik et al. [1], an approximate probabilistic
data segmentation algorithm is proposed on the segmentation
algorithm on the assumption that the probability of having
a transition within a sub-sequence is negligible, given a low
switching rate between generating modes. Kohlmorgen et al.
[3] present a method that uses mixture coefficients to analyze
time-series generated by drifting or switching dynamics. In a
similar fashion to the work we present here, these coefficients
are found by minimizing an objective function that includes
a squared difference between temporally adjacent mixture
coefficients. The main argument behind their choice is that
”solutions with a simple temporal structure are more likely
than those with frequent change”, an assumption we also
exploit. In Kohlmorgen et al. [2], they present another segmen-
tation method for time series. It is based again on minimizing
a cost function that relates to the number of segments in the
time series (hence minimizing the number of transitions), as
well as minimizing the representation error of the prototype
probability density function (pdf) of those segments. The
distance metric used to compare pdf s is based on a L2-
Norm. Their simplified cost function has been designed to
be computed efficiently using dynamic programming.

Lenser et al. [4] present both an off-line and on-line
algorithm to segment time-series of sensor data for a mobile
robot to detect changes in lighting conditions. The algorithm

works by splitting the data into non-overlapping windows of
fixed size, and then populating a tree structure such that similar
regions are stored close to each other in the tree, forcing them
to have common ancestor nodes. The tree is built leaf by leaf,
resulting in an agglomerative hierarchical clustering. If the
number of clusters is known, information in the tree structure
can be used to group the data together and form clusters. The
distance metric used to compare regions correspond to the
absolute distance needed to move points from one distribution
to match the other distribution.

For terrain identification using a vehicle, several techniques
have been developed (Weiss et al. [5] [6], Brooks et al.
[7], DuPont et al. [8], Sadhukan et al. [9]). Features are
extracted from acceleration measurements (i.e., spectrum of
acceleration, multiple moments, etc) and supervised learning
is used to train a classifier, such as a support vector machine
(Weiss et al. [5]) or a probabilistic neural network (DuPont
et al. [8]). Another work by Lenser et al. [10], a non-
parametric classifier for time-series is trained to identify states
of a legged robot interacting with its environment. These
techniques require part of the data to be manually labelled, and
thus cannot be employed in the current context of unsupervised
learning.

A. Limitations of Window-Based Clustering Algorithms

As long as a system is switching infrequently between states
and the distributions are well separated, there will be enough
data points within a window of time to properly describe
these distributions. Algorithms such as Lenser et al. [4] or
Kohlmorgen et al. [2] will be able to find a suitable pdf
to describe the distributions or to detect changes, and the
clustering or segmentation will be successful.

As the system switches state more frequently however, the
maximum allowable size for a window will be reduced. This
has to be done in order to keep the probability of having no
transition in a window reasonably low. With this in mind, two
particular cases become difficult:

• Noisy systems with closely-spaced distribution, resulting
in significant overlap. According to Srebro et al. [11], the
difficulty in properly clustering data from two normally
distributed classes with means µa, µb, and identical
standard deviation σa = σb is related to the relative
distance |µa−µb|

σa
.

• Complex distribution that cannot be characterized within
a small window size. In this case, there is enough
information within a time-window to classify samples,
but if the distributions are unknown, there is not enough
information to decide whether the samples belong to the
same cluster.

III. APPROACH

The algorithm works as follow. Given that we have:
• a data set ~X of T time-samples of feature vectors ~xi,

~X = {~x1, ~x2, ..., ~xT } generated by a Markovian process
with Nc states, with probability of exiting any state less
than 50 percent,

• the sampled features ~xi ∈ ~X are representative, implying
that locally, the distance between two samples is related
to the probability that they belong to the same class,

• a classifier with parameters ~θ used to estimate the proba-
bility p(ci|~xt, ~θ) that sample ~xt belongs to class ci ⊂ C,
|C| = Nc,

• a classifier exploiting distance between data points ~xi ∈
~X to compute probability estimates,

• a set of parameters ~θ that is able to classify the data set
~X reasonably well.

The algorithm searches for the parameters ~θ that minimize:

arg min
~θ

Nc∑
i=1

∑T−1
t=1 (p(ci|~xt+1, ~θ)− p(ci|~xt, ~θ))2

var(p(ci| ~X, ~θ))2
(1)

In our context of terrain identification, ~X represents a time-
series of vehicle sensory information affected by the terrain
e.g., acceleration measurements.

Roughly speaking, the cost in Eq. 1 tries to strike a
balance between minimizing variations of classifier posterior
probabilities over time, while simultaneously maintaining a
wide distribution of posterior probabilities (var(p(ci| ~X, ~θ))).
This is all normalized by the number of samples in each
class (approximated as var(p(ci| ~X, ~θ))), thus preventing the
algorithm from clustering all samples into a single class. A
more thorough derivation of this cost function is provided in
Section III-A.

An important feature of this algorithm is that it can employ
either parametric or non-parametric classifiers. For example,
if two classes that can be modelled with normal distributions,
a linear separator is sufficient. On the other hand, a four-class
problem requires a more complex classifier, such as mixture
of Gaussians. If the shape of the distributions is unknown,
k-NEAREST NEIGHBOR can be used.

A. Derivation of the Cost Function using Fisher Linear Dis-
criminant

Let us assume that two classes, a and b, are normally
distributed with means µa and µb with identical variance σa

= σb. In Linear Discriminant Analysis (LDA), the data is
projected on a vector ~ω that maximizes the Fisher criterion
J(ω):

J(ω) =
(µaω − µbω)2

σ2
aω + σ2

bω

(2)

with µaω, µbω , σaω, σbω being the means and variances of
the data after projection onto ~ω. Data labels are required
in order to compute Eq. 2. For an unlabelled data set ~X
containing two normally distributed classes a and b, Eq. 2 can
be approximated if the probability that consecutive samples
belong to the same class is greater than 0.5. The within-
class variance Cvar projected on ~ω is approximated by the
average squared difference between consecutive time samples
~xt projected on ~ω :

Cvar(~ω, ~X) =
1

T − 1

T−1∑
t=0

(~ω · ~xt+1 − ~ω · ~xt)2 (3)

Its expected value is:

E{Cvar(~ω, ~X)} = σ2
aω + σ2

bω + (µaω − µbω)2Ptrans (4)

The between-class variance Cdist can be estimated by the
variance of the projected data. Provided that each class has
the same prior probability,

E{Cdist(~ω, ~X)} = E{var(~ω · ~X)} =

(µaω − µbω)2

4
+

σ2
aω + σ2

bω

2
(5)

Dividing Eq. 5 by Eq. 4 and letting the probability of a
transition Ptrans → 0, we get:

E{Cdist(~ω, ~X)

Cvar(~ω, ~X)
} → 1

2
+

(µaω − µbω)2

4(σ2
aω + σ2

bω)
(6)

Minimizing the inverse of Eq. 6 corresponds to finding the
Fisher criterion J(ω):

arg min
~ω

Cvar(~ω, ~X)

Cdist(~ω, ~X)
= arg max

~ω

Cdist(~ω, ~X)

Cvar(~ω, ~X)
≈ arg max

~ω
J(~ω)

(7)
with

Cvar(~ω, ~X)

Cdist(~ω, ~X)
=

∑T−1
t=0 (~ω · ~xt+1 − ~ω · ~xt)2

var(~ω · ~X)
(8)

The probability that sample ~xt belongs to class c, for a linear
separator classifier, can be expressed by a sigmoid function:

p(c|~xt) =
1

1 + e−kd
(9)

where d is the distance between ~xt and the boundary decision,
and k is a parameter that determines the ”sharpness” of the
sigmoid. Given a sufficiently small k and significant overlap of
the clusters, most of the data will lie within the region d � 1

k .
Eq. 9 can then be approximated by:

p(c|~xt) ≈
d

k
(10)

and Eq. 8 approximated as:

Cvar(~ω)
Cdist(~ω)

≈
∑T−1

t=0 (p(c|~xt+1, ~θ)− p(c|~xt, ~θ))2

var(p(c| ~X, ~θ))
(11)

Where ~θ correspond to the linear separator parameters. Eq.
11 is then normalized by p(ca| ~X, ~θ)p(cb| ~X, ~θ) to reflect the
probability of leaving a given state c. This normalizing factor
can be approximated by var(p(c| ~X, ~θ)), and the final cost
function is:

E(~X, ~θ) =
∑T−1

t=0 (p(c|~xt+1, ~θ)− p(c|~xt, ~θ))2

var(p(c| ~X, ~θ))2
(12)

B. Optimization: Simulated Annealing
The landscape of the cost function being unknown, sim-

ulated annealing was used to find the classifier parameters ~θ
that minimize E(~X, ~θ) described in Eq. Eq. 12. Although very
slow, it is necessary due to the presence of local minima. For
classifiers with few (less than 20) parameters, one parameter
was randomly modified at each step. For k-NEAREST NEIGH-
BOR classifiers, modifications were made to a few points
and a small random number of their neighbors. This strategy
improved the speed of convergence. The cooling schedule
was manually tuned, with longer schedules for more complex
problems. Three random restart runs were used, to avoid being
trapped in a deep local minimum.

IV. TESTING THE ALGORITHM ON SYNTHETIC DATA SETS

The algorithm was first evaluated using three different
classifiers (linear separator, mixture of Gaussians, and k-
NEAREST NEIGHBOR) on synthetic data sets. This was done
to demonstrate the range of cases that can be handled, as our
real robot data sets cannot cover some of those cases (e.g.,
complex-shaped distributions in Section IV-C.5). These sets
were generated by sampling a distribution s times (our so-
called segment length), then switching to the next distribution
and drawing s samples again. This segment length determined
the amount of temporal coherence present in the data. This
process was repeated until a desired sequence length was
reached. Fig. 1(b) shows a sequence of 12 samples drawn
from two Gaussian distributions, with a segment of length
3. For the test cases presented in this section, the segment
lengths were relatively short (between 3 and 5), to demonstrate
how the algorithm is capable of handling signals generated
from a system that changes state frequently. Results for these
synthetic distributions are shown in the following subsections.

A. Linear Separator Classifier with Two Gaussian Distribu-
tions

For linear separators, we used two closely-spaced two-
dimensional Gaussian distributions (Fig. 1(a)) with identical
standard deviation σx{1,2} = 0.863, σy{1,2} = 1, and the
distance between the means was 1. This simulated cases where
features are extremely noisy. Without labels, the combination
of the distributions is radially symmetric (Fig. 1(b)). The
optimal Bayes classification rate for a single data point for
these distributions was 70.7 percent, an indication of the
difficulty of the problem. The linear separator was trained
using Eq. 1, with probabilities computed from Eq. 9. A value
of k = 3 was chosen, although empirically results were similar
for a wide range of k values. 100 time sequences of 102
samples were randomly generated. The average classification
success rate was 68.5±6.8 percent, which is close to the Bayes
classification rate. Fig. 2 shows an example of the classifier
posterior probability over time after cost minimization.

B. Mixture of Gaussians Classifier with Three Gaussian Dis-
tributions

For mixture of Gaussians classifiers, three normal distribu-
tions in two dimensions (see Fig. 3) were used. The classi-

(a) Individual distributions (b) Combined Distributions
Fig. 1. Contour plot 1(a) of the two normal distributions used in testing
the algorithm with a linear separator. Their combination 1(b) is resembles a
single, radially-symmetric Gaussian distribution. A synthetic sequence of 12
data samples with segment length of 3 is also shown in 1(b), with a line
drawn between consecutive samples.

Fig. 2. Classifier posterior probability over time for the two classes drawn
from Gaussians distributions depicted in Fig. 1(a), after optimization (dashed
line). Ground truth is shown as solid green line. The segment length is 3. The
first 50 samples are shown.

fier itself had 9 free parameters: 6 for the two-dimensional
Gaussian locations, and 3 for the standard deviation (the
Gaussians were radially-symmetric). The three distributions
had covariance equal to:

σ1 =
(

.5 0
0 1

)
, σ2 =

(
.8 .1
.1 .6

)
, σ3 =

(
.8 −.1
−.1 .6

)
The distribution centers were located at a distance of 0.95

from the (0, 0) location and at 0, 120 and 240 deg angles.
The optimal Bayes classification rate for these distributions is
74 percent. 100 time sequences of 207 samples with segment
length of 3 were generated. The average classification rate was
69.2± 9.3 percent.

(a) Individual distributions (b) Combined Distributions
Fig. 3. Contour plot of the three normal distributions 3(a) and their sum
3(b) used to test the algorithm with a mixture of Gaussians classifier.

C. K-Nearest-Neighbor Classifier with Uniform Distributions

As an instance-based learning method, k-NEAREST NEIGH-
BOR [12] has the significant advantage of being able to
represent complex distributions. A major drawback associ-
ated with this classifier is the large number of parameters

(proportional to the number of points in the data set). This
results in lengthy computation time in order to find the
parameters that minimizes the cost function. Five different test
cases (few data points, unequal number of samples per class,
overlapping distributions, six-class distributions and complex-
shaped distributions) were designed to test the performance of
the algorithm using this classifier.

1) Few Data Points: For each test sequence, only 36
samples were drawn from 3 square, non-overlapping uniform
distributions, with a segment length of 3. The classifier used
k = 10 neighbors with a Gaussian kernel σ = 0.8. The
mean classification success rate over 100 trials was 93.7±6.1
percent. Fig. 4 shows these results in more detail.

Fig. 4. Results of clustering method applied on a data set of 36 points drawn
from three equal distributions. The best a) and worst b) results of clustering
are shown, with distributions shown as background grey boxes. c) shows the
histogram of success rates over 100 trials.

2) Unequal Number of Samples per Class: Three uniform
rectangular distributions of equal density, but different area
were sampled with a segment length is 3. In total, 84 samples
were drawn from the smallest, 168 from the medium and
252 from the largest distribution. The classifier used k = 20
neighbors with a Gaussian kernel σ = 0.8. The average
classification success rate over 80 trials was 87.8 ± 11.6
percent. Fig. 5 shows these results in more details.

Fig. 5. Results of clustering method applied on a data set of 504 points,
drawn from three distributions of different sizes. The best a) and worst b)
results of clustering are shown, with distributions shown as background grey
boxes. c) shows the histogram of success rates over 80 trials.

3) Overlapping Distributions: Two distributions with sig-
nificant overlapping (40 percent) were used to generate
the data. The overlapping regions were selected so non-
overlapping regions within a class would be of different
sizes. The classifier used k = 20 neighbors with a Gaussian
kernel σ = 0.8. 57 test sequences of 504 points, with a
segment length of 3 were randomly generated. The average
classification success rate was 76.3± .6.4 percent, not too far
from the maximum possible rate of 80 percent.

4) Six-Classes Distributions: Six square uniform distribu-
tions were used in these tests. The classifier used k = 10
neighbors with a Gaussian kernel σ = 0.8. 100 test sequences
of 306 points, with a segment length of 3 were randomly
generated, with detailed results shown in Fig. 6. The average
classification rate was 90.0± 5.7 percent.

Fig. 6. Clustering results for a data set of 306 points drawn from 6
distributions of equal sizes, with segment length of 3. The best a) and worst
b) results are shown, with distributions shown as background grey boxes. c)
shows the histogram of success rates over 100 trials.

5) Complex-Shaped Distributions: Complex-shaped distri-
butions were simulated using two, two-dimensional spirals.
Data was generated according to the following equations:

x1 = (tt + d⊥) ∗ cos(φ + φ0), x2 = (tt + d⊥) ∗ sin(φ + φ0)
(13)

with φ = darc

√
rand{0..1} the arc distance from the center,

d⊥ = N(0, σSRnoise) a perpendicular, normally distributed
distance from the arc, and φ0 equal to 0 for the first distribution
and π for the second. 5,000 data points were drawn for
each trial, with segment length of 5 using darc = 15 and
σSRnoise = 0.9 for the distributions. Fig. 7 shows time
sequences of 10 and 50 samples from the test sequence used.
One can see that the shape of the distributions cannot be
inferred from short sequences, even when data labelling is
provided.

The k-NEAREST NEIGHBOR classifier used k = 40 neigh-
bors, with a Gaussian kernel of σ = 0.4. Fig. 8 shows classi-
fication success rate achieved for the 19 test cases generated.
Fig. 9 shows a successful and unsuccessful case of clustering.
If we exclude the 3 unsuccessful cases, considering them as
being outliers due to the simulated annealing getting stuck in
a local minimum, the average value of classification success
was 92.6± 0.4 percent.

Fig. 7. Time sequence shown in feature space for a) ten samples and b)
fifty samples drawn randomly from the distributions described in Eq. 13 and
shown in c), with segment length of 5 samples. The spirals are not visible in
a) and barely discernible in b).

Fig. 8. Histogram showing the distribution of the 19 classification success
rates after clustering. The majority of results were located around 92 percent,
with three cases failing to completely identify the underlying structure.

D. Comparison with a Window-based Method

Performance of this algorithm was compared to the seg-
mentation algorithm described in Lenser et al. [4]. The latter
algorithm was run until only two clusters were left. The data
used was generated from a simpler version of the two-spiral
distributions, with darc = 5 and σSRnoise = 0.9., with 250
samples per test case. A test case is shown in Fig. 10 a),
without temporal information for clarity. For long segment
lengths (over 60 samples), success rates are similar for both
methods. As expected, Fig. 10 b) shows that shorter seg-
ment lengths negatively affect the window-based method, with
larger windows being affected most. This can be explained by
the merger of the two clusters through windows containing
data from both distributions. The number of such windows is
greater for a larger window size and a smaller segment length.

V. TESTING ALGORITHM ON ROBOT SENSOR DATA:
AUTONOMOUS TERRAIN DISCOVERY

The vehicle used to collect various ground surfaces data
(Fig. 11) [14] was a hexapod robot specifically designed for
amphibious locomotion. It was previously shown in Giguere et
al. [15] to be able to recognize terrain types using supervised
learning methods. The robot was equipped with a 3-axis Iner-
tial Measurement Unit (3DM-GX1TM) from Microstrain. The
sensors relevant for terrain identification are: 3 accelerometers,
3 rate gyroscopes, 6 leg angle encoders and 6 motor current es-
timators. Each sensor was sampled 23 times during a complete
leg rotation, thus forming a 23-dimensions vector. Multiple
vectors could be concatenated together to improve detection,
forming an even higher dimensionality feature vector for
each complete leg rotation. Dimensionality was subsequently
reduced by applying Principal Component Analysis (PCA). In
the following experiments, only the two first main components

Fig. 9. Successful (92 percent) a) and unsuccessful b) clustering for a two-
class problem of 5,000 points generated according to Eq. 13. The segment
length was 5.

Fig. 10. Average clustering success rate for the windowless algorithm and the
segmentation algorithm in Lenser et al. [4] for time-window sizes of 5, 10 and
15 samples. When transitions are infrequent (corresponding to segment length
over 60), success rates are similar for both methods. For shorter segment
lengths, the window-based method fails to identify the two clusters and instead
simply merge them together.

were used. Even though some information is discarded, our
previous results in [15] indicated that this was sufficient
to distinguish between small numbers of terrains. If more
discrimination is needed, other components can be added.

These experiments were restricted to level terrains, with
small turning maneuvers. Changes in terrain slopes or complex
robot maneuvers impact the dynamics of the robot, and
consequently affects how a particular terrain is perceived
by the sensors. Discarding data when the robot performs a
complicated maneuver or when the slope of the terrain crosses
a threshold would mitigate this issue. Terrains were selected
to offer a variety of possible environments that might be
encountered by an amphibious robot. They were also different
enough that, from a locomotion point of view, they are distinct
groups, and thus form classes on their own.

Fig. 11. The hexapod robot, shown equipped with semi-circle legs for land
locomotion. The vehicle moves forward by constantly rotating legs in two
groups of three, forming stable tripod configurations.

A. Overlapping Clusters with Noisy Data

The first data set was collected in an area covered with
grass, with a section that had been recently tilled. The robot
was manually driven in a straight line over the grass, crossing
eventually to the tilled section. The robot was then turned
around, and manually driven towards the grass. Eight transi-
tions were collected in this manner. The problem was made
more challenging by using only the pitch angular velocity
vector. Using more sensor information would have reduced
the noise and increased the relative separation between the
two clusters.

Two classifiers were used in the clustering algorithm for
this data set. The first one was a linear separator with a
constant k = 3.0. Classification success after clustering was
78.6 percent (see Figs. 12 and 14(a)), a value certainly close to
the Bayes error considering the overlap between the classes.
The second classifier used for clustering was a k-NEAREST
NEIGHBOR classifier with k = 10 and σ = 1.0 for the kernel.
As expected, k-NEAREST NEIGHBOR had slightly inferior
results, with a classification success rate of 73.9 percent (see
Figs. 13 and 14(b)). The larger number of parameters (454
compared to 2 for the linear separator) makes this classifier
prone to over-fit the data, potentially explaining the difference
in performance.

Fig. 12. Sensor data set collected for a robot walking on grass and tilled
earth, with eight transitions present in the data. The solid line represents
the separator found on the unlabelled data using the algorithm with a linear
separator as classifier. Even though the clusters have significant overlap, the
algorithm still managed to find a good solution. Notice how the separator is
nearly perpendicular to a line joining the distribution centers, an indication
that the solution is a close approximation to LDA on the labelled data.

Fig. 13. Same data set as Fig. 12, clusterized with the algorithm using a k-
NEAREST NEIGHBOR classifier. The circled data points are wrongly labelled.
Most of them are located either at the boundary between the two distributions,
or deep inside the other distribution.

(a) Linear Separator (b) k-NEAREST NEIGHBOR

Fig. 14. Confusion matrix for classification of two-terrain data obtained after
clustering using a) a linear separator and b) the k-NEAREST NEIGHBOR.

B. Fast-Switching Semi-Synthetic Data
Another data set was collected over five different terrains,

and a high-dimensionality feature vector for each complete
leg rotation was generated using 12 sensors (all 3 angular
velocities, all 3 accelerations and all 6 motor currents). As
in the previous case, only the two first principal components
were used. Of all sensors, the motor currents were the most
informative.

No rapid terrain changes were present in the original data
set, so segments of data were selected according to the random
state change sequence shown in Fig. 15. This artificially
decreased the average segment length to a value of 6, with
individual states having average segment lengths between 3.5
and 9.8. A classifier with a mixture of five radially-symmetric
Gaussians was used in the clustering algorithm. Fig. 16 shows
the labelling of the data set and Fig. 17 shows the confusion
matrix. Overall, 91 percent of the data was grouped in the
appropriate class. Even though some of the distributions are
elongated (for example linoleum), the combination of sym-
metric Gaussians managed to capture the clusters. Standard
clustering techniques struggled with these distributions, with
average classification success rates of 68.2 and 63.0 percent
for mixture of Gaussians and K-means clustering, respectively.

Fig. 15. State (from 1 to 5) sequence used to generate the time sequence of
data in the clustering problem shown in Fig. 16. The shortest segment length
is 3, and the average segment length is 6.

VI. DISCUSSION

A. Comparing Cost Functions from Previous Works
In [3], the cost function to be minimized is:

E(Θ) =
T∑

t=1

(yt−
N∑

s=1

ps,tfs(~xt))2 +C

T−1∑
t=1

N∑
s=1

(ps,t+1−ps,t)2

(14)
with fs(.) as a kernel estimator for data ~xt for state s,
ps,t as the mixing coefficient for state s at time t, θ =
ps,t : s = 1, ..., N ; t = 1, ..., T as the set of coefficients to be
found, and C as a regularization constant. In [2], the cost
function is:

o(~s) =
T∑

t=W

d(ps(t)(~x), pt(~x)) + Cn(~s) (15)

Fig. 16. Applying the clustering algorithm on a data set of five environments,
with a mixture of five Gaussians as a classifier. Labels shown are the ground
truth. The samples surrounded with a small square are wrongly labelled.
The five red cross-hairs are the location of the Gaussians, the thick circles
representing their standard deviation. The decision boundary is represented
by the red curved lines.

Fig. 17. Confusion matrix for the clustering shown in Fig. 16.

With d(., .) being a L2-Norm distance metric function, ~s a
state sequence, pt(~x) the pdf estimate within the window at
time t, ps(t)(~x) the prototype pdf for state s(t), n(~s) is the
number of segments and C a regularization constant.

Eq. 14 and Eq. 15 can be separated in two parts: the first part
minimizes representation errors, and the second part minimizes
changes over time. A regularization constant C is needed to
balance them, and selecting this constant is known to be a
difficult problem. In contrast, our cost function (Eq. 12) does
not take into account the classifier fit to the actual data ~X .
Instead we solely concentrate on the variation of the classifier
output over time, thus completely eliminating the need for
a regularization constant and associated stabilizer. This is a
significant advantage. The fact that the classifier fit is not taken
into account by our algorithm can be seen in the mixture of
Gaussian result case shown in Fig. 16: the location of the
Gaussians and their width (marked as circled red cross-hairs)
do not match the position of the data they represent. Only
the decision boundaries matter in our case. If the actual pdf s
are required, a suiting representation can be fitted using the
probability estimates found.

B. Distances and Window Size for Complex Distributions

Algorithms relying on distances between pdf s described
within small windows such as the one used by Kohlmorgen et

al. [2] succeed if the distance between a sample and other
members of its class is much smaller than its distance to
members of the other class. For complex distributions such
as the one used in the spirals case, this is not the case: the
average distance between intraclass points and interclass points
is almost identical: 13.4 vs 13.9. This can be seen in Fig. 18,
were the distribution of distances are almost overlapping. Our
algorithm with a k-NEAREST NEIGHBOR classifier succeeds
because it concentrates on nearby samples collected over the
whole duration, and these have the largest difference between
intraclass and interclass distances (distance less than 2 in Fig.
18).

Fig. 18. Distribution of distances between samples belonging to the same
class (intraclass) and samples belonging to different classes (interclass), for
the spirals data set used in Fig. 9. The distributions almost completely overlap,
except at shorter distances.

Moreover, to avoid transitions in their time-windows, these
algorithms would have to limit their time-window sizes. Bear-
ing in mind that for the spirals data set in Fig. 9 the segment
length was 5, this would result in window sizes of 2 to
3 samples. These distributions cannot be approximated in a
satisfactory manner with so few points. From simple visual
inspection one can see that it requires, at a minimum, 10 to
20 points. An advanced dimensionality reduction technique
such as Isomap [16] could be used to simplify this type of
distribution. If data points bridging the gap between the spirals
were present at regular intervals however, Isomap would be of
little help.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a new clustering method based
on minimizing a cost function related to the probability output
of classifiers. Synthetic test cases were used to demonstrate
its capabilities over a range of distribution types. The same
method was employed on data collected with a walking robot,
clustering its sensor data in terrain categories successfully.

As future work, we intend to quantify the impact of segment
lengths, overlap and number of points in sequence on the
clustering process. We are also looking at methods to estimate
the number of classes present in the data set, so it would not
need to be known beforehand. Since merging classes together
does not affect the cost but splitting a valid class does, a rapid
increase of cost-per-data point as we increase the number of
clusters in the algorithm is a potential indicator that we have
found the proper number of classes.

A major drawback of using simulated annealing to find
the minimum cost is its prohibitive computing time, in the

order of hours on a dual CPU 3.2 GHz Xeon machine for
the most complex distributions. There are indications that
other optimization techniques could be employed to drastically
reduce the amount of computation required.

We are looking at applying this algorithm outside the scope
of terrain discovery. Many segmentation problems exhibit
continuity in their sets, such as texture segmentation (spa-
tial continuity) or video (temporal continuity) segmentation.
Feature ranking for continuous processes is another possible
application, where the cost function could be employed to
evaluate each feature individually.

REFERENCES

[1] Pawelzik, K., Kohlmorgen, J. and Muller, K.-R. (1996). Annealed com-
petition of experts for a segmentation and classification of switching
dynamics. Neural Computation, 8(2), 340–356.

[2] J. Kohlmorgen and S. Lemm. An on-line method for segmentation and
identification of non-stationary time series. In NNSP 2001, pp. 113-122.

[3] J. Kohlmorgen, S. Lemm, G. Rätsch, and K.-R. Müller. Analysis of
nonstationary time series by mixtures of self-organizing predictors. In
Proceedings of IEEE Neural Networks for Signal Processing Workshop,
pages 85-94, 2000.

[4] S. Lenser and M. Veloso. Automatic detection and response to envi-
ronmental change. In Proceedings of the International Conference of
Robotics and Automation, May 2003

[5] Weiss C., Fröhlich H., Zell A. Vibration-based Terrain Classification
Using Support Vector Machines. In Proceedings of the IEEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), October,
2006.

[6] Weiss C., Fechner N., Stark M., Zell A. Comparison of Different
Approaches to Vibration-based Terrain Classification. in Proceedings of
the 3rd European Conference on Mobile Robots (ECMR 2007), Freiburg,
Germany, September 19-21, 2007, pp. 7-12.

[7] Brooks C., Iagnemma K., Dubowsky S. Vibration-based Terrain Analysis
for Mobile Robots. In Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005.

[8] Dupont, E. M., Moore, C. A., Collins, E. G., Jr., Coyle, E. Frequency
response method for terrain classification inautonomousground vehicles.
In Autonomous Robots, January, 2008.

[9] Sadhukan, D., Moore, C. (2003). Online terrain estimation using internal
sensors. In Proceedings of the Florida conference on recent advances in
robotics, Boca Raton, FL, May 2003.

[10] S. Lenser, M. Veloso, Classification of Robotic Sensor Streams Using
Non-Parametric Statistics, Proceedings of the 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IEEE, October,
2004, pp. 2719-2724 vol.3

[11] N. Srebro, G. Shakhnarovich, S. Roweis, When is Clustering Hard?.
PASCAL Workshop on Statistics and Optimization of Clustering, July
2005.

[12] Cover, T.M. and Hart, P.E., 1967. Nearest neighbor pattern classifica-
tion. IEEE Transactions on Information Theory, 13(1), 21-27.

[13] U. Saranli, M. Buehler, D.E Koditschek RHex: A simple and highly
mobile hexapod robot, The International Journal of Robotics Research,
vol. 20, no.7, pp.616-631, 2001.

[14] G. Dudek, M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere, A.
German, H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L. A. Torres-
Mendez, E. Milios, P. Zhang, I. Rekleitis A Visually Guided Swimming
Robot, Proceedings of the 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1749-1754, 2005.

[15] P. Giguere, G. Dudek, C. Prahacs, and S. Saunderson. Environment
Identification for a Running Robot Using Inertial and Actuator Cues.
In Proceedings of Robotics Science and System (RSS 2006), August,
2006.

[16] J. Tenenbaum, V. de Silva, J. Langford. A Global Geometric Framework
for Nonlinear Dimensionality Reduction. Science 22 December 2000: Vol.
290. no. 5500, pp. 2319 - 2323.

