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ABSTRACT
Empirical game theory allows studying the strategic interac-
tions of agents in simulations. Specifically, traditional game
theory describes such interactions by an analytical model,
while empirical game theory employs simulations. In this
paper, we use empirical game theory to study how the more-
or-less selfishness of agents affects their behaviour. To this
end, we assume that every agent utility can be split in two
parts, a first part representing the direct utility of agents
and a second part representing agent social consciousness,
i.e., their impact on the rest of the multiagent system. An
application to supply chains illustrates this approach. In this
application, the collaborative strategy is often used by every
company-agent at whatever their same level of social con-
sciousness, which may indicate that every agent is strongly
related with one other.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Economics, Experimentation, Performance

Keywords
Supply Chain, Nash equilibrium, Simulation, Collaboration

1. INTRODUCTION
Walsh and his colleagues [5] have introduced the concept

of empirical game theory (GT) by using GT to analyze the
behaviour of agents in simulations. In other words, they re-
placed the analytical model representing strategic interac-
tions in GT by simulation outcomes. Another example of
the use of this approach is provided by Wellman and his col-
leagues [6] who used it to design their agent for the Trading
Agent Competition/Supply Chain Management 2003. Our
previous work [3] is also such an example of approach suitable
for the analysis of interactions in agent-based simulations
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profitting from GT concepts and applied to supply chains
(SC). In our application to SC, we found that the highest
level of collaboration was often a Nash equilibrium which
incurs the minimum SC cost. We now enhance this previ-
ous work in two ways in order to study (Enhan. 1) how the
obtained results vary when the utility measuring the achieve-
ment of the group goal changes with regard to the individual
utility of every agent, and (Enhan. 2) how robust the results
are with respect to the stochasticity of some parameters. Our
approach is presented in Section 2.

Then, we apply our approach to SC again. In this context,
Enhan. 1 is performed by measuring how the SC (i.e., group)
goal of delivering products to end-customers is achieved, while
the individual goal of every company is to minimize its inven-
tory holding cost. Indeed, companies have to make a trade-
off between increasing their inventory level to avoid stock-
outs and achieve thus the group goal, and decreasing their
inventory level to achieve their individual goal. Finally, the
stochastic parameter in Enhan. 2 represents end-customers
demand of the two markets buying products to the SC. With
Enhan. 2, we check if results depend on the considered in-
stance of a single demand distribution. This application to
SC management is described in Section 3.

2. APPROACH
Concerning Enhan. 1, every agent i ∈ I in our previous

work [3] had a common fixed way to calculate its utility ui

that was based on its direct/individual utility ui

dir and on

its impact on other agents ui
soc, so that ui = ((1 − εi)ui

dir +

εiui
soc)/(1−εi), with εi ∈ [0; 1); we divide by (1−εi) because

ui

dir represents realistic costs in our case study. On the con-

trary, we always kept εi = 2/3 for each of the |I| agents (|I|
denotes the cardinal of the set of agents I) in our previous pa-
per, while Enhan. 1 consists in relaxing this constraint. More
precisely, we now verify that agents still have incentives to
use the collaborative strategy when εi varies, or conversely,
if every agent behaviour depends on the value of εi. Notice
that εi → 1 implements a fully benevolent agent because ui

dir
becomes negligible in comparison with ui

soc. In this paper,
we only address the case in which ε1 = ε2 = . . . = ε with
ε ∈ {1/6, 2/6, 3/6, 4/6, 5/6}, which means that all agents
have the same level of selfishness ε, but that this common
level may be different between two of the considered situa-
tions. As a consequence, we do not consider the case in which
selfish agents cohabit with benevolent agents (the prisonner’s
dilemma cannot occur), although the presented approach al-
lows doing so. This assumption simplifies the analysis of the
simulation outcomes, and we will try to relax it in future
work.



Enhan. 2 deals with taking probability distribution for
some stochastic parameters into account in replacement of
a fixed sequence of numbers, in order to study stochastic
models. This means that we generate an instance of the con-
sidered distribution, and then, we apply our approach with
this fixed sequence of numbers. This is the same method
as in our previous paper, except that we repeat the process
with other instances of the considered distribution in order
to next use statistical tools. In the case study, the stochas-

tic parameter is end-customer demands Dlumber and Dpaper

representing the two markets our SC sells in.
Then, our approach may be described as three successive

steps, viz optParam, simAllConfig, and finally anaSi-
mOut: (i) optParam first optimizes some parameters for
every value of ε when every agent i uses the same strat-
egy si ∈ S (the strategy set S is unique to all agents),
i.e., optimization is only carried our for the strategy pro-
file (si, si, . . . , si) in order to save computation time. In the
case study, these optimized parameters are the inital inven-

tory levels {Invi

init}
i=|I|
i=1

. (ii) Then, simAllConfig simulates

the SC for the |S||I| combinations of si among the |I| agents

with the {Invi

init}
i=|I|
i=1

found by optParam. (iii) Finally,
simAllConfig builds games in the normal form with the
simulation outcomes generated by simAllConfig, and looks
for the Nash equilibria of these games. Gambit [2] is the set
of software tools used to analyze these games. Depending on

{εi}
i=|I|
i=1

, different games can be built based from each output
of simAllConfig.

3. CASE STUDY: APPLICATION TO SUP-
PLY CHAIN MANAGEMENT

3.1 Adaptation of the approach
We illustrate this approach in the context of the manage-

ment of a wood SC. We profit from Enhan. 1 to study if
selfish as well as benevolent company-agents should collabo-
rate by sharing information concerning market consumption.
This shared information is of importance to companies when
they place orders, because this information may be distorted
by a phenomenon called the “bullwhip effect” [1] that causes
an increase of their inventory level and a decrease in their
customer service level, and information sharing is the most
often proposed solution to the bullwhip effect [4].

Concerning Enhan. 1, we take ui

dir as company-agent i

inventory holding cost, and ui
soc as backorder cost, i.e., as

stockout cost. Specifically, backorders correspond to orders
that were not fulfilled in the past and that have to be shipped
as soon as possible, i.e., there are no lost sales in this sim-
ulation model because clients wait for product availability.
Since backorders are measured in our specific case as neg-
ative inventory levels, the calculation of ui

dir and ui
soc are

similar, and thus, their aggregation into ui represents a cost.
Of course, every agent tries to minimize its cost ui (no money
can be earned). We think backorders can be used as a mea-
sure for social consciousness ui

soc because agents are not obliged
to consider them when they make decisions (while they al-
ways have to take the inventory holding cost into account in
ui

dir), but the goal of the entire SC should be to satisfy end-
customers and avoid thus these backorders. In other words,
the SC has not achieved its goal if products are not available
by retailers, which is a problem obvious only to retailers. In
order to make the other companies internalize the SC goal,
we need to have them take backorders into account.

We profit from Enhan. 2 to consider a stochastic market
consumption pattern. More precisely, we assume that mar-

Ordering Level of Type of
strategy collaboration communication

µ No collaboration No communication
Information sharing

β with direct Point to point
neighbours

γ
Information

centralization
Bulletin board

Table 1: The three ordering strategies.

ket demand is a uniform distribution M of integer numbers
spread over {11, 12, . . . , 17}, and we carry out our experi-
ments with |M | = 10 particular instances mA to mJ of M
over the fifty weeks of a simulation run. For instance, mA

corresponds to the two series of fifty numbers Dlumber =
{16, 13, 16, 11, 15, . . . , 15, 15, 12, 16, 15} and Dpaper = {15,
15, 14, 15, 14, . . . , 13, 14, 14, 11, 13}, where the wth number

represents the market demand in Week w, e.g., Dlumber
2 = 13

means that 13 units are requested to the LumberRetailer in
Week 2. We only consider |M | = 10 instances of the distri-

bution, because |M | ∗ |S||I| simulations are required to build
the corresponding ten games in the normal form. However,
simAllConfig carries out |M | = 10 times these |S||I| simu-
lations with one of the ten instances of M in order to build a
game. In each of the obtained games, anaSimOut changes
the ratio ε between the ui

dir and ui
soc when Gambit looks for

Nash equilibria.

3.2 Simulation model
In this case study, we use exactly the same simulation

model with |I| = 6 agents as in [3]: a LumberRetailer buys
from a LumberWholesaler, which buys from a Sawmill, which
itself is the only company managing both lumber and paper
units. In fact, besides lumbers, the Sawmill can also sell paper
units to the PulpMill, which then sells to the PaperWholesaler,
which finally sells to the PaperRetailer. Each retailer sells in
a different market (lumber and paper), and the Sawmill buys
from an infinite source.

Next, each of the six companies i makes its ordering deci-
sions by applying one of |S| = 3 ordering strategies si called
α, β and µ. Once set, si remains the same for the fifty weeks
of a simulation run. Table 1 outlines these three strategies:

• With ordering strategy µ, company-agents make their
decision on their own and can only rely on their incom-
ing orders and shipping to decide what order to place.
The only information transmitted with µ are orders and
no additional information is shared to help other agents
place their own orders. In practice, µ is an (s, S) policy,
which is classic in Inventory Management, and in which
a company orders (S − InvP ) items when the level of
its inventory position InvP falls below s. We showed
in [3] that taking s = 0 and S equals to the current
incoming order is optimal.

• There is slight collaboration with strategy β, because
agents now transmit the market consumption informa-
tion to their supplier, which allows every agent to place
orders in a more accurate way. From a technical view-
point, every placed orders is a two-dimension vector,
and the quantity ordered is equal to the sum of its two
elements: the first element corresponds to the market
consumption transmitted by each company to its direct
supplier, and the second element represents the prod-
ucts to be ordered in more or in less than the market



Value of ε Nash equilibria

ε = 1/6 (γ, µ, γ, µ, γ, γ), (γ, γ, γ, µ, µ, γ)
ε = 2/6 (γ, µ, γ, µ, µ, β), (γ, γ, γ, µ, µ, γ)
ε = 3/6 (γ, β, γ, µ, µ, β), (γ, γ, γ, µ, γ, γ)
ε = 4/6 (γ, γ, γ, γ, γ, γ)

(β, µ, β, µ, µ, β), (β, β, β, β, β, β)
ε = 5/6 (β, γ, β, γ, β, γ), (β, γ, β, γ, γ, β)

(γ, β, γ, β, β, β), (γ, γ, γ, γ, β, β)

Table 2: Results for Instance mA.

consumption. Notice that the first element indicates
the past market consumption, since this information
travels the SC as slowly as orders.

• The highest level of collaboration is implemented in
strategy γ, in which retailer-agents write the market
consumption information on a bulletin board, and the
rest of agents can read this information (this is infor-
mation centralization). In practice, γ works as β, ex-
cept that companies take the first element of their two-
dimension orders equal to the current market consump-
tion (while it is equal to past data with β).

3.3 Results and analysis
Table 2 enumerates all the Nash equilibria obtained with

different values of ε with the particular instance mA of the
market demand M . For example, for ε = 5/6, there are
6 Nash equilibria, and the first one is the strategy profile
(s1, s2, s3, s4, s5, s6) = (β, µ, β, µ, µ, β); in this equilibrium,
the LumberRetailer (i = 1), the LumberWholesaler (i = 3) and
the Sawmill (i = 6) use Strategy β, while all other agents
use γ. Note that µ occurs 15 times, β 29 times and γ 40
times in overall Table 2, which represents respectively to fre-
quencies of 20%, 29% and 51%. Therefore, the highest level
of collaboration γ occurs in half of the found Nash equilibria.

Next, the question addressed in this paper is to deter-
mine at which value of ε the Nash equilibria switch from
a full-collaborating system (that is, most companies collabo-
rate at the highest level, e.g., (γ, γ, γ, β, γ, γ)) to a full non-
collaborating one (that is, most companies disagree to col-
laborate, e.g., (µ, β, µ, µ, µ, µ)). To answer this question, we
check if the Nash equilibria with low ε (selfish agents) often
apply the non-collaborative µ, and/or if the Nash equilibria
with high ε (benevolent agents) frequently use the highly col-
laborative γ. To see this, we calculate the frequency at which
every strategy is used depending on the value of ε. That is,
we calculate the central column about mA in Table 3 based
on the numbers in Table 2. This calculation is achieved in
the following way. In line ‘ε = 5/6’ in Table 2, there are 6
equilibria that count a total of 3 µ, 20 β and 13 γ. These
three numbers are reported in line ε = 5/6 in Table 3 as
‘3/36 = 8% → µ’, which means that 3 of the 36 (=3+20+13)
strategies used in a Nash equilibrium are µ. Next, the right
column of Table 3 contains the same results, but with the
nine other instances mB to mJ of market consumption. To
calculate every frequency in the right column, we take the
average of the frequencies obtained with the ten market de-
mands, i.e., these frequencies are not weighted by the number
of equilibria: to obtain ‘7% → µ’ with ε = 5/6 in the right
column of Table 3, the 8% obtained with mA has the same im-
portance as the percentages obtained with mB , . . . ,mJ , even
though they do not represent the same quantity of equilibria.

With both center and right columns in Table 3, we can
see that µ only has low occurence frequencies, and that these
frequencies do not depend on ε. This means that the deci-
sion of collaborating does not depend on the level of social

Frequency of Average frequency
Value of ε µ, β and γ under of µ, β and γ over

Instance mA Instances mA to mJ

4/12 = 33% → µ 27% → µ
ε = 1

6
0/12 = 0% → β 9% → β
8/12 = 67% → γ 64% → γ
5/12 = 42% → µ 22% → µ

ε = 2

6
1/12 = 8% → β 6% → β
6/12 = 50% → γ 72% → γ
3/12 = 25% → µ 17% → µ

ε = 3

6
2/12 = 17% → β 14% → β
7/12 = 58% → γ 69% → γ
0/6 = 0% → µ 9% → µ

ε = 4

6
0/6 = 0% → β 16% → β

6/6 = 100% → γ 75% → γ
3/36 = 8% → µ 7% → µ

ε = 5

6
20/36 = 56% → β 43% → β
13/36 = 36% → γ 50% → γ

Table 3: Relative frequency of the occurence of µ, β
and γ in the incurred Nash equilibria.

consciousness ε. The interpretation of this may be that every
company-agent is so strongly dependent on each other, that
they should all collaborate.

4. CONCLUSION
This paper studied the impact of social consciousness on

individual decision making. As an illustration, we studied if
companies in a supply chain would collaborate by sharing the
demand when they are more or less benevolent. We found
that the benevolence level does not have a great impact, per-
haps because companies are tightly linked in our simulation.
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Laval, Québec, Canada), for supporting this research. This
work was also partially supported by the National Sciences
and Engineering Research Council of Canada (NSERC).

6. REFERENCES
[1] H. L. Lee, V. Padmanabhan, and S. Whang.

Information distortion in a supply chain: The bullwhip
effect. Management Science, 43(4):546–558, 1997.

[2] R. D. McKelvey, A. M. McLennan, and T. L. Turocy.
Gambit: Software tools for game theory, version
0.97.0.4, 2004. http://econweb.tamu.edu/gambit/
(accessed 16 October 2004).

[3] T. Moyaux, B. Chaib-draa, and S. D’Amours.
Experimental study of incentives for collaboration in the
quebec wood supply game. IEEE Transactions on
Engineering Management, 2006. (submitted).

[4] D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi.
Designing and Managing the Supply Chain.
McGraw-Hill Higher Education, 2000.

[5] W. E. Walsh, R. Das, G. Tesauro, and J. O. Kephart.
Analyzing complex strategic interactions in multiagent
systems. In Proc. workshop on Game Theoretic and
Decision Theoretic agents, 2002.

[6] M. P. Wellman, J. Estelle, S. Singh, Y. Vorobeychik,
C. Kiekintveld, and V. Soni. Strategic interactions in a
supply chain game. Computational Intelligence,
21(1):1–26, 2005.


