Resolution-based policy search for imperfect information differential games

Minh Nguyen-Duc, Brahim Chaib-draa
DAMAS Laboratory
Laval University
Sainte-Foy (Quebec), Canada
{mnguyen, chaib} @damas.ift.ulaval.ca

Abstract

Differential games (DGs), considered as a typical model
of game with continuous states and non-linear dynamics,
play an important role in control and optimization. Finding
optimal/approximate solutions for these game in the imper-
fect information setting is currently a challenge for mathe-
maticians and computer scientists. This article presents a
multi-agent learning approach to this problem. We hence
propose a method called resolution-based policy search,
which uses a limited non-uniform discretization of a perfect
information game version to parameterize policies to learn.
We then study the application of this method to an imper-
fect information zero-sum pursuit-evasion game (PEG). Ex-
perimental results demonstrate strong performance of our
method and show that it gives better solutions than those
given by traditional analytical methods.

1 Introduction

In this paper, we will consider the application of multi-
agent learning techniques to differential games, which aims
to study problems related to conflicts. In a basic DG, there
are two agents: a pursuer, that tries to catch the other agent,
and an evader, the mission of which is to prevent this cap-
ture. DGs are mathematically modeled by defining state
variables, such as the agents’ position, velocity and accel-
eration, by means of differential equations. The study of
these games particularly has implications for real-life air
combats, or more generally for applications in control and
optimization.

Researchers have been recently interested in DGs with
imperfect information, i.e. in the situation where some
agents cannot obtain complete knowledge of the state vari-
ables. Since there is currently no general optimal solution
method for such games, approximate methods have been
considered. However, in most of the cases, the complexity
of approximate calculations is still prohibitive.

Therefore, we introduce an approach to find approxi-
mate solutions by using multi-agent learning techniques.
As discussed in [11], the state/action discretization reso-
lution strongly affects numerical solutions of DGs. This
is not only the question how high the resolution is, but
also if the resolution is not uniform among different parts
of the state/action space. Sheppard [10] proved that an
uniform discretization does not guarantee sufficiently good
solutions for a DG. We thus propose a method of policy
search [1, 3, 8] based on variable resolution [9, 12]. Such a
method also allows us to use of computer simulations with
Monte Carlo experiments.

2 Differential games
2.1 Definitions

The theory of DGs is an application of the general game
theory, whose subject is the control in conflict situations.
It is usually assumed that the motion of the overall system
is defined by differential equations called kinematic equa-
tions:

or

o5 = (x(t),ur(t), ..., un(t)) (1)

where z is the global kinematic state including the states of
all the agents, ¢ is the time, and wu; is the policy of the agent
1.

Each agent tries to drive state variables of the game, i.e.
the agents’ position, velocity and acceleration, into a partic-
ular target set in the space, by controlling its key variables.

An important DG family is that of minmax games [5],
each of which has a payoff that some agents minimize and
the others maximize:

J= /G(x(t),ul(t),...,uN(t))dt+H o)

J* = max...maxmin ... min J 3)
Uy Uj  Uji1 uN



where J is the overall payoff, J* is its optimal value,
J G(.)dt is the accumulated payoff, and H is the terminal
payoff. Particularly, a two-player minmax game is equiva-
lent to a zero-sum game.

The solution of a DG is normally formulated as the
agents’ optimal policies u,7 =1, ..., N.

2.2 A pursuit-evasion game

The pursuit-evasion game (PEG), a specific zero-sum
game, that we present here has played an important role in
the research on anti-missile problems [6]. The considered
situation is when a defensive missile launched from a ship
has to intercept an incoming missile.

The velocity elements subjected to the straight line along
which the threaten missile comes to the ship are assumed to
be constant. All the policies that the two “agents” can play
are thus concerned with the velocity elements perpendicular
to this line. In addition, the game is constrained by time, tra-
jectory and control limits. Therefore, it represents a kind of
one-dimensional bounded control game. A particular state
variable called zero-effort miss distance Z is calculated at
each moment. It is in fact the minimal relative separation
that two agents can reach if they do not change their accel-
eration. The payoff (see Equation 2) is determined as the
final value of Z at the end of the game (a pure terminal pay-
off).

Gutman [4] introduced the following optimal solution of
the game:

* *
a;(6) = Qe () =sgn(Z(0)),V0 < endgame (4)

(@p)maz

(ae)mam

where 6 is the normalized remaining time, a,,(6) and a.(6)
are respectively the accelerations of the pursuer (defensive
missile) and the evader (incoming one), a;,(#) and a () are
their optimal values.

This result suggests that before the interception moment
(if it happens) the evader performs its maximal manoeuvre
in only one direction during at least ¢y, qgame, and the pur-
suer follows it by performing its maximal manoeuvre.

3 Imperfect information setting

A DG is said to be in the imperfect information setting
if some agents, called “blind” agents, cannot obtain com-
plete knowledge about the positions and actions of the other
agents. Notice that in the perfect information setting, the
agents always deterministically play games.

3.1 Stochastic playing

Because of the lack of information about the other
agents, a “blind” agent has to play a stochastic policy while

hoping some probability of success. Consequently, a “no
blind” agent, in its turn, also plays a stochastic policy, still
takes advantage of full information. The agents cannot di-
rectly minimize/maximize the targeted payoff .J of the orig-
inal perfect information game (see Equation 2), and thus
seeks to minimize/maximize the probability J,, that this
initial payoff is superior (or inferior) to some threshold (.

Jpp=Pr{J>(}=1-Pr{J <(} (5)

Such stochastic DGs still cannot be totally resolved. Re-
searchers mainly use optimal solutions of perfect informa-
tion games as guides for stochastic analyzes of imperfect
information games [6].

In the PEG presented in 2.2, the evader can be “blind”,
i.e. it cannot obtain any information of the positions of the
pursuer. It does not know the “launching” moment of the
pursuer, so it does not know the interception moment either.
By following the suggestion from the solution of the per-
fect information game, the evader can perform its maximal
manoeuvre, and switch its manoeuvre direction at random
moments. It is also suggested that it maintains a manoeuvre
direction during at least fcpqgame before each switching.
The random duration between any two consecutive direc-
tion switches can follow a distribution F'(), e.g. the fol-
lowing random telegraph type:

F(0) =1 —exp(—\9) (6)

This is an example of stochastic policy of the evader.
To ensure some interception probability, the pursuer fol-
lows the evader by performing randomly biased manoeu-
vres (see [6]). We recognize that the two assumptions that
the evader always performs its maximal manoeuvre and that
its direction switching follows the random telegraph rule are
not general, and of course, do not guarantee an optimal so-
lution. Actually, the complexity of the mathematical cal-
culation of optimal stochastic policies is so prohibitive that
researchers have no choice but to impose such specific as-
sumptions.

3.2 Approximate solutions

When a problem cannot be optimally resolved yet, one
tries to find approximate solutions. A natural way to do that
is to rely on the discretization, which leads to numerical
algorithms.

We now return to the imperfect information PEG de-
scribed in 3.1. Shinar and Silberman [11] proposed a dis-
crete model of the game. The one-dimensional kinematic
space is uniformly discretized into 2m + 1 positions from
—m to m. The velocities of the pursuer and the evader
respectively vary from —d to d and from —kd to kd (the
evader is k times quicker than the pursuer). The duration of



the game is fixed to 7 time steps. The two agents do not
use their accelerations but, more simply, use their veloci-
ties to play the game. So this game is much less general
than the one described in 3.1. The pursuer taking advantage
of full observation can moreover play with its “launching”
moment.

Shinar and Silberman [11] also tried to solve this discrete
PEG in very simple cases, e.g. m =4, T =4,d =1,k =
2, by establishing a global matrix game from all the non-
dominated deterministic policies (pure policies), calculated
for both agents. Formally, any pair of pure policies, U, ;
and U, ;, can be presented as follows:

Ue,i = {xe,Oa’Ue,la (X Ue,T} S Ue (7)
Up,j = {tp,0:Tp,0, Up,ty o+1s s Up,7} € Up, (®)
with v,y = dsgn(ze — xp), vt € {1,...,T}

where U, and U, are respectively the sets of all the possible
policies for the two agents, ¢ ¢, T, and ve ¢, vy, are their
positions and velocities at time ¢, and £, o is the “launching”
moment of the pursuer.

The two stochastic policies are in fact the Nash equilib-
rium of the matrix game. Such policies are not instanta-
neous or, in other words, they must be totally pre-calculated
before one makes the agents play the game. The size of
the matrix as well as the policy calculation complexity are
polynomial in m and exponential in 7". One should pay at-
tention that for the DGs the time is usually considered as a
state variable.

4 Learning approach
4.1 How to learn stochastic policies?

With the aim to reduce the complexity of the stochas-
tic policies’ calculation while ensuring their high quality,
we rely on the application of multi-agent reinforcement
learning techniques. However, learned policies will only
bring some significance if we reach some degree of con-
trol over the learning process. For example, we are able to
increase/reduce the learning time while ensuring the con-
vergence. Consequently, we try to control all the parame-
ters concerned with the learning process, e.g. the number of
“indirect” discretization samples presented below (see 5.1).

We are trying to learn stochastic policies for DGs in the
imperfect information setting. If we use a computer simula-
tion as learning environment, we can provide perfect infor-
mation to all the agents. This allows, firstly, to learn policies
for an intermediate DG version (modeled in 4.2), that can be
defined as a DG in which the agents are provided perfect in-
formation, but still play stochastic policies and seek to min-
imize/maximize the same value as in the imperfect infor-
mation game (see Equation 5). The overall learning process

can thus be decomposed into two steps: (1) agents’policies
for an intermediate DG version are learned by using the
resolution-based policy search; (2) starting from these poli-
cies, those for the associated imperfect information DG are
estimated by using Monte Carlo experiments (illustrated in
6.1).

4.2 Game modeling

To make agents learn their own stochastic policies, we
model an imperfect information DG as a discrete-time
decision-making process. Consequently, the time to make
decisions is uniformly discretized into small time steps A7.
After each A7, each agent falls into a state s, € Sgg,
and chooses an action aqq4, € A,g, according to a stochas-
tic policy, Tag, : Sag, X Agg, — [0,1]. The objec-
tive of the agent’s playing is to maximize the discounted
sum of rewards, Rag, : Sag, X Ajoint — R, over a fi-
nite horizon of 7' time steps. This game model is not
Markovian yet [7] because the reward on the joint state,
Rag, : Sjoint X Ajoine — R, and the joint state transi-
tion, T : Sjoint X Ajoint X Sjoint — [0,1], cannot be
mathematically represented.

Notice that the time, as a state variable, is always contin-
uous. That means that if we change A7, the time elements
of any state remain the same, and the agents can always use
the same policies m,4,,¢ = 1, ..., Nygent, for both playing
and learning.

In a simulation environment, we can provide all the in-
formation to all the agents in order, firstly, to learn poli-
cies for an intermediate DG version (see 4.1). Based on the
imperfect information modeling previously presented, such
a game version can be modeled in the form of a Markov
game [7]. Indeed, because of full information provided,
at any decision-making moment, the state of each agent
Sag; € Sag, 1s equivalent to the joint state $;oint € Sjoint-
Hence, there exists, for each agent, only one reward func-
tion, Ryy, = Rqg,. If we do not take into account erroneous
actions and noisy information, this kind of Markov game
is quite deterministic, i.e. it has a deterministic transition
function, T : Sjint X Ajoint X Sjoint — {0,1}.

5 Resolution-based policy search

5.1 Variable resolution

As discussed in 4.1, the discretization resolution strongly
affects numerical solutions of DGs. We thus intend to ap-
ply existing variable resolution methods [9, 12] to the dis-
cretization of perfect information game versions, then use
this discretization to build parameterized stochastic policies
in continuous state-action spaces (see 5.2). Additionally, we
seek to control the number of discretization samples.



To be discretized by using variable resolution methods,
a perfect information DG must be deterministic or its dis-
cretization must be always a known Markov decision pro-
cess (MDP). This condition will be met if any agent deter-
ministically chooses actions, if any joint action determinis-
tically transforms a joint state into another one and if any
joint state determines an immediate reward (e.g. the change
of zero-effort miss distance presented in 2.2). And this is
the case for most of the DGs we have studied.

The existing discretization algorithms are mainly based
on the definition of state splitting criteria. We are interested
in the use of valued criteria (not yes/no criteria) [9, 12]. We
begin with a uniform discretization and then improve it. At
each “splitting iteration”, we select V4, state-action areas
with the highest criterion values and split them. At each
“merging iteration”, we select Ny, adjacent area pairs with
the lowest criterion values and merge each of them. This
process stops after V;; iterations or when the criterion val-
ues of all the state-action areas are inferior to some thresh-
old.

In this way, we can obtain m discretization samples
Sjoint,i € Sjoint X Ajointyi = 1,...,m, from which we
can derive for each agent m discretization samples s; €
S x A,i =1,...,m, and the corresponding set of n state-
action areas {(As),|j =1,...,n}.

5.2 Parameterized policy

Our objective is to build for each agent a policy function
by focusing it on the most significant state-action areas. The
policy parameterization algorithm can be represented as fol-
lows:

Inputs A sampling s; € S x A,i = 1,...,m (or n state-
action areas); the required number of parameters q.

Output A policy function 7(s) having ¢ parameters wj,
withj =1,...,q

1. Assuming that the initial probability to be in any state-
action area (As);,4 = 1,...,n, is the same and equal
to 1/n, calculate for each area

~ !
F(89)) = oy ©)

2. Determine the g most significant state-action areas
(As)j,j =1,...,q, whose T((As);) is to be modified
(see Appendix A).

3. Define g parameters w;,j = 1, ...
lowing ¢ linear equations:

(As);7((As);) = (10)

j—1

1 q
(As)jw; — 1 (;(As)kwk + Z (As)kwk)

k=j+1

, g, satisfying the fol-

We can represent 7((As);) = fas), (w1, ..., wq),
withj =1,...,¢q

4. Build the policy function 7(s) by smoothly interpo-
lating all the 7((As);),i = 1,...,n, including the ¢
linear functions of the parameters f(as), (w1, ..., wy),
j =1,...,q; then normalize 7(s).

Intuitively, we assume that all the state-action areas ini-
tially have the same probability. Afterwards, we define ¢
parameters that modify the probability of the ¢ state-action
areas considered as the most significant. Concerning the
notation, we use from now (s, a) instead of 7(s).

5.3 Policy update

The purpose of the learning process for a single agent is
to maximize the performance p of the policy 7 (s, a) (ac-
cording to [1, 8]):

p(m) = /Vﬂ(seT)d3€T> (11)
T ot
with V. (ser) Z[H 7(s;,a; }’th(st,at)
t=1 :
where the sequence ser = (s1,az,..., ST, ar) represents

a trial, and R(s,a) is the reward function (to simplify the
formalism, we do not take into account the other agents yet).

After performing a trial (or several trials) by following
the current greedy policy with some exploration (not de-
tailed here), we update the parameters of the policy function
by climbing the gradient of performance:

awi
t
dlnn(s;,a;
-« Z<Z #)Pﬂ—vt(st)’th(sta at)v
t=1 j=1 ¢
(12)
t
with Pﬂrf Sf H 5]7aj

where « is the learning rate, v is the discount factor, and
Py 1(s¢) is the probability to be in s; after ¢ steps while
following 7 from a single start sate s1, assumed to be fixed.

5.4 Adaptation to the adversary

The main challenge of the application of a mono-agent
learning technique to a multi-agent problem is the adapta-
tion to the other learning agents which make the world not
stationary. In this article, we deal with the simplest case of



adaptation to an only adversary. Hence, the policy update is
reformulated as follows:

i Olnmy(s1,5,a1,5)
w; <—w,+a;{(zawz)

P7T1,Tr2~,t(81,ta 52,t)

’YtR(Sl,t, S2,t5 A1t a2,t)] (13)

where the subscript 1 indicates the agent which makes the
update, and the subscript 2 indicates the adversary.

Although one of the agents is “blind”, during an off-line
learning process using simulations, we can provide perfect
information to all the agents (see 4.2). The agents’ state is
therefore common, and the policy update is still reformu-
lated as follows:

i<—wz+aZKZ Olnm( Zji’alj))

t=1 j=1

Pﬂ1,7r2,t(st)'7tR(5tv ait, a2,t):| (14)

A well-known method to adapt to a learning adversary is
“Win or Learn Fast” proposed by [2], which suggests that
the learning rate should be small when the policy 7 is better
than an average policy 7, and should be big otherwise, as
follows:

T1(s,a) «— T1(s,a) + (m1(s,a) —T1(s,a)) (15)

trial

o= Qmin 1 VTr1,7r2 (SeT) > V?1,7r2 (SeT)
Qnax  Otherwise ’

with V., -, (ser) =

(16)

Z{H m1(8j,a1,5)m2(s5, az, J)}'Y R(st,a1t,az)

where Ny,;q; 1S the number of performed trials.

6 Experimental evaluations
6.1 Learning

In the perfect information setting, the optimal determin-
istic playing of the one-dimensional PEG introduced in 2.2
can be informally specified as follows:

o At first, the evader begins to play and does not change
its position;

e The pursuer chooses its “launching” moment, then fol-
lows the evader by maximally accelerating;

e Based on the “launching” moment of the pursuer, the
evader calculates the interception moment ¢ and the
end game’s starting moment t f — Oepdgame (see 2.2);

e At the right time, the pursuer starts the end game by
maximally accelerating in an unique direction.

This solution can be presented in the agent’s reduced
state space (6,7) (see 2.2), as illustrated in Figure 1,
which moreover shows the discretization result of this
game in the case where (n,q) = (32 x 4,12 4 4) (see
5.2). The evader’s action a. (lateral acceleration) is also
discretized into three regions [—(ae)mazs —0.87(@e)maz)s
[_0~87(ae)maw7 0-81(ae)maa:)a [0~81(ae)maz7 (ae)maa:]~
And a similar discretization is obtained for
the pursuer: [—(ap)maz, —0.89(ap)maz)s
[*0-89(ap)maza 0-93(ap)maz)’ [O~93(ap)mara (ap)mam]-
We obtain similar results for n = 32 x 4,50 x 4,72 x 4
andq =12+ 4,16+ 4,24 4 4.

Starting from these results, we build 9 pairs of ¢-
parameter policy functions (7. (6, Z, a.), 77;(9, Z,ap)) for
the associated intermediate game (defined in 4.1).

2

15

6)
1

Lo I
- T

Figure 1. Discretization result of the (0,2)
space (n =32 x 4, g =12+ 4).

To learn 7r:3 and 77;), we use a specialized defense simu-
lation environment. We choose A7 = 18, e = 0.25
and @in, = 0.015. R.(0,Z,a.,a,) and R, (0, Z, a., ap)
are respectively estimated by using the statistical avoid-
ance probability of the evader and the statistical interception
probability of the pursuer. These probabilities are initially
set to 0.5, then accumulated and linearly interpolated after
each trial. After performing 1000 trials for each pair (n, q),
n=32x4,50x4,72 x 4, a= 124+ 4,16+ 4,24 + 4, we
obtain 9 pairs of policies (1., 7rp>

We now illustrate the Monte Carlo estimation of policies
for the associated imperfect information game. Because a
“blind” evader does not know the positions and the “launch-
ing” moment of the pursuer, its policy can be formulated as

Te(t, ae) = /Pr(@, Z | Om.(0, Z, a.)dt



where ¢ is the continuous playing time calculated from the
game’s beginning. The pursuer does not choose a fixed
“launching” moment, so its policy can be reformulated as

m(t, Z, a,) = / Pr(0 | t)m, (0, Z, a,)dt

If we rewrite Pr(0,Z | t) = Pr(0 | t)Pr(Z | t), we
will directly estimate only two probabilities Pr(0 | ¢) and
Pr(Z | t) by using Monte Carlo experiments and the lin-
ear interpolation. Indeed, for each pair of policies <7r:37 7r;,>,
we perform 1000 experiments, with the pursuer’s choice of
“launching” moment following a uniform probability dis-
tribution. In this way, we obtain 9 pairs of policies (¢, 7p)

for the imperfect information game.

6.2 Results

[= RN R A N I B IR A=
P T N NN N R

Evader’s policy performance

51 101 151 201 251 301 351 401
Number of trials

Figure 2. Evader’s current policy perfor-
mance while learning (n = 72 x 4, ¢ = 24 + 4,
AT = 13).

o= Wk O® OO
——

Evader’s policy performance

a1 1m RKoH) 201 291 301 381 401
Number of trials

Figure 3. Evader’s current policy perfor-
mance while learning (n = 72 x 4, ¢ = 24 + 4,
AT = 0.5s).

Figure 2 and Figure 3 present the variation of the
evader’s current policy performance while learning (see
5.3) wheren = 72x4,q = 24+4, AT = 15,0.5s. Both the
graphs show clear convergence tendencies. By comparing
these two, we recognize that the smaller decision-making
time step A7 is, the more the current policy performance

varies, and as a result, the longer the learning time required
is. We use from now A1 = 1s.

We evaluate any pair of policies (., 7,,), by performing
1000 Monte Carlo experiments. The avoidance probability
of the evader as well as the interception probability of the
pursuer are all estimated.

n q=12+4 gq=164+4 ¢q=24+14
32 x4 0.412 0.432 0.459
50 x 4 0.477 0.508 0.514
72 x 4 0.525 0.574 0.632

Table 1. Avoidance probability obtained after
learning.

Table 1 shows the avoidance probability of the evader for
9 pairs of learned policies. We can see that n still signifi-
cantly influences the obtained solution even if the “indirect”
discretization is already optimized (see 5.1). On the other
hand, because of the evader’s stronger lateral acceleration
capacity, the bigger n and q are, the freer the evader is, and
therefore, the more it can avoid the pursuer’s interception.

To compare solution methods for the PEG, we imple-
ment two kinds of player, based on traditional analytical
methods: (1) a deterministic pursuer that always follows
the evader by maximally accelerating; (2) a deterministic
end-game evader that estimates the end game’s starting mo-
ment according to a uniform probability distribution, then
plays the end game by maximally accelerating in an unique
direction.

(n,q) | LEvs. LP LEvs. DP EEvs. LP
(50 x 4,16 +4) | 0.492 0.082 0.723
(72 x4,24+4) | 0.368 0.056 0.643

Table 2. Interception probability according to
the kind of player.

Table 2 shows the probability of interception of the pur-
suer for the three cases: a learned evader (LE) vs. a learned
pursuer (LP), a LE vs. a deterministic pursuer (DP), a deter-
ministic end-game evader (EE) vs. a LP. The LE and LP’s
policies are learned with (n,¢) = (50 x 4,16 + 4), (72 x
4,24 4 4). These results show that, while playing against a
LP, a LE always gets a lower interception probability than a
EE. Similarly, while playing against a LE, a LP always gets
a higher interception probability than a DP. Moreover, in
comparison with the analytical results given by Shinar and
Silberman [11] and Lipman et al. [6], our learning-based
method gives better solutions in the sense that when a LE



plays against a LP it always gets a better avoidance proba-
bility.

7 Conclusion

Finding stochastic policies for imperfect information
DGs has faced a big problem of computational complexity.
In this paper, we have proposed the resolution-based policy
search, which approximates such stochastic policies. The
learning performance depends on several parameters, e.g.
the number of “indirect” discretization state-action areas 7,
the number of parameters of a policy function ¢, and the
decision-making time step A7. The bigger n, p and 1/A7
are, the closer to optimality the solution obtained gets, but
the more slowly the learning process converges. However,
experimental results have shown that we can choose these
parameters’ values so that we obtain good solutions after
a reasonable number of trials (without loosing the conver-
gence property). Concerning the PEG, with some appro-
priate learning parameter values, the learned pursuer and
evader have proven their greater power, in comparison to
two typical kinds of non-learned agent.

Future work will provide more investigation into the ex-
perimental behavior of the learning method presented, and
into the non-uniform discretization of the decision-making
time, as suggested by Munos [8].

A ¢ state-action areas

Input A set of state-action areas (As);,i = 1,...,n gener-
ated by a discretization sampling.

QOutput The q most significant state-action areas
(As)j,i=1,....q.

1. For each (As);,i = 2,...,n, define rep;; £ (As);
and calculate

_1 1/ (As)i—1 + (As);
avrgLi = 3 [(As)z + 3 (f
(As); + (As)iy1
)
(As)i—1 + (As)i + (AS)iJrl}
+
3
2. For each pair ((As);, (As)it+1),% = 2,...,n—1, define
repe.i = min((As);, (As);;1) and calculate

5 [5((49) + (89)is)

3
1<(As)i,1 + (As); + (As)it1
2 3
(As); + (As)ir1 + (AS)iy2
+ )]

avrgz i =

3. Foreach triplet ((As);, (As)it1, (A8)iya),i =1, ...,
n—2, define reps ; = min((As);, (As)it1, (As)iy2)
and calculate

avrgs; = 5 [((85); + (A9)isr + (Bs)isa)
(@) + (Bs)ien
o,
4 (Bs)in -2F (As)i+2)
n (As); + (As)iy1 + (As)i+2]
3

4. For each pair (rep,: rep;q) satisfying rep,; =
rep;,q and avrg,,; < avrg,y, remove rep;, from
REP = {rep; ;|Vi, j}.

5. In the set REP, choose the ¢ elements rep; ;, whose
avrg; i are the smallest; these elements represent the
g most significant areas (As);,j =1,...,q.

References

[1] L. Baird and A. W. Moore. Gradient descent for general
reinforcement learning. In NIPS’98, pages 968-974, Cam-
bridge, MA, USA, 1998.

[2] M. H. Bowling and M. M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence, 136(2):215—
250, 2002.

[3] M. H. Bowling and M. M. Veloso. Scalable learning
in stochastic games. In AAAI Workshop Proceedings on
Game Theoretic and Decision Theoretic Agents, Edmonton,
Canada, 2002.

[4] S.Gutman. On optimal guidance for homing missiles. Guid-
ance and Control, 2:296-300, August 1979.

[5] R.Isaacs. Differential Games: A Mathematical Theory with
Applications to Warfare and Pursuit, Control and Optimiza-
tion. J.Wiley and Sons, Toronto, 1965.

[6] Y.Lipman,J. Shinar, and Y. Oshman. Stochastic analysis of
the interception of maneuvering antisurface missiles. Guid-
ance, Control and Dynamics, 20(4):707-714, July—August
1997.

[7]1 M. L. Littman. Markov games as a framework for multi-
agent reinforcement learning. In ICML’94, pages 157-163,
New Brunswick, NJ, 1994.

[8] R. Munos. Policy gradient in continuous time. Machine
Learning, 7:771-791, 2006.

[9] R. Munos and A. W. Moore. Variable resolution discretiza-
tion for high-accuracy solutions of optimal control prob-
lems. In IJCAI’99, pages 13481355, 1999.

[10] J. W. Sheppard. Colearning in differential games. Machine
Learning, 33(2-3):201-233, 1998.

[11] J. Shinar and G. Silberman. A discrete dynamic game mod-
elling anti-missile defense scenarios. Dynamics and Con-
trol, 5(1):55-67, 1995.

[12] W. T. B. Uther and M. M. Veloso. Tree based discretiza-
tion for continuous state space reinforcement learning. In
AAAI/IAAT98, pages 769-774, 1998.



