
Spreadsheet vs.
multiagent-based simulations
in the study of decision
making in supply chains

T. Moyaux*
DAMAS, FOR@C & CIRRELT,
Département d’Informatique et de Génie Logiciel, Université Laval
Quebec City G1K 7P4 (Quebec, Canada)
E-mail: Thierry.Moyaux@insa-lyon.fr
*Corresponding author

B. Chaib-draa
DAMAS & FOR@C,
Département d’Informatique et de Génie Logiciel, Université Laval
Quebec City G1K 7P4 (Quebec, Canada)
E-mail: Brahim.Chaib-draa@ift.ulaval.ca

S. D’Amours
FOR@C & CIRRELT ,
Département de Génie Mécanique, Université Laval
Quebec City G1K 7P4 (Quebec, Canada)
E-mail: Sophie.DAmours@forac.ulaval.ca

Abstract: A game called the Quebec Wood Supply Game (QWSG) is a role-playing
simulation based on the Beer Game for teaching supply chain dynamics, and, in par-
ticular, the bullwhip effect. In this context, this paper describes and compares two
simulators based on the QWSG which may be used to study decision making and its
impact on supply chain dynamics. We first focus on the direct implementation of the
QWSG in a spreadsheet program. This spreadsheet model is the base on which we
next build a more complex MultiAgent Based Simulation (MABS) in which JACKTM

agents represent companies. Finally, we compare the respective advantages of each
simulator. We identify the features of a supply chain model making a spreadsheet
simulation impossible, and those for which a spreadsheet simulation is better, as good
as, or worse than MABS.

Keywords: supply chain management; comparison of simulation types; spreadsheet
simulation; multiagent based simulation; Beer Game; Quebec Wood Supply Game.

Reference to this paper should be made as follows: XXXX, XXXX and XXXX (2008)
‘Spreadsheet vs. multiagent-based simulations in the study of decision making in sup-
ply chains’, Int. J. Simulation & Process Modelling, Vol. 1, No. 2, pp.1–2.

Biographical notes: TODO

1 Introduction

Several types of simulations are used in Supply Chain
Management (SCM) in order to study the dynamics in-
duced by the decisions made in such networks of compa-
nies. Kleijnen (2003) proposed the following four classes
of types of Supply Chain (SC) simulations: Spreadsheet,

System Dynamics (SD), Discrete-Event Dynamic Systems
(DEDS), and Business Games. Next, this author claimed
that “which of the four simulation types is applied in SCM
depends on the problem to be solved,” which is illustrated
as follows (Kleijnen, 2003, p.85):

Copyright c© 200x Inderscience Enterprises Ltd.

1

• “SD aims at qualitative insights (not exact forecasts)”
such as demonstrating the bullwhip effect – Lee et al.
(1997a,b) define this effect as the amplification of or-
der variability in supply chains,

• “DEDS can quantify fill rates, which are random vari-
ables,” and

• “Games can educate and train users.”

Next, MultiAgent Based Simulation (MABS) is a form of
DEDS, that is, the agents in a MABS are autonomous enti-
ties driven by discrete events, and, therefore, the specificity
of MABS in comparison with the rest of DEDS is to focus
on the global effect (macro level) resulting from the inter-
actions of the local behaviours of entities (micro level). In
this paper, we focus on MABS rather than DEDS in gen-
eral. The goal of this paper is to detail Kleijnen (2003)’s
claim in the context of choosing among two of the four sim-
ulation types. More precisely, we detail in what ways the
choice of “which of the spreadsheet simulation or MABS is
applied in SCM depends on the problem to be solved” in
order to make explicit the relative strengths and drawbacks
of these two simulation types in SCM. For that purpose,
we provide examples demonstrating that some features of
a SC model:

• make a type of simulation not appropriate. For in-
stance, modeling interactions among companies is
hardly possible with spreadsheet programs.

• make an approach more suited than another. For
example, implementing decision making in a multi-
product scenario is difficult with spreadsheet pro-
grams.

• are not discriminating. For instance, implementing
the causes of the bullwhip effect proposed by Lee et al.
(1997a,b) is as long with spreadsheet programs as with
MABS.

To our knowledge, (Kleijnen and Smits, 2003) and (Klei-
jnen, 2003) are the only two papers comparing different ap-
proaches of simulation in SCM. However, these two papers
also point to comparisons within the four simulation types,
i.e. comparisons of several models of MABS, but never of
a model of MABS with a model of a different type.

Complementing Kleijnen (2003)’s claim is important be-
cause the choice of what simulation type to implement is
often a first stage which has next a great impact on what
can and cannot be studied with the simulation. For exam-
ple, we have just presented the example provided by Kleij-
nen (2003) about the educational purpose of games. Since
MABS allows for more realistic simulations, it is also possi-
ble to model games with MABS, but simulation designers
tend to always use the power of MABS to propose more
complex models which are too complex to educate people.
Another example about the importance of the choice of
the simulation approach deals with simulation speed. In
fact, a choice may be necessary between the high simula-
tion speed obtained with spreadsheet programs, and the

poor realism of such models in comparison with MABS.
More specifically, a spreadsheet simulator may be enough
if many simulations are necessary in order to explore a
large space of parameters, while MABS is required if we
prefer a closer reproduction of reality.

Finally, the contributions of this paper are threefold.
First, we detail the code of a spreadsheet simulation of the
Quebec Wood Supply Game (QWSG), which is a business
game related to Sterman (1989)’s Beer Game. This code
is complete, which allows its direct use in spreadsheet pro-
grams. The second contribution is the presentation of an
evolution of this first simulation implemented as a MABS.
The third and main contribution of this paper concerns the
insights gained when implementing these two simulations
based on the same model. Since this unique base model is
the QWSG, the insights gained only apply to the context
of this model, that is, to decision making in SCs, but not to
other contexts, in particular to contexts outside of SCM.

The outline of this paper is as follows. Section 2 de-
scribes the QWSG. Section 3 presents the complete code
of an implementation of the QWSG in a spreadsheet pro-
gram. Section 4 describes in less detail the MABS model
of an evolution of the QWSG. Finally, Section 5 compares
these two simulations in order to underline the relative
strengths and drawbacks of spreadsheet and MABS ap-
proaches.

2 The Québec Wood Supply Game (QWSG)

2.1 QWSG lineage

First of all, let us introduce the background of our two sim-
ulators, namely, the Quebec Wood Supply Game (QWSG),
and its “relatives.” The parents of the QWSG are two
board-games based on the structure and dynamics of Ster-
man (1989)’s “Beer Game.” They are called “Wood Sup-
ply Games” and were developped by Fjeld (2001) and
Haartveit and Fjeld (2002). These games are role-playing
simulations that simulate the material and information
flows in a production-distribution system, and were de-
signed to make human players aware of the bullwhip ef-
fect (Lee et al., 1997a,b). They illustrate how complex
supply chain dynamics can be, even when each company
has a simple model. Compared to the classic Beer Game,
the Wood Supply Games introduce divergent product flows
to increase their relevance to the North European for-
est sector. According to Fjeld (2001), such a bifurcation
represents the broad variety of products (paper, books,
paperboard boxes, furniture, buildings. . .) manufactured
from a few types of raw materials (wood). FOR@C (2007)
has kept this bifurcation and adapted the structure of the
supply chain to the forest sector in Quebec (a Canadian
province). This version is called the Quebec Wood Sup-
ply Game (QWSG), and we use it as the basis of our two
simulators. The structure of the supply chain simulated in
the QWSG is displayed in Figure 1. The main difference
between the original Wood Supply Games and our QWSG

2

Customer

Customer

agent 5

agent 1

Wholesaler

agent 4

Wholesaler

agent 3

MillRetailer

agent 2

Retailer

Sawmill

agent 6

Forest

Products stream Orders stream

1 week order delay1 week shipping delay

consumption

consumption

orders

orders

orders

orders

orders

orders

Paper

Lumber

Wood

PaperPaper

Lumber

Figure 1: The amplification of order variability, also known as bullwhip effect (Lee et al., 1997a,b), in the QWSG.

Forest

Orders streamProducts stream 1, 2, etc.: Day of an action

1 week shipping delay 1 week order delay

Customer

Customer

2 5 4 2 5 4 2 5 4

25

2452452

1 211 1 22

1 2

11 22 211 1 1 2

2

P. Whole.P. Ret.

Sawmill

P. Mill

L. Ret. L. Whole.

Figure 2: The run of the QWSG.

is in the length of the lumber and paper chains, which are
either different or the same, that is, Fjeld’s games have
an additional company between the LumberWholesaler and
the Sawmill. This difference corresponds to the specificities
between Quebec and Northern European wood industries.
The goal of this paper is not to support the choices made
about the design of the QWSG, that is, the QWSG is only
described in order to understand how the spreadsheet sim-
ulation operates and how it differs from the MABS simu-
lation.

2.2 Players behaviour in the QWSG

Figure 1 illustrates the role taken by each of the six (hu-
man or artificial) players of the QWSG. The game is played
by turns: each turn represents a week, and is split in five
days played in parallel by every player. Figure 2 details the
action carried in parallel on each day by every player, as
now presented. On the first day, players receive products
and put them in their inventory (these products were sent
two weeks earlier by their supplier, because there is a two-

week shipping delay), and move the products between the
two squares called “shipping delay” between themselves
and their customer (see the arrows in Figure 2). Then,
on the second day, players look at their incoming orders,
and try to fill them by moving items from their inventory
into their outgoing “shipping delay” square. If they have
backorders they try to fill those as well. Backorders cor-
respond to products requested by clients, but that cannot
currently by shipped. Their role is to represent products
that should have been shipped in the past or in the current
week, and that have to be shipped as soon as possible. In
other words, there are no lost sales in this model because
clients are assumed to wait infinitely for product availabil-
ity. Backorders are recorded as negative inventory levels.
If they do not have enough products in inventory, they ship
as much as they can, and add the rest to their backorders.
On the third day, players record their inventory or backo-
rders. On the fourth day, players advance the order slips
between every two successive “ordering delay” squares. On
the last day, players place an order to their supplier(s) by
writing a number on an order slip and by putting this slip
in their outgoing “order delay” square; they also record
this order. To decide the amount to order, players compare
their incoming orders with their inventory/backorder level
so that their inventory is well managed. Since the bullwhip
effect deals with order variation, this effect depends on the
orders placed here by every company. Finally, a new week
begins with a new day 1, and so on.

Each position is played in the same way, except the
Sawmill because this position receives two orders (one from
the LumberWholesaler, another from the PaperMill) that
have to be aggregated when placing an order to the For-

est. The Sawmill can evaluate its order by basing it on the
lumber demand and/or on the paper demand. In other

3

words, the bifurcation in the supply chain makes the deci-
sion making harder for the Sawmill. Moreover, the Sawmill

receives one type of product, and each unit of this prod-
uct generates two units, namely, a lumber and a paper
unit. That is, each incoming unit is split in two: one piece
goes to the Sawmill’s lumber inventory, the other goes to
the Sawmill’s paper inventory. Notice that these two simu-
lated pieces represent different quantities of real materials
that are measured in different units.

2.3 Game purpose and simulations

The QWSG demonstrates the bullwhip effect, which is de-
fined by Lee et al. (1997a,b) as the amplification of the
order variability in the supply chain. Both retailers in
Figure 1 place orders more variable than the demand of
the two end-customers, next, both wholesalers also adds
variability in the demand signal, . . . and, eventually, the
Forest receives a demand very variable, and also unpre-
dictable, while this demand was constant except a single
increase at the level of the two customers. In order to
reduce the bullwhip effect, our two simulations allow us-
ing information sharing, as suggested by Lee et al. (1997a)
and developped for the QWSG by Moyaux et al. (2007).
Precisely, any order is represented by a vector (O, Θ) and
is the sum of its two elements, instead of a unique num-
ber X = O + Θ where O and Θ are hidden. Os follow
a lot-for-lot scheme (see Equation 13) and transmit thus
the market consumption from every company to its direct
supplier(s). Notice that a consequence of using a lot-for-
lot scheme is that no bullwhip effect occurs in O. Next,
Θs are adjustment orders that manage the complement of
company requirements, because ordering only the quanti-
ties O is not enough to manage inventories. In fact, the
ordering and shipping delays make so that more or less
products are needed in comparison with the Os returned
by the lot-for-lot scheme, and these quantities may be or-
dered in Θ. In other words, Θs directly depend on delays
in our model (see the example in Equation 14).

We now present our spreadsheet simulation model,
which closely implements the QWSG and allows using
(O, Θ) orders.

3 The Spreadsheet Simulator

In order to present our spreadsheet simulation, Subsec-
tion 3.1 first introduces the notations used. Then, we give
the equations that implement one company. All compa-
nies are represented with the equations in Subsection 3.2,
except the Sawmill, which has the differences outlined in
Subsection 3.3. Finally, we illustrate in Subsection 3.4 the
behaviour of companies with the two equations of an order-
ing strategy implementing the placement of (O, Θ) orders
as suggested by Moyaux et al. (2007).

3.1 Notations

Since orders may have up to two dimensions, called O
and Θ, we note Opi

w the component O placed in Week w
by company i, and Θpi

w the corresponding adjustment or-
der Θ. The way to calculate Opi

w and Θpi
w depends on the

company-agent’s behaviour, that is, on its ordering strat-
egy, which will be illustrated with an instance of ordering
strategy in Subsection 3.4. The other variables used to rep-
resent Company i in Week w in our spreadsheet simulator
are:

Toi
w = company i’s outgoing transport in Week w.

Tooi
w = company i’s outgoing transport in Week w cor-
responding to the current O.

Tobi
w = outgoing T ransport corresponding to
backordered Os.

ToΘi
w = outgoing transport corresponding to current and

backordered Θs.

T iiw = incoming transport.

Ii
w = on-hand inventory.

Opi
w = placed order O.

Ooi
w = outgoing order O.

Oiiw = incoming order O.

Obi
w = backordered Os.

Θpi
w = Θ sent (placed).

Θoi
w = outgoing Θ.

Θiiw = incoming Θ.

Θbi
w = backordered Θs.

Dlumber
w = Oi1w = lumber market consumption (demand).

Dpaper
w = Oi2w = paper market consumption (demand).

Except the inventory I and the two market consump-
tions D, the first letter in the notation of these variables
indicates the modelled flow (T for transportation stream,
or O and Θ for the two-dimensional ordering stream), and
the second letter indicates if it is an incoming, outgoing,
placed or backordered value of this stream for the consid-
ered company i. For the sake of implementation simplic-
ity, the outgoing transportation To (quantity of products
to ship) is split into three parts: Too for products shipped
to fulfill O orders, Tob for backordered Os, and ToΘ for
current and backordered Θs. Again for the sake of pro-
gram simplicity, we can note that, as in the QWSG, it
is easier not to represent backorders as negative inventory
levels I < 0, but as the separate variable Ob, because (i)
the definitions of Too, Tob and ToΘ are shorter since they
do not depend on the sign of I, and (ii) introducting Ob
is similar to the introduction of Θb (there were no (O, Θ)
orders in the QWSG). Consequently, Ii

w ≥ 0 in our spread-
sheet simulator, while Ii

w may be negative in the QWSG
to represent backorders.

4

Oi
i
w = Oo

i−1
w−1

(1)

Ti
i
w = T o

i+1
w−1

(2)

T oo
i
w =



























Oii
w if Ii

w−1 ≥ 0 and Ii
w−1 + T ii

w ≥ Oii
w

Ii
w−1 + T ii

w if Ii
w−1 ≥ 0 and Ii

w−1 + T ii
w < Oii

w

Oii
w if Ii

w−1 < 0 and T ii
w ≥ Oii

w

T ii
w if Ii

w−1 < 0 and T ii
w < Oii

w

(3)

Ob
i
w = Ob

i
w−1 + Oi

i
w − Too

i
w − T ob

i
w (4)

Θi
i
w = Θo

i−1
w−1

(5)

T ob
i
w =



























Obi
w−1 if Ii

w−1 ≥ 0 and Ii
w−1 + T ii

w − T ooi
w ≥ Obi

w−1

Ii
w−1 + Tii

w − T ooi
w if Ii

w−1 ≥ 0 and Ii
w−1 + T ii

w − T ooi
w < Obi

w−1
−Ii

w−1 if Ii
w−1 < 0 and T ii

w − T ooi
w ≥ −Ii

w−1
T ii

w − Tooi
w if Ii

w−1 < 0 and T ii
w − T ooi

w < −Ii
w−1

(6)

T oΘ
i
w =



























































































−T ooi
w − T obi

w if Ii
w−1 ≥ 0 and Ii

w−1 + Tii
w − T ooi

w − T obi
w ≥ Θbi

w−1 + Θii
w

and T ooi
w + T obi

w + Θbi
w−1 + Θii

w < 0

Θbi
w−1 + Θii

w if Ii
w−1 ≥ 0 and Ii

w−1 + Tii
w − T ooi

w − T obi
w ≥ Θbi

w−1 + Θii
w

and T ooi
w + T obi

w + Θbi
w−1 + Θii

w ≥ 0

Ii
w−1 + Tii

w − T ooi
w − T obi

w if Ii
w−1 ≥ 0 and Ii

w−1 + Tii
w − T ooi

w − T obi
w < Θbi

w−1 + Θii
w

−T ooi
w − T obi

w if Ii
w−1 < 0 and T ii

w − Tooi
w − T obi

w ≥ Θbi
w−1 + Θii

w

and T ooi
w + T obi

w + Θbi
w−1 + Θii

w < 0

Θbi
w−1 + Θii

w if Ii
w−1 < 0 and T ii

w − Tooi
w − T obi

w ≥ Θbi
w−1 + Θii

w

and T ooi
w + T obi

w + Θbi
w−1 + Θii

w ≥ 0

T ii
w − Tooi

w − T obi
w if Ii

w−1 < 0 and T ii
w − Tooi

w − T obi
w < Θbi

w−1 + Θii
w

(7)

T o
i
w = Too

i
w + Tob

i
w + T oΘ

i
w (8)

I
i
w = I

i
w−1 + Ti

i
w − T o

i
w (9)

Θb
i
w =







Θbi
w−1 + Θii

w − ToΘi
w + T ooi

w + T obi
w + T oΘi

w if T ooi
w + T obi

w + T oΘi
w < 0

Θbi
w−1 + Θii

w − ToΘi
w if T ooi

w + T obi
w + T oΘi

w ≥ 0
(10)

Oo
i
w = Op

i
w−1 (11)

Θo
i
w = Θp

i
w−1 (12)

Figure 4: QWSG in a spreadsheet program when information sharing with (O, Θ) orders are allowed.

Θ(Op, p) Θ(Oo, o)

ToΘΘ(Oi, i)

w+2
week

w w+1 w+3 w+4

company

Ti I

Too

I

Toi+1

i

Figure 3: The trip of an order and the shipping of the
corresponding products.

3.2 Company Model

Figure 3 presents the relations between variables which
represent the transmission of an order, then the shipping
of the corresponding items. We now detail these relations,
as well as the others implementing our model. The “me-
chanical” part of the QWSG is modelled by the twelve
equations in Figure 4. (The decision process needs two
more equations to choose Op and Θp, as outlined in Sub-

section 3.4.) The equations in Figure 4 are in the order in
which they are automatically fired by a spreadsheet pro-
gram: (i) Equations 1 and 2 (in any order) first, then (ii)
Equations 3 and 4 (because they rely on the result of Equa-
tions 1 and 2), (iii) Equations 5 and 6 (because they need
the result of Equations 1, 2, 3 and 4), (iv) Equation 7, (v)
8, (vi) 9, and, finally, (vii) Equation 10. (These groups
of equations are separated by vertical spaces in Figure 4.)
Equations 11 and 12 may be fired anytime.

As illustrated in Figure 3, an order (Op, Θp) is placed
in Week w by a client i. This order is put in Week
w + 1 in (Oo, Θo) to represent a first week of ordering
delay. To represent the second week of delay, this order
is received by supplier i + 1 in Week w + 2 in (Oi, Θi).
This order reception decreases supplier’s inventory I in
the same week, because products are shipped in Too and
ToΘ, thus in To. Next, these shipped products are put
in Week w + 3 in client’s T i to represent a first week of
shipping delay. To model the second week of shipping de-
lay, these products are put in client’s inventory I in Week

5

w + 4. Therefore, in order to implement a two-week de-
lay in information transmission and in transportation, or-
der and transport variables are doubled, which explains
the existence of pairs {Toi

w,T iiw} for transportation, and
{(Ooi

w , Θoi
w),(Oiiw , Θiiw)} for order placement. The simu-

lation begins in Week w = 1 and ends in w = 50 to have
a simulation over a year. In this section, for simplifying
equations, i = 1 represents a company (except the Sawmill

on which we shall come back), and i+1 is i’s supplier, even
if this is compatible with Figure 1 only for the PaperMill,
and should read i + 2 instead for both retailers and both
wholesalers. When i = 1 denotes the PaperRetailer, Oi1w
corresponds to this retailer’s demand, that is, the market
consumption (Oi1w = Dpaper

w).
Toi

w represents products sent to its client by Company i
in Week w. To make the calculation of this quantity easy, it
is divided into three parts (see Toi

w = Tooi
w+Tobi

w+ToΘi
w

in Equation 8 in Figure 4). Tooi
w represents products that

are first sent to fulfill the current order (or the quantity
of products the company is able to ship when inventory
and incoming transports are not enough), as reflected by
Equation 3. Then, company i ships the quantity Tobi

w of
products in Equation 6, in order to reduce its backorder
Ob. Finally, when orders are fulfilled and there are no
backordered Ob left, ToΘi

w products are sent in Equation 7
to reduce the incoming Θ order Θi

w, and Θbi
w (i.e. the

backordered Θ).
Like orders, backorders are represented by two variables:

Obi
w in Equation 4 represents backorders created by unful-

filled O, and Θbi
w in Equation 10 backorders created by

unfulfilled Θ.
Then, incoming transport is supplier i + 1’s last week

outgoing transport (see Equation 2 in Figure 4).
Equation 9 represents the fact that inventory level is

previous inventory level plus inputs minus outputs.
Figure 3 shows how orders are delayed between a client i

and its supplier i+1. Each order is placed in (Opi
w, Θpi

w),
goes next in (Ooi

w+1, Θoi
w+1) to simulate the first week

of delay, and is finally put in supplier’s (Oii+1
w+2, Θii+1

w+2)
to simulate the second week of delay. This explains why
incoming order (O, Θ) is the last week client i−1’s outgoing
transport (Equations 1 and 5). Figure 3 also explains how
Ooi

w and Θoi
w are setup in Equations 11 and 12.

Finally, Figure 5 gives an overview of the implementa-
tion of the 38 first weeks of the lumber market demand
and of the LumberRetailer in our spreadsheet simulator. In
this figure, the market demand is for 11 products in the
four first weeks, then for 17 products until the end of the
simulation in Week w = 50, and the column “Inventory,”
for example, contains I1

w for all weeks w.

3.3 Specificities of the Sawmill model

Every company is setup in the same way with the twelve
previous equations, except the SawMill which has to pro-
cess two types of products, namely, lumber and paper. As
a consequence, some parts of this company are doubled to
manage this particularity. Specifically, we use the pairs of

variables {Oi6-lumber
w , Oi

6-paper
w }, {Θi6-lumber

w , Θi
6-paper
w },

{Op6-lumber
w , Op

6-paper
w }, {Θp6-lumber

w , Θp
6-paper
w },

{I6-lumber
w , I6-paper

w }, and {To6-lumber
w , To6-paper

w }. Note
that Oo6

w , Θo6
w and T i6w are unique. Indeed, we operate

as if there were a lumber SawMill and a paper SawMill

having the same product input T i6w: each subcompany
in the Sawmill receives what is in the incoming transport
T i6w, because one unit of wood coming from the Forest

provides one unit of lumber and one unit of paper. In
the same way, each subcompany wishes to place a specific
(O, Θ) order: the lumber Sawmill would like to place
orders (Op6-lumber

w , Θp6-lumber
w), while the paper Sawmill

prefers (Op6-paper
w , Θp6-paper

w). The design of the ordering
strategies managing the variables (Op6-lumber

w , Θp6-lumber
w)

and (Op6-paper
w , Θp6-paper

w) are outined in the next sub-
section, since they are the same as for the five other
companies. However, the Sawmill has to aggregate

(Op6-lumber
w , Θp6-lumber

w) and (Op6-paper
w , Θp6-paper

w) into
a common (Op6

w, Θp6
w) sent to the Forest. In gen-

eral, we use Op6
w = (Op6-paper

w + Op6-lumber
w)/2 and

Θp6
w = (Θp

6-paper
w + Θp6-lumber

w)/2, but the definition of
the most efficient function is an open question addressed
by Moyaux et al. (2004a). These two functions implement
the aggregation of paper and lumber requirements when
the Sawmill places an order.

3.4 An Example of Ordering Strategy

Equations 1 through 12 describe the shipping and order-
ing flows in a Company i, but not how decisions are made
by this company. Since the purpose of this paper is not
the study of decision making, but the simulation of supply
chains, we only indicate how to implement one of the or-
dering strategies presented in (Moyaux et al., 2007). This
scheme was designed to reduce the bullwhip effect thanks
to information sharing with (O, Θ) orders. To this end,
incoming Os, which are the market consumption when all
clients use this scheme, are transmitted from clients to
suppliers according to the lot-for-lot policy (i.e. the com-
pany orders what is demanded by the client), as shown in
Equation 13.

Opi
w = Oiiw (13)

Next, company requirements are added to incoming Θs,
and this sum is sent as Θ to the supplier (see Equation 14).
In these conditions, λ ∗ (Oiiw−1 − Oiiw) is an estimation
of the inventory reduction caused by the variation of Oi,
which reflects the variation of the market consumption.
Note that we use λ = 4 for all companies, which corre-
sponds to the sum of ordering and shipping delays in the
QWSG. To see this, let us consider the following example.
The demand O increases by seven units between Weeks
−1 and 0 (Oii

−1 − Oii0 = −7), then remains at this new
level (Oiiw−1 − Oiiw = 0 for w > 1). The company will
keep receiving the old quantity for the λ = 4 weeks 0, 1, 2
and 3 because of O orders placed in weeks w − 4, w − 3,

6

Figure 5: Implementation of the Québec Wood Supply Game (QWSG) in a spreadsheet program.

w − 2 and w − 1. Since the company ships the new quan-
tity from Week 0 on, this company ships more products
than it receives in the 4 weeks 0, 1, 2 and 3, which causes
its inventory decrease by 7 units in each of these 4 weeks.
This is the reason for which this company needs to order
4*7 units in Θ, in addition to what is ordered in O.

θpi
w = θiiw − λ ∗ (Oiiw−1 − Oiiw) (14)

4 The MABS Simulator

The MultiAgent Based Simulation (MABS) is based on
the spreadsheet simulator. To this end, the model in both
simulators is the QWSG, except that the MABS uses the
agent programming language JACKTM in order to model
every company with increased realism.

4.1 Generic model and implementation

Of course, such a realism implies a greater complexity of
the simulator, which explains why companies are imple-
mented with the agent-oriented language JACKTM from the
Agent Oriented Software Group (2003). This language

helps us implement our simulator thanks to its charac-
teristics, such as the high-level representation of company
behaviours, implementation flexibility, and suitability for
distributed applications (Agent Oriented Software Group,
2003). Using the agent paradigm also allows taking com-
pany autonomy more into account. Indeed, JACKTM pro-
vides tools to implement systems of intelligent agents, that
are both reflex and goal-directed. The first of these two
kinds of decision making families is the most simple since
reflex means that agents only react to events, even though
this reaction may look quite “intelligent” by depending on
the past (i.e. on some internal state) of the agent. The
second kind deals with goal-directed behaviours in which
agents are even more “intelligent” in the sense that they
take the initiative in order to fulfill their goals. For in-
stance, the reflex behaviour implemented by Equations 13
and 14 may be read as “an order has arrived ⇒ place an
order,” which may also be implemented by a MABS. An
example of goal-directed behaviour to replace it would be
“I want to keep my inventory at level X ⇒ place an order
whenever its level is below X .” In the current version of
our simulator, we only use the reflex behaviour of agents
because we only implemented the ordering and shipping
streams, but JACKTM easily allows making this behaviour

7

Agent 6 Agent 7Agent 4
Agent 2

Customer

Paper Paper
WholesalerRetailer

Paper Mill

Lumber
Wholesaler

Agent 3 Agent 5
Agent 1

Customer

Lumber
Retailer

ClockAndGUI

Agent 10

Agent 9

Forest

Agent 8

Sawmill

: Inventory

: Flow of products

Figure 6: The forest supply chain modelled with JACKTM

agents.

evolve toward a more complex one in order to implement
sophisticated goal-directed decision making. The Agent-
Oriented Programming Language JACKTM uses events to
fire plans. Specifically, an event models the occurrence of
an intra-agent event (i.e. a communication between parts
of the agent) or of an inter-agent event (i.e. a message to
another agent) that agents must address. A plan is the pro-
cedural description of actions that an agent achieves when
it receives a specific (internal or external) event. Figure 6
represents the flows of products in inventories and in ship-
pings in the simulated supply chain. Each company has
one or several inventories figured as triangles; the total
height of a triangle represents inventory capacity, while
its filling represents its current level. In PaperMill and
Sawmill, circles represent the transformation of a quan-
tity of material. (Production is an addition to the QWSG,
in which companies were only seen as warehouses.) This
work-in-process inventory cannot be partially filled, that is,
it is exclusively either full or empty. Both wholesalers are
like in the QWSG: they do not have production activity
and they have a truck to ship products to their retailer.
The other companies differ from the QWSG: both mills
manage raw material inventories due to their production
activity, and none of the retailers ship products because
customers come to buy them. Like in the QWSG, time
is discrete in order to make it easier to control that the
simulation works as we intend it to do, which avoids issues
due to parallelism. For example, depending on the trav-
eling of messages on the network between agents (when
agents are spread on two or more computers), two in-
stances of exactly the same simulation without any ran-
domisation may incur different outputs. Also as in the
QWSG, each company has a product inventory ready to
be shipped, called finishedProductInventory in Figure 7,
and there are delays between companies modelled as the
queue productsInTruck; note here that we choose to begin
the names of variables with a “ ”, and the name of JACKTM

plans with “Pl”.

The PaperMill is the only agent that has the basic struc-
ture shown in Figures 7 and 10, while the other agents
are adaptations on this basis. Figure 7 shows the changes
between PaperMill in the QWSG and the PaperMill in our
MABS: there are information and product streams travel-
ling the four functions Transport, Deliver, Make and Source

Make SourceDeliver

Plan

Return Return

C
us

to
m

er
s

S
up

pl
ie

rs

Figure 8: The Supply-Chain Operations Reference
(SCOR) model of the Supply Chain Council (2007).

of the company. Besides that, every shipping delay is rep-
resented as an inventory at the visual level in Figures 6
and 9, and as a queue called productsInTruck at the logical
level in Figure 7. Product batches go through this queue
and are given to the client’s rawMaterialInventory as soon
as the shipping delay has elapsed. We add capacity to this
queue, whereas shipping delays in the QWSG (that can
be seen as trucks) can ship as many products as needed.
We add capacity to inventories too. The inventory in the
QWSG, like Ii

w in our spreadsheet simulator, corresponds
to finishedProductInventory in Figure 7. We can note that
the four functions Transport, Deliver, Make and Source are
based on the first level of the Supply-Chain Operations
Reference (SCOR) model from the Supply Chain Council
(2007) illustrated in Figure 8. Indeed, in comparison with
SCOR, we put a function Transport in addition to Deliver.
Transport is a truck which takes the place of the two ship-
ping delays in the QWSG. Next, if we do not consider Re-

turns, SCOR represents a company as three activities: De-

liver (shipping to clients), Make (basic activity of the com-
pany), Source (purchase from suppliers). The additional
levels of SCOR details these three activities, but we do not
consider that in the current version of our simulator. We
can also note that, in our spreadsheet simulator, all com-
panies were modelled with the same equations, except the
Sawmill, while in our MABS, only the PaperMill has the ba-
sic code outlined in Figures 7 and 10, while all other com-
panies derive from this: the Sawmill has two Transport and
two Deliver, the LumberWholesaler and the PaperWholesaler

have no Make, as well as the LumberRetailer and the Paper-

Retailer. Indeed, the QWSG and our spreadsheet simulator
do not make any distinction between companies in the dis-
tribution network (the retailers and the wholesalers) and
production companies (the PaperMill and the Sawmill). On
the contrary, we made our MABS model more realistic by
adding the Make function to the PaperMill, which forces us
to add the Source function. Both of these functions contain
a limited inventory, called workInProcessInventory in Make

(cf. Figure 7), and rawMaterialInventory in Source. The
workInProcessInventory in the Make function represents the
product batch being processed, that is, it is a small inven-
tory which is either full or empty. We now detail how the
simulation works.

8

Orders

to
Products

suppliers
from

Products

Orders

suppliers
Deliver

to

clients
from

Truck

Information stream Product stream

SourceTransport Make

Plan

clients
_p

ro
du

ct
sI

nT
ru

ck

Paper Mill

_r
aw

M
at

er
ia

lIn
ve

nt
or

y

_w
or

kI
nP

ro
ce

ss
In

ve
nt

or
y

_f
in

is
he

dP
ro

du
ct

In
ve

nt
or

y

Figure 7: The PaperMill model.

4.2 Details of the different types of agents

We first present the five different types of agents (i.e.
the company-agents, and an additional agent called
ClockAndGUI) in the simulation, and then the implemen-
tation of the company-agents. Agents can be divided into
five categories:

1. Customers are modelled as two agents buying prod-
ucts from their retailer. Customer agents place orders
according to a distribution law representing different
kinds of consumption patterns.

2. Retailers and Wholesalers, i.e. the distribution net-
work, are companies having neither production ac-
tivity nor raw material inventory to manage: prod-
ucts coming from the supplier do not wait in
the rawMaterialInventory because these agents di-
rectly move products from rawMaterialInventory to
productsInTruck. Moreover, these four agents have
to place orders to their suppliers.

3. PaperMill is the basic company-agent in our model in
Figure 10, because it has the Transport, Deliver, Make

and Source functions, and the Sawmill is an extension
on this. Make and Source share a common code for
the PaperMill and the Sawmill, but are created differ-
ently, e.g. workInProcessInventory and finishedProd-

uctInventory are arrays containing an integer in the
case of the PaperMill, and two integers in the case of
the Sawmill, and productsInTruck are arrays contain-
ing one array of integers in the case of the PaperMill,
and two arrays of integers in the case of the Sawmill.

4. Forest is the most upstream company-agent, and thus
has no supplier and does not place any orders. It

is assumed to be an infinite source of wood in the
QWSG but we assume in our model that its capacity
is given by a cutting plan representing companies’ pro-
curement contract with the provincial government. It
should be noticed here that FOR@C (2007) organizes
games of the board version of the QWSG in which the
production of the Forest is constrained.

As previously noted, we assume all companies work at
the same time, and that this time is discrete, i.e. every
company waits for the other company to complete the ac-
tions in the current day, before beginning the next day
(and maybe, the next week). This is the purpose of the
ClockAndGUI agent, which both broadcast the time to all
other agents in order to centralize the control of the sim-
ulation, and display the graphical user interface (GUI).
Figure 9 gives an overview of the information displayed by
the ClockAndGui interface.1.

5. The ClockAndGui is an agent multi-casting an event

representing the time in the whole supply chain. Each
tick of the clock makes company-agents perform ac-
tions by triggering their JACKTM plans. ClockAndGui

can also display information on the GUI, and/or write
raw simulation outcomes on the shell, and/or put sim-
ulation outcomes in an Excel (Microsoft Corp., 2004)
file with the Java Excel API 2.3.12 from Andy Khan
(2004).

We should finally note that Transport could have been mod-
elled as truck agents instead of as a function in each com-
pany. It would have allowed us to focus on the impacts

1We would like to thank Eve Levesque who adapted the GUI
from the Nereus project (Paquet, 2001; Plamondon et al., 2003;
Soucy, 2004) in DAMAS laboratory at Université Laval (Québec City,
Québec, Canada).

9

Figure 9: Graphical user interface of the MultiAgent Based Simulation (MABS).

of unanticipated transportation events on the bullwhip ef-
fect. We currently assume that transportation can simply
be viewed as a queue in which there is no problem and
managed by each company.

4.3 Implementation of the components of the
agents

Since we use the JACKTM framework, this description of the
implementation is a summary of the JACKTM plans used to
model companies. We have seen that Transport, Deliver,

Make and Source functions travel with the information and
the product streams. Figure 10 gives more details about
the implementation of these four functions by indicating
the name of the JACKTM plans involved in each of these four
functions. We now detail the code of these plans. These
plans simulate and improve the five days per week of the
QWSG. Since JACKTM agents are event-driven, every plan

is triggered by a particular event. For this reason, we first
present the events, then the plans in our agents. There
are five types of events in our simulation. The first two
types directly come from the QWSG and have a physical
meaning, while the other three types are necessary for the
simulation operation:

1. EvOrder: These are messages (external events) con-
taining three information, namely, the (O, Θ) order

clients
PlProductionPlShippingPlHauling

Transport Deliver Make Source

PlPlannning

PlOrderingMailbox

Information stream Product stream

PlOrderNegotiation

Products
to

Orders
from

clients

Truck

Products

suppliers
from

PlOrdering to
suppliers

PlShippingForecasting
Orders

PlCheckingInMailBox

PlCheckingIn

Paper Mill

Figure 10: JACKTM plans in the PaperMill.

and the character string of the type of the ordered
item (paper or lumber).

2. EvShipping: Each of such external events may be seen
as a delivery truck. These messages have a field rep-
resenting the quantity of products of the shipping and
another field for the name of the product hauled (pa-
per or lumber).

3. EvTime: These events are messages representing the
time multicast by ClockAndGui to drive all company-

10

agents’ plans.

4. EvAskForUpdateGUI: This message event is sent by
company-agents to the ClockAndGui agent in order to
display on the user interface the state of the company-
agent.

5. EvInitGUI: This message is sent by company-agents
to ClockAndGui at the beginning of the simulation to
initialize the display, and is similar to EvAskForUp-

dateGUI, except that it also contains capacity param-
eters.

We now present the plans triggered by these events. See
Figures 7 and 10 for the signification of notations. Note
that all company-agents’ plans are driven by events EvTime,
except plans whose name finishes by “MailBox” that are
driven be a message event EvOrder or EvShipping which
may be received anytime. We first outline the latter type
of plans.

• PlCheckingInMailBox: Each time an EvShipping truck
arrives, the quantity of products it indicates is added
to company’s variable rawMaterialInventory.

• PlOrderingMailBox: Each time an EvOrder message
arrives, the (O, Θ) order it contains is memorized.
The purpose of this memory is to transmit (O, Θ) to
PlOrdering and PlShipping.

Next, the other plans are fired by the day in week indi-
cated by the EvTime multicast by the ClockAndGUI agent.
The number of the item in the following list indicates what
day of the week fires the corresponding plans:

1. PlHauling sends to the client an EvShipping truck indi-
cating the last quantity shipped in productsInTruck.

2. PlOrderNegociation will negociate (when imple-
mented) the price, quantity, shipping date, and so on,
with the supplier whenever an EvTime (sent by the
ClockAndGUI agent) indicates the 2nd day in week.

3. PlOrdering sends an EvOrder message to the supplier
indicating the quantity (O, Θ) calculated by the or-
dering policy of the agent. The ordering policy is in-
cluded in PlOrdering and, in the current state of our
simulator, consists of the same ordering strategies as
in the spreadsheet simulator. However, some strate-
gic behaviour of the agent may be added here in the
future.

4. PlProduction performs the activity of the agent: If
production time has elapsed, i.e. if week in EvTime

is superior to company’s (beginningProductionWeek

+ productionDuration), then (i) move items from
workInProcessInventory into finishedProductInventory,
and (ii) if a new batch of products can be launched,
process it, else set beginningProductionWeek such as
this plan triggers the following week.

5. PlShipping tries to fulfill the client’s demand memo-
rised by PlOrderingMailBox. In detail, PlShipping (i)
tries to fulfill current O and backordered O, (ii) tries
to fulfill current Θ and backordered Θ, and (iii) puts
these four quantities into company’s productsInTruck.

6. PlPlanning will plan (when implemented) which prod-
uct to produce if the company processes different
kinds of products.

7. PlShippingForecasting will anticipate the future de-
mand of the customer (not yet implemented)

All these plans belong to the PaperMill. Since neither Cus-

tomers have either PlHauling or PlShipping, they have a
special version of the PlOrdering plan:

3. PlOrdering send to the supplier (here, a Customer) an
EvOrder message indicating the market consumption
in O and zero in Θ.

Finally, the four companies in the distribution network and
the two Customers do not produce anything, which explains
why the following plan replaces PlProduce:

4. PlNoProduction move items from
rawMaterialInventory into finishedProductInventory if
finishedProductInventory has enough room.

All the elements we have just described replicate a more
realistic supply chain than the QWSG. Similar to our
spreadsheet simulator, the only cause of the bullwhip effect
that appears in this agent simulator is the consequence of
ordering and shipping delays.

5 Comparison of our two Simulators

We now compare the two approaches to simulate the deci-
sion making in SCs adopted in this paper. We do not aim
to propose a general comparison of MABS with spread-
sheet simulators, but only to precise the differences we en-
countered with them. Basically, using a spreadsheet pro-
gram is the quickest way to implement a simulator, as long
as this simulator is not too complex. In particular, it is an
interesting way to identify the salient points of the model.
On the other hand, the advantage of a MABS is its real-
ism, which may also be of huge importance depending on
the reasons for which a simulation is needed. In fact, if the
goal of a simulator is to:

• replicate the real-world as nearly as possible in order
to predict what will happen in reality, then the MABS
approach should be chosen.

• understand the underlying mechanisms of a phe-
nomenon, then a spreadsheet program forces the de-
signers of a simulator to simplify their model as much
as possible so that basic mechanisms in the supply
chain are emphasized, which allows understanding
them. On the contrary, realistic MABSs mix every-
thing and make understanding what occurs more chal-
lenging.

11

Issue Spreadsheet Vs. MABS

1. Perturbations Impossible > Short
2. Interactions (e.g. negotiation) Impossible > Long
3. Multi-product scenarios Impossible > Long

4. Implementation of the causes of the bullwhip effect
4.1 Updating of demand forecasting Short = Short
4.2 Order batching Short = Short
4.3 Price fluctuation Short = Short
4.4 Rationing and shortage gaming Short = Short

5. Capacities
5.1 Transportation capacity Short = Short
5.2 Inventory capacities Short = Short

6. Implementation time
6.1 Time to learn the tool Short < Long
6.2 Coding time Short < Long
6.3 Validation of the code Short < Long

7. Time to run simulations Short < Long
8. Publication of the simulation model Short < Long

Table 1: Time needed to implement different aspects of supply chain management with the two simulation approaches
(Impossible > Long > Short).

Next, Table 1 summarizes the times needed to perform
some tasks with these two approaches. The following sub-
sections explain Table 1. Basically, some aspects are not
possible to model with a spreadsheet simulation (cf. Is-
sues 1), or so long to implement that they can be seen as
impossible (cf. Issues 2 and 3). Next, all what can be rep-
resented with the spreadsheet approach can also be with
MABS, and the implementation with MABS is at least
as easy as with the spreadsheet simulator (cf. Issues 4
and 5). However, the higher realism allowed by the MABS
approach has a price (cf. Issues 6, 7 and 8).

5.1 Perturbations

Perturbations are events (e.g. transportation delays, or is-
sues dealing with the reliability of processes) which make
so that plans cannot be followed. The most intuitive way to
model perturbations is to represent them as events occur-
ing anytime. By definition, any DEDS, such as a MABS,
is therefore well suited to manage perturbations, that is,
managing events is the purpose of this simulation type.
For instance, let us assume that a machine breaks down
at time T 2 between the two time steps T 1 and T 3. The
MABS is naturally able to take account of this event from
T 2, without waiting for the next tick T 3 of the clock. As a
consequence, Table 1 describes as “Short” the simulation
of perturbations with MABS.

In contrast, the spreadsheet simulator will know about
the breakdown only at period T 3. This example illustrates
something similar to what we shall see in the next subsec-
tion, that is, nothing can happen between two time steps in
spreadsheet simulations, which explains the “Impossible”
in Table 1.

5.2 Interactions (e.g. negotiation)

Interactions are also difficult to implement in a spreadsheet
simulator because it is hard to fit an interaction between
two time steps. In fact, when companies interact in this
type of simulators, a whole sheet of the spreadsheet pro-
gram is devoted to that, rather than to any other question
of SCM. More precisely, the lines in the spreadsheet rep-
resents the different rounds in an interaction, rather than
the time separating two interactions (the latter possibility
corresponds to our spreadsheet simulation). As a conse-
quence, studying interactions with a spreadsheet simulator
is described as almost “Impossible” in Table 1.

In order to illustrate this, let us consider a simple bi-
lateral negotiation in which a requester makes offers to a
provider until either the provider accepts an offer or the
requester gives up. This protocol may obviously end af-
ter a single round when the provider accepts the first of-
fer, or run forever when the requester rejects all the offers
while the requester is insisting. Studying the operation
of such an interaction protocol in a spreadsheet simula-
tor would thus take between one and an infinite number of
lines, each line representing a round in the protocol. These
lines would have to be in a sheet different from the main
one, that is, the main sheet would simulate all the time
steps and, sometimes, use the other sheet in order to run
the interaction protocol. Of course, it is not completely
“Impossible” to implement this in a spreadsheet program,
in particular thanks to macros, but the difficulty is such
that we described it as harder than “Long.”

On the contrary, the concept of agents, on which MABS
relies, focusses on interactions among agents. Implement-
ing our example of bilateral negotiation is straightforward
with MABS. However, tracking the interactions is often
difficult, especially when more than the two agents in our

12

example of a bilateral negotiation are involved, because
each agent impacts on each other. This difficulty is even
greater when the agents run on different computers, as this
is allowed by MABS but not by spreadsheet programs. As
a consequence, Table 1 describes MABS as “Long.”

5.3 Multi-product scenarios

It seems easy to enhance our spreadsheet simulator in order
to consider companies buying and selling different kinds of
products, because this only requires adding an indice p
indicating the type of the product for all the variables,
e.g. Toi

w,p, T iiw,p, Opi
w,p, etc. Technically, every prod-

uct p would flow in a different supply chain represented
in its own sheet of the spreadsheet. Unfortunately, multi-
product scenarios are more complicated than just repre-
senting different flows of products, because decision mak-
ing becomes much more complicated. In particular, pro-
duction planning may be needed (no production conflicts
may occur with a single type of products), and there might
be some interactions between production planning and the
ordering strategies calculating Op and Θp. All these mod-
ifications are very “Long” to implement in a MABS sim-
ulator, and are thus almost “Impossible” to program in a
spreadsheet simulator (see Table 1).

5.4 Implementation of the four causes of the bull-
whip effect proposed by Lee et al. (1997a,b)

Since our spreadsheet simulator implements a model re-
lated to the Beer Game, it only addresses one cause of
the bullwhip effect, namely, the misperceptions of feedback
identified by Sterman (1989). But the bullwhip effect is a
more complex phenomenon, and other causes have been
proposed to explain its occurence. Then, we may wonder
how to extend our two simulations so that more known
causes of the bullwhip effect are taken into account, ei-
ther separately, or at the same time in order to study
their interactions and the interactions of the solutions to
these causes. We present this extension by explaining the
four causes of the bullwhip effect identified by Lee et al.
(1997a,b), then how these causes may be added to both
simulations. We focus on the four causes in (Lee et al.,
1997a,b) because they are the most studied ones, even if
Moyaux et al. (2007) found a few more proposed causes in
their literature review.

5.4.1 Updating of demand forecasting

Every company places orders based on a forecast of its fu-
ture demand, and the history of incoming orders is used
in this forecast. Unfortunately, the signal of demand in-
formation is deformed by forecasting. That is, retailers
make a quite accurate forecast because they are in contact
with the market, while their suppliers make worse fore-
casts because they only have their incoming orders to base
forecasts on, thus the amplification of demand variability.

This cause of the bullwhip effect does not play in our
spreadsheet simulation because companies do not forecast

future demand. It is possible to add this by introducing
a variable Of representing the forecasted Oi, e.g. Of i

w =
.5 ∗ Oiiw + .5 ∗ Of i

w−1, and to make the ordering strategy
depend on Of when calculating Op and Θp. We may even
assume retailers share their forecasts Of by making the
Op and Θp of Company i depend on a retailer’s Of .

This same modification may be added to MABS.

5.4.2 Order batching

Order batching, and lot sizing in a more general way, deals
with the fact that ordered quantities are made discrete in
order to profit from economies of scales.

Since the spreadsheet simulator only considers the dis-
tribution network of a supply chain, this cause can be im-
plemented by making companies ship only with full truck-
loads. Since Too in Equation 3, Tob in Equation 6 and
ToΘ in Equation 7 are very complicated, we suggest to
modify To (at the moment, To = Too + Tob + ToΘ in
Equation 8) so that it may only take some specific values.

The MABS may not only implement that, but also its
equivalent inside companies by considering production by
batches. (Production is not modelled in the spreadsheet
model.)

5.4.3 Price fluctuation

When a company proposes a promotion, end-customers
and industrial clients buy more products than requested at
the moment in order to fill their inventory, which increases
demand. Later on, demand decreases when the products in
excess are taken from inventory instead of being ordered.

This behaviour may be implemented with both spread-
sheet and MABS simulators by introducing a price of the
products between every pair of companies,2 and letting
sellers sometimes reduce their price. This also supposes
that the ordering strategy takes price into account when
calculating Op and Θp in Equations 13 and 14. Since this
is “Short” to implement with the spreadsheet simulator,
this is also “Short” with MABS (cf. Table 1).

5.4.4 Rationing and shortage gaming

Rationing and shortage gaming deal with the strategic be-
haviour of companies when demand exceeds supply, e.g.
because a machine breakdown reduces the quantity of
available products. In this condition, some clients might
order more than their actual needs, because they try to
have a bigger proportion of available products by “gam-
bling,” in order to receive a quantity closer to their actual
needs.

In order to implement this cause of the bullwhip effect,
every agent may overorder if it does not receive what it

2We do not mean prices in general, i.e. with some form of negotia-
tion between buyers and sellers to agree on that price (Subsection 5.2
has just shown why spreadsheet simulation is not appropriate for
that), but only in the specific case of promotions causing the bull-
whip effect.

13

ordered four weeks before (because products ordered in
Week w are received in Week w + 4).

5.5 Capacities

Besides the bullwhip effect, we may also wish to study how
capacities constrain decisions.

5.5.1 Transportation capacity

Currently, both simulators may have an infinite quantity
of products in inventory or in trucks. It is possible to
modify Equation 8 so that an outgoing transport To is not
allowed to contain more than a fixed quantity of products,
e.g. To = Too + Tob + ToΘ when Too + Tob + ToΘ <
TransportCapacity, otherwise To = TransportCapacity.
In other words, transportation capacity can be imple-
mented in a way very similar to transportation by batches
in Subsection 5.4.2. Since this modification is “Short” for
the spreadsheet approach, it is also “Short” for the MABS.

5.5.2 Inventory holding capacity

It is less easy to implement a capacity for inventories than
for transportations, because units arriving to the ware-
house have to be stored somewhere. As a consequence,
planning has to avoid such an event. In other words, inven-
tory holding capacity is taken into account by the decision
making of companies. For example, decisions should be
made so that the inventory-order position is never greater
than the inventory holding capacity, where the inventory-
order position in Week w of company i is the sum of (i)
its upcoming orders on Week w

∑

v<w(Opi
v + Θpi

v − T iiv)
plus (ii) its on-hand inventory Ii

w−1 minus (iii) its customer
backorders Obi

w + Θbi
w.

5.6 Implementation time

We split the implementation time in three parts: (a) How
difficult is it to learn the tools needed to program the sim-
ulator? (b) When we know these tools, how long does it
take to code the simulator? (c) How difficult is it to check
that the simulation implements its model?

5.6.1 Time to learn the tool

Spreadsheet programs are user-friendly because they are
intended to be used by everyone. Moreover, spreadsheet
programs have been designed for many years, and many tu-
torials are available. As a consequence, learning how to use
a spreadsheet is relatively short. On the contrary, JACKTM

is a language designed as a powerful general-purpose tool
for computer scientists and engineers. This power allows
building much more complex applications than a spread-
sheet, but the price of this power is the difficulty in learn-
ing the langugage. Indeed, agent-oriented concepts have
to be learnt to use JACKTM, and object-oriented concepts
are also useful because JACKTM is built upon JAVA. Fi-
nally, agent-oriented languages such as JACKTM are young

in comparison with spreadsheet programs, and, therefore,
tools provided for such agent-based languages are not as
user-friendly as they could be, and only a few tutorials are
available.

5.6.2 Coding time

Coding time is also an advantage for spreadsheets, be-
cause many generic tools are provided with these programs,
e.g. to analyze simulation outcomes or to automatize some
tasks. In particular, optimization tools, such as the Solver

in Excel, are very useful tools to find the best value of some
parameters without having to program an algorithm look-
ing for such values through an exhaustive search, a genetic
algorithm, a simulated annealing, etc. Concerning again
optimization tools as the Solver, we notice that optimiza-
tion is only possible for a single company in a MABS, and
very difficult to carry out for a whole supply chain, while
it is easy to optimize for both a single company and a
whole supply chain in a spreadsheet simulator due to its
non-distributed aspect.

Of course, we can object here that programming a
spreadsheet simulator is more difficult than programming
a MABS for two reasons. The first reason is that it is not
always obvious to find which variables are needed in the
spreadsheet. For example, Moyaux et al. (2003) have pub-
lished the equations of the spreadsheet simulation of the
QWSG in which backordered orders O were measured as
negative inventories. A bug in this simulation was then
found, and its correction obliged introducing Obi

w so that
inventory Ii

w cannot be negative. The second reason is also
practical. If you take a large quantity of variables, display-
ing your simulator is less pretty, and its use is heavier. But
if you do not take enough variables, writing the equations
defining each variable is an intractable problem. As an il-
lustration, Equation 3 shows several of such what-if rules
that have to be gathered in one single entry of a spread-
sheet, where each what-if rule is not obvious to define.

On the other hand, we should note that a MABS is
longer to implement, because it is basically much more
realistic. However, multi-agent frameworks are provided
with tools helping agent implementation. In particular,
JACKTM allows tracing all messages exchanged between
agents and provides a graphical tool to fully design and
partially program every agent’s behaviour. In spite of that,
programming a MABS is longer, and this is the price to
pay for obtaining a more realistic simulation.

5.6.3 Validation of the code

Since the progammer of a spreadsheet simulator has a
global view on the simulated supply chain, it is easy to
understand what occurs in the simulation, and, in particu-
lar, to be sure that streams are well implemented (i.e. does
material appears or disappears for no reasons?). On the
other hand, the distributed nature of a MABS (i.e. agents
may be spread over several computers) makes it difficult to
construct a global view of the simulation in order to debug

14

the operation of its agents.

We should note that the outcomes of our spreadsheet
simulator are helpful to debug our MABS, because we can
simplify our MABS (e.g. by setting the production rate
of the Paper Mill and of the Sawmill to infinite) to check
if it behaves similarly to our spreadsheet simulator. But
when the realism of the simulator increases, the complexity
of the spreadsheet program rapidly becomes intractable,
and this method becomes impossible. In this case, unit
tests, for example with JUnit (http://www.junit.org/),
are helpful when the MABS runs in a single process.

5.7 Time to run simulations

Since spreadsheet simulators run entirely in the same pro-
cess, inter-company communications are really fast, no
overhead is required by the operating system to manage
the multithreading required by several agents when they
run on the same CPU, and no communication overhead is
spent by the network because all companies run on a single
PC. As an insight into the difference of speed, a fifty week
simulation takes less than a second on our spreadsheet sim-
ulator, while our MABS takes around 20 seconds on our
2 GHz PC (in this second measure, the six company-agents
and the ClockAndGui agents all run on the same PC). This
difference may be crucial depending on the context. For ex-
ample, when random functions are used, simulations need
to be run a large number of times in order to apply some
statisical tools (means, standard deviation. . .) to analyze
simulation outputs.

Moyaux et al. (2004b) present another example in which
many simulation runs are needed in order to build games
analysed with Empirical Game Theory. For that purpose,
they run the 36 = 729 combinations of three strategies
among the six companies, that is, all companies use the
first strategy in the first run of the simulation, next all
companies used the first strategy except the LumberRetailer

that used the second strategy in the second simulation run,
. . . and, finally, all companies use the third strategy in the
729th run. The idea of these three strategies was that com-
panies do not collaborate to reduce the bullwhip effect with
the first strategy, they collaborate a little with the second
strategy (this is the strategy presented in Subsection 3.4),
and they collaborate a lot with the third strategy. After
each of these 729 simulations over fifty weeks, the individ-
ual cost for each company is noted in a 3×3×3×3×3×3
matrix. This matrix is a game in the normal form in which
two things are looked for, namely, (i) all the Nash equilibria
with the free software Gambit by McKelvey et al. (2007),
and (ii) the minimum of the overall supply chain cost. As
we can see, the simulation time is important here, because
the spreadsheet simulator takes around 6 minutes to run
the 729 simulations with a specific market consumption
pattern, while 729 ∗ 20 = 14, 580 seconds (4 hours) would
have been required by the MABS.

5.8 Publication of the simulation model

It is easy to communicate the code of a spreadsheet simula-
tor with other people, because we only have to replace the
name in the spreadsheet by the name of the correspond-
ing variable. For example, in the screenshot in Figure 5,
the column L represents the LumberRetailer’s inventory in
our spreadsheet simulator, so that, L7 contains the value
of the initial inventory level, i.e. I1

1 = 0 in this figure, and
L8 contains the equation L7+S7-P8 (the content of this en-
try is displayed above the label of the column C), which is
noted Ii

w = Ii
w−1 + T iiw − Toi

w in Equation 9.

Conversely, the description of our MABS is more dif-
ficult, because there is currently no standard to describe
the behaviour of agents, even if some tools are widely used,
such as SWARM (SwarmWiki, 2006). This is the reason
why we first presented a part of the JACKTM framework
in Subsection 4.1. But the difficulty in communicating an
agent model is also the price to pay for having a more real-
istic simulation, that is, making a model more realistic also
implies making it more complex. However, this price could
be lower if a standard existed to describe an MABS, as is
the case to describe DEDS with Zeigler (1976)’s DEVS
formalism (Discrete Event System Specification).

6 Conclusion

The Quebec Wood Supply Game (QWSG) is a board game
similar to the Beer Game designed to teach supply chain
dynamics. This game provides an agent model of each
company in a supply chain, and a supply chain structure.
This paper has presented how the model in the QWSG can
be used to implement two simulators in order to study de-
cision making in supply chains. The first simulator strictly
implements the model of companies in the QWSG. Since
this simulator runs in a spreadsheet, we provide all the
equations of this model in this paper. The second sim-
ulator is a MultiAgent Based Simulation (MABS) which
enhances the first one by detailing the operations in every
company. Since this MABS is more realistic, thus more
complex, we cannot both detail entirely its implementa-
tion and use a spreadsheet program to implement it.

Finally, we have described the pros and cons of each
of our two simulators. We started with the drawbacks of
spreadsheet simulations by stating that the representation
of perturbations is impossible with this simulation type.
In addition, modeling interactions (e.g. negotiation) and
multi-product scenarios are so long that they are almost
impossible with spreadsheet programs. Next, some fea-
tures are as long to add to the spreadsheet simulation as
to the MABS, such as some causes of the bullwhip effect,
and modeling transportation and inventory capacities. Fi-
nally, we presented some drawbacks of MABS. The first
one is the longer time required to (i) learn such a tool, (ii)
implement the simulation, (iii) validate the implementa-
tion, and (iv) run the simulations. The second drawback
of MABS is the difficulty to publish a model longer than

15

a spreadsheet model would permit due to the increased
realism of the MABS approach.

ACKNOWLEDGMENT

We would like to thank the industrial partners of
FOR@C, the Research Consortium in e-business in the
forest products industry (Université Laval, Quebec City,
QC, Canada), and the Natural Sciences and Engineering
Research Council of Canada, for supporting this research.
We also thank the referees for their valuable suggestions, as
well as Eve Levesque for her help on the second simulator.

REFERENCES

Agent Oriented Software Group (2003). JACK Intelligent
Agent (TM) User Guide. Technical Report Release 4.1.
http://www.agent-software.com/.

Fjeld, D. E. (2001). The wood supply game as an educa-
tional application for simulating dynamics in the forest
sector. In K. Sjostrom and L.-O. Rask, editors, Supply
Chain Management for Paper and Timber Industries,
pages 241–251, Växjö (Sweden).

FOR@C (2007). Web site of the research consortium in
e-business in the forest products industry, Université
Laval, Quebec City (PQ, Canada). http://www.forac.
ulaval.ca (accessed 16 April 2007).

Haartveit, E. Y. and Fjeld, D. E. (2002). Experimenting
with industrial dynamics in the forest sector - A Beer
Game application. In Symposium on Systems and Mod-
els in Forestry, Punta de Tralca (Chile).

Khan, A. (2004). Java Excel API 2.3.12. A Java API to
read, write and modify Excel spreadsheets http://www.
andykhan.com/ (accessed 2 March 2003).

Kleijnen, J. P. C. (2003). Supply chain simulation tools
and techniques: a survey. International Journal of Sim-
ulation & Process Modelling, 1(1/2), 507–514.

Kleijnen, J. P. C. and Smits, M. T. (2003). Performance
metrics in supply chain management. Journal of the
Operational Research Society, 55(5), 507–514.

Lee, H. L., Padmanabhan, V., and Whang, S. (1997a).
The bullwhip effect in supply chain. Sloan Management
Review, 38(3), 93–102.

Lee, H. L., Padmanabhan, V., and Whang, S. (1997b).
Information distortion in a supply chain: The bullwhip
effect. Management Science, 43(4), 546–558.

McKelvey, R. D., McLennan, A. M., and Turocy, T. L.
(2007). Gambit: Software tools for game theory, ver-
sion 0.2007.01.30. http://econweb.tamu.edu/gambit

(accessed 25 April 2007).

Microsoft Corp. (2004). Pack MS-Office 2000. http:

//www.microsoft.com/office/ (accessed 29 January
2004).

Moyaux, T., Chaib-draa, B., and D’Amours, S. (2003). Co-
ordination à base de jetons pour réduire l’amplification
de la variabilité de la demande dans une châıne logis-
tique. In Proc. 5th Int. Industrial Eng. Conf., Quebec
City (PQ, Canada).

Moyaux, T., Chaib-draa, B., and D’Amours, S. (2004a).
An agent simulation model for the québec forest supply
chain. In Proc. 8th Int. Workshop on Cooperative Infor-
mation Agents, volume 3191 of LNCS, pages 226–241,
Erfurt (Germany).

Moyaux, T., Chaib-draa, B., and D’Amours, S. (2004b).
Multi-agent simulation of collaborative strategies in a
supply chain. In Proc. 3rd int. joint conf. on Au-
tonomous Agents and MultiAgent Systems (AAMAS),
New York (New York, USA).

Moyaux, T., Chaib-draa, B., and D’Amours, S. (2007).
Information sharing as a coordination mechanism for
reducing the bullwhip effect in a supply chain. IEEE
Trans. on Systems, Man, and Cybernetics, 37(3), 396–
409.

Paquet, S. (2001). Coordination de plans d’agents: Appli-
cation à la gestion des ressources d’une frégate. Master’s
thesis, Université Laval, Quebec City (Quebec, Canada).

Plamondon, P., Chaib-draa, B., Beaumont, P., and Blod-
gett, D. (2003). A frigate movement survival agent-based
approach. In Vol. 2774 of Lecture Notes in Artificial In-
telligence, 7th International Conference on Knowledge-
Based Intelligent Information & Engineering Systems
(KES’2003), pages 683–691, University of Oxford (UK).
Springer.

Soucy, M. (2004). Gestion des ressources en temps réel :
Cas des frégates canadiennes. Master’s thesis, Université
Laval, Quebec City (Quebec, Canada).

Sterman, J. D. (1989). Modeling managerial behavior:
Misperceptions of feedback in a dynamic decision mak-
ing experiment. Management Science, 35(3), 321–339.

Supply Chain Council (2007). SCOR 8.0 overview booklet.
Available from http://www.supply-chain.org/ (accessed
March 2007).

SwarmWiki (2006). Web site. http://wiki.swarm.org/

wiki/Main_Page (accessed December 20, 2006).

Zeigler, B. P. (1976). Theory of Modelling and Simulation.
John Wiley & Sons, Inc.

16

