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Abstract. Collaborative driving is a growing domain of Intelligent Transporta-
tion Systems (ITS) that makes use of communications to autonomously guide
cooperative vehicles on an Automated Highway System (AHS). In this paper,
we address this issue by using a platoon of cars considered as more or less
autonomous software agents. To achieve this, we propose a hierarchical archi-
tecture based on three layers (Guidance layer, Management layer and Traffic

Control layer), which can be used to develop coordination models for central-
ized platoons (where a head vehicle-agent coordinates other vehicle-agents by
applying its coordination rule) and decentralized platoons (where the platoon
is considered as a team of vehicle-agents trying to maintain the platoon).
The latter decentralized model mainly considers a software agent teamwork
model using architectures like STEAM. These different coordination models
will be compared using results on preliminary simulation scenarios, to provide
arguments for and against each approach.

1. Introduction

Transport systems all over the world are suffering from spreading problems re-
garding mainly their traffic flow and safety. To address these traffic problems, we
generally build more highways, but this solution is greatly limited by the available
land areas, which is running low in most cosmopolitan cities. An alternative solu-
tion which is growing in popularity is to develop techniques that increase existing
roads’ capacity by investing in Intelligent Transportation Systems (ITS) infras-
tructure [7]. It is shown that ITS may provide potential capacity improvements
as high as 20 percent [14]. We can cite as ITS components: advanced transporta-
tion management, advanced transportation information system, and commercial
vehicle operations. Among these components, there are sub-components such as
automobile collision avoidance and electronic guidance system, which are gener-
ally sustained by individual technologies as: electronic sensors, wire and wireless
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communications, computer software and hardware, GPS, GIS, etc. To sum up, ITS
has the advantage of enhancing safety and reducing congestion, which results in a
reduction of transport systems’ negative environmental impacts.

Collaborative driving is an important sub-component of ITS that strives to
create vehicles being able to cooperate in order to navigate through highway traffic
using communications. Such a system is made possible with the collaboration of a
lower layer of control system, which acts as an Adaptive Cruise Control (ACC) [11].
Thus, at its simplest implementation, collaborative driving adds a layer of com-
munication to the present ACC, to create a Cooperative Adaptive Cruise Control
(CACC) and benefit from a communication system to collaborate between vehi-
cles’ ACC [18]. Going forward to a wider level of collaboration, the vehicle platoon
model, has used communications to coordinate platoon members with their platoon
leader [16]. Compared with CACC, this vehicle organization adds a deliberative
system in the lead vehicle, which coordinates the preceding vehicles equipped with
CACC, to maintain the platoon formation. As a new approach to centralized pla-
toon models based on the leader, we aim to incorporate the multiagent vision to
the platoon architecture and coordinate the vehicles through a model of teamwork
for software agents [15]. Such an approach incorporates autonomous agents in each
vehicle to use their respective communication system and coordinate each others
in a decentralized platoon model.

In this paper, we address in Section 2 the coordination issues for a platoon
of vehicles, by first describing the collaborative driving domain and the simula-
tor used to represent this environment. Then, Section 3 presents the hierarchical
architecture we adopted as the driving system of automated vehicles. Section 4
describes the different coordination strategies we implemented and tested in the
previous simulator. Section 5 reports our preliminary results using the comparison
of centralized coordination models with decentralized ones, by putting the empha-
sis on agent teamwork. Finally, Section 6 presents a discussion, followed by the
conclusion.

2. Application Domain

Collaborative driving is a research domain which aims to create automated vehicles
that collaborate in order to navigate through traffic. In this sort of driving, one
generally form a platoon [17], that is a group of vehicles whose actions on the road
are coordinated by the means of communication. The first vehicle of a platoon is
called the platoon leader and its role is to manage the platoon and guide it on
the road, so other vehicles can simply follow it. Our work comes as part of the
Auto21 project [3] studying the automobile of the 21st century within three levels
of system functionality. The first level focuses on the vehicle’s longitudinal control,
while the second focuses on its lateral control, both in a platoon lead by a human
driver. Finally, the third level considers every vehicle (even the leader) as fully
autonomous. This article focuses on the first level of functionality and its usage of
communications within the different platoon driving manoeuvres.
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2.1. Microsimulation of Autonomous Vehicles

The environment in which our vehicle coordination system has been tested is a
Collaborative Driving System (CDS) [5] simulator developed to provide user inter-
face and graphical results of our work. Similar to California Path’s Smart AHS [1],
our simulator called HESTIA, aspires to a lower level of vehicle microsimulation,
as its main purpose is to create an environment for the development and testing
of Intelligent Transport Systems (ITS). To do so, it simulates a highway environ-
ment, with vehicles represented as 3D shapes. These vehicles are using simulated
dynamics and sensors to retrieve information from the environment, such as the
vehicle’s internal dynamic information and external vehicles’ dynamic information.
The simulator’s environment is based on JAVA 3DTM’s technology that offers a
3D environment in which autonomous vehicles can evolve.

The simulated vehicles’ model includes longitudinal and lateral vehicle dy-
namics, wheel model dynamics, engine dynamics, torque converter model, auto-
matic gear shifting and throttle/brake actuators. The simulated sensors were de-
veloped using the 3D engine of JAVA 3DTM, and in the vehicle model presented
in this paper, each following vehicle is equipped with a vehicle-based laser sensor.
This sensor provides information on the front object’s (a vehicle) distance and
difference of velocity, for distances up to 100m, using an abstract model of laser.
The second type of sensor, used for high-level navigation, is a Global Positioning
System (GPS), which gives real-time information on the vehicle’s position (lat-
itude, longitude), mapped in a two dimensions system. Finally, we simulated a
radio transmitter/receiver onboard each vehicle for two ways point to multipoint
communications. We will not go further on a detailed representation of the simu-
lator’s components, as it is out of scope for this paper, but the readers can refer
to [8] for more information.

2.2. Simulated Driving Scenarios

The primary goal of the CDS is to maintain the platoon formation stable, and
therefore, the two simulated scenarios we focus on are the two main disturbance
in this formation: a vehicle splitting and a vehicle merging the platoon. These two
scenarios are represented in Figure 1 and they can be detailed as follows for a
better understanding:

A Vehicle splitting happens when a vehicle member of a platoon decides to
leave it, thereby forming two non-empty platoons. To execute this manoeuvre,
the splitting vehicle (F2 in Figure 1) must communicate its intention of leaving
the platoon, so the platoon formation modifies the distances at the front and
rear of the splitting vehicle, as shown in step 1 (S1 ) of Figure 1. When this new
formation gains stability, the splitting vehicle F2 can change lane, while the rest
of the platoon followers keep the same distance. When the splitting vehicle has
safely left the platoon (S2 ), the gap created for its departure can be closed, thus
forming back the precedent platoon, minus one vehicle (S3 ).

A Vehicle merging is the exact opposite of a split manoeuvre: two non-empty
platoons merge together to become one. To execute this manoeuvre, the merging
vehicle must be part of a platoon formed of one vehicle (itself), like vehicle L2 in
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Figure 1. The merging vehicle first has to communicate to another platoon a query
to join it. In the example of Figure 1, in step 1 (S1 ), the platoon lead by vehicle L1
accepts L2 ’s query. Moving from S1 to S2, L1 ’s platoon reacts by creating a safe
space and communicates the dynamic position of this space to the merging vehicle.
The merging vehicle then modifies its velocity to join the meeting point, verifies
if it is safe to merge and changes lane to enter the platoon formation and leave
S2 to meet S3. Once the merged vehicle has stabilized its inter-vehicle distance,
the platoon can reach its precedent formation plus one vehicle, by diminishing the
distances with the new vehicle. Although the steps of the merge manoeuvre may
differ from one coordination model to another, this represents the general pattern
of the merge manoeuvre.
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Figure 1. The three steps of the removal (split) and insertion
(merge) of a vehicle in the platoon.

As it has been shown, the merging and splitting manoeuvres of a vehicle are
the most problematic cases of the platoon formation and this is why the different
coordination models presented in Section 4 focus on the communications involved
during these two tasks. Since we put the emphasis on the communication and
coordination of the platoon, the vehicles’ lateral automated control is simulated to
enable us to perform the lane changes involved in the merge and split manoeuvres.
The lateral guidance system of our current system could then be seen as the
simulation of the human driver’s steering behavior or as the first phase of the
lateral guidance system. This subject being out of scope for this paper, which
focuses on communications, we will not detail the lateral controller.

3. Hierarchical Architecture for Collaborative Driving

The architecture we adopted for our driving system is based on a hierarchical ap-
proach. This model uses a more reactive system as the bottom of the architecture
and moves forward to a more deliberative system as it raises to the upper levels.
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Finally, as we related to other collaborative driving models, our hierarchical ar-
chitecture was also inspired by concepts coming mainly from the PATH project
[12]. As indicated in Figure 2, the resulting architecture has three major layers:
Guidance layer, Management layer and Traffic Control layer.
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The Guidance layer has the function of sensing the conditions and states
ahead and around the vehicle and activating the longitudinal or the lateral ac-
tuators. For the Intelligent Sensing sub-layer, the inputs come from sensors for
speed, acceleration, raw rate, machine vision, etc. The Guidance layer outputs
sensing data and vehicles state variables to the vehicle Management layer, which
in turn sends back “desired state” queries in the form of steering and vehicle
velocity queries to the Guidance layer. These queries are finally applied by the
Vehicle Control sub-layer, which includes lateral controllers and the longitudinal
controllers developed by our partners at Sherbrooke University [10].

The Management layer determines the movement of each vehicle under the
cooperative driving constraints using data from: (a) the Guidance layer; (b) ve-
hicles coordination constraints through the inter-vehicle communication; and (c)
the Traffic Control layer through the road-vehicle communication. To determine
the movement of each vehicle under the cooperative constraints, the Management
layer needs to reason on the place of the vehicle in its platoon when the vehicle
stays in the same lane (intra-platoon coordination), and its place in a new pla-
toon when the vehicle should change lane (inter-platoons coordination). The first
type of coordination is handled by the Networking module and the second by the
Linking module, together forming the Coordination sub-layer. Generally, the task
of the Linking module is to communicate with the Traffic Control layer to receive
suggestions on actions to perform. Resulting from these suggestions, the archi-
tecture’s Linking module reasons about the place of its vehicle on the highway
and it coordinates lane change actions with neighboring vehicles (inter-platoons
coordination). Following the synchronization of neighbors’ lane change requests,
the vehicles executing their lane change have to coordinate the actions involved
in the lane change. For example, if a vehicle leaves a platoon to enter a new one
during its lane change, it has to coordinate both a split and a merge manoeuvre.
This coordination task is handled by the Networking module, which is responsible
of the intra-platoon coordination and thus, the platoon formation’s stability. The
Networking module coordinates driving actions with other driving agents involved
in the manoeuvre (split or merge) to finally plan a series of local actions using the
Planning sub-layer. This sub-layer schedules driving actions (in time or accord-
ing to events) that are locally executed by sending “desired state” queries to the
Guidance layer.

The Traffic Control layer is a road-side system composed of infrastructure
equipments like sign boards, traffic signals and the road-vehicle communications
as well as a logical part including: social laws, social rules, weather-manners and
other ethics (more specific to Canada), etc.

4. Communication and Coordination Methodologies

Communication has shown its value in Collaborative Driving Systems (CDS), by
providing faster response time, more efficiency and by enhancing safety [18], but
we must define the most efficient way of using it, in order to take full advantage of
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this technology. The different possible communication methodologies for the pla-
toon of vehicles are implemented in the coordination sub-layer of Figure 2. For the
coordination of the platoon and its two main manoeuvres: split, merge, we describe
four models and outline their differences in Section 5. The models we decided to
compare were taken in part from projects as PATH [17], which have mostly used
platoon architectures coordinated by a master entity (the leader), although some
decentralized coordination models were also proposed [4]. However, in our appli-
cation, we bring this decentralization even forward, to finally come with a novel
approach to inter-vehicle coordination in CDS: a teamwork coordination for driv-
ing agents. In this section, the centralized, decentralized and teamwork models are
described by focusing on the teamwork model, which is more complex and repre-
sents the most promising research avenue for our application. Note that in each of
our coordination models, the guidance and control systems are decentralized for
every vehicle involved [10].

Figure 3 presents the four coordination models we compared inside a com-
mon CDS framework. This figure illustrates the differences in the communicative
behavior of each model by showing which vehicles are involved in the split and
merge manoeuvres, and wether each vehicle “surely” communicates or not. Ac-
cordingly, Figure 3 outlines the fact that every communication in the centralized
model involves the leader, while the communications in the decentralized model
only involve two vehicles. Moreover, the communications in the teamwork model
involve most of the platoon members, but they do not necessarily communicate
during the manoeuvre, as it is shown in Section 4.3.
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Figure 3. Four coordination models of the merge and split task.

4.1. Centralized Platoon Coordination

In a centralized platoon coordination model, the communications are centered on
one “master vehicle” giving orders to the rest of the platoon: the leader. In this
case the leader is the head vehicle of the platoon, and as mentioned earlier, this
vehicle is driven by a human (simulated) in our first phase of development. To
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maintain the platoon formation, the leader is the only entity that can give orders,
in which case the followers only apply requested changes.

During a split manoeuvre, three vehicles are involved: the leader, the splitting
vehicle, the vehicle following the splitting vehicle (vehicle F3 in Figure 3). During
a merge, the same configuration of vehicles is involved: the leader, the merger, the
vehicle which will follow the merged vehicle after its lane change (vehicle F2 in
Figure 3). For both of these manoeuvres, the merger or splitter first communicates
its need to do a manoeuvre, and then, the leader communicates requests for inter-
vehicle distance, change of lane, meeting point or velocity to involved vehicles.

For the merge manoeuvre, we have defined two sub-models: hard-centralized
and centralized. The hard-centralized model simplifies the task and only requires
two vehicles to communicate, by requesting the merging vehicle to always merge at
the end of the platoon. In the centralized model, the leader specifies the optimal
in-platoon merging position, considering the merging vehicle’s position (parallel
to the platoon). Thus, the centralized model requires three vehicles to execute a
merge (leader, merger and gap creator), while the hard-centralized model requires
only two (leader and merger).

4.2. Decentralized Platoon Coordination

In a decentralized platoon coordination model, the leader is still the platoon repre-
sentative, but this is only for inter-platoon coordination. Thus, every platoon mem-
ber has a knowledge of the platoon formation and is able to react autonomously,
communicating directly with each others. An agent’s common knowledge is initial-
ized when it enters the platoon and is updated using the broadcasted information
about new vehicles’ merge or split (done at the end of such manoeuvres).

This model represents the simplest decentralization approach and does not
rely on any existing framework or complex distributed plans, but tries to lower the
communications as much as possible. In this model, the leader is only in charge of
maintaining the platoon safety by notifying others of any emergencies, similarly to
the centralized approach. For the split manoeuvre, only two vehicles are involved:
the splitter and the vehicle following the splitter (vehicle F2 in Figure 3). For
the merge, once the merging vehicle has chosen a platoon, only two vehicles are
involved as well: the merger, the vehicle which will follow the merged vehicle after
its lane change (vehicle F2 in Figure 3). For these two manoeuvres, we eliminate
the intermediate, i.e., the leader in the centralized model, because every platoon
member has the knowledge of its platoon configuration. To replace the leader and
coordinate platoon members without relying on a single vehicle, we used a set of
social laws, which specify the state in which an agent can take part in a manoeuvre.
This way, the actions of creating a safe gap for the split and merge tasks can be
handled by a platoon member without being assigned by the leader. For instance,
the intention of creating a safe gap emerges (through social laws) from the vehicle
at the right distance from the merging vehicle, while the other platoon members
determines that it is not their task.
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4.3. Teamwork for Platoons

The previous decentralized model can be improved using a better structured orga-
nization, as the teamwork for agents, a concept gaining in popularity these recent
years, in the filed of multiagent systems. In this context, a teamwork architecture
like STEAM [15] can be used to assign roles to platoon members within a prede-
fined team hierarchy. Using this type of architecture, most of the communications
required to coordinate team members are handled by the framework. Thus, the
teamwork concept results in most vehicles of a platoon to be involved in tasks and
communicate when it is necessary, as shown by the dotted lines of Figure 3, repre-
senting “possible” communication. For the Auto21 project, we adapted STEAM’s
communication framework (based on STEAM operators) considering our specific
needs. We then defined the required CDS team structures and developed a set
of driving plans as domain-level operators, which can be used inside STEAM’s
framework. This section presents the previous aspects starting with the Auto21
team formations and the Auto21 domain-level operators, followed by the descrip-
tion of STEAM’s operators, which are used to ensure coherence inside our team
formation.

4.3.1. Auto21 Team Formations & Operators For the Auto21 project, we
defined three major teams: (i) the “platoon formation” team; (ii) the “split task”
team; and (iii) the “merge task” team. The “platoon formation” team is a persis-
tent team using persistent roles for long-term assignments. The two latter types of
team are task teams using task-specific roles, for shorter-term assignments, since
these teams stop existing after the task completion. Each of these teams is formed
of different agents that must fill all the roles that are specified in the team’s defini-
tion. For instance, the “split task” team is defined by Figure 4’s tree, in which the
leaf nodes represent roles and the internal node (only one in this case) represents
a sub-team (the task observers). When an agent fills a role inside a team, this role
defines the actions this agent can execute, while the notion of team defines the
agent’s goal or intention.

Split Team

Splitter Virtual Vehicle Gap Creator Safety Observers

Task Observers

. . .

Figure 4. Split task team’s role organization.

Following the assignation of a specific role to an agent, the STEAM frame-
work constrains this agent to execute domain-level operators that are specific to
the assigned role. Domain-level operators refer to the agent’s actions (programmed
as plans in our application) and they can be defined in a hierarchial tree. Such a
tree is presented in Figure 5, which depicts the operators used by the merge team
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formation of our CDS. In the tree’s hierarchy, team operators are surrounded by
[], while the other operators are standard individual operators. Agents evolv-
ing in the STEAM framework are able to execute two possible types of operator:
domain-level; and architecture-level (STEAM operators). The operators presented
in Figure 5 are from the domain-level, since they represent actions of the CDS
domain, while the architecture-level operators, described in Section 4.3.2, are in-
dependent of the application’s execution environment.

[Insert inside platoon]

Simulate
vehicle

Maintain 
inter-vehicle 
distance

[Monitor task safety][Merge Platoon]

Create safe 
entrance gap

Observe high
velocity gaps

Move to 
dynamic 
position
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vehicle
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inter-vehicle 
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[Virtual 
Driving]

Oberve 
obstacles

Figure 5. Team and individual operators hierarchy for the merge manoeuvre.

As mentioned above, we developed three types of team for the Auto21 project.
The “platoon formation” team is the simplest team, where each driving agent holds
the intention of maintaining a stable and safe platoon formation. At the moment,
we consider that each member of the “platoon formation” has the same task, which
consists of following the front vehicle in a safe manner. Hence, this formation only
requires two persistent (long-term assignments) roles:

• Leader: a role filled by the head vehicle, which mainly communicates with
others using Selective Communication (SC) operators (defined in Section
4.3.2). Since its goal is to maintain a stable platoon, the leader can perceive
an unsafe deceleration as a situation that could endanger the goal achieve-
ment, therefore influencing the leader to inform others of this fact using SC
operators. The probability of this communicative act is discussed later.

• Follower: a role filled by all the platoon members that are not at the head.
At the moment, each follower’s goal consists of maintaining the safe inter-
vehicle distance with the preceding vehicle, in order to maintain the platoon’s
stability. An agent in this role does not need to communicate any information
since the automated driving system of each vehicle is capable of maintaining
the platoon stable in the context of a “platoon formation” team. Thus, the
task of maintaining a safe distance is realized by using the vehicle’s front
sensor and possible information from the leader.
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The “merge task” team being similar to the “split task” team, we only depict
the “merge task” team in this paper. This team is centered around the [Insert
vehicle] team operator, shown in Figure 5. As shown in Figure 4, the split team
(similar to the merge team) is formed of four different roles and a sub-team:
the Task-Observers sub-team. Each role is described below by referring to the
operators they use in Figure 5’s tree and the place they occupy in the platoon, in
Figure 1’s illustration of the merge manoeuvre.

• Merger: a role filled by the agent which initiates the “merge task” team by
broadcasting its intention to merge a platoon (vehicle L2 in Figure 1). The
merger executes the [Merge Platoon] team operator (refer to Figure 5), which
restricts its local operators to the ones below [Merge Platoon], in the same
tree. The Move to dynamic position operator is used by the merger when the
“merge task” team has acquired a mutual belief about the merger’s entry
position in the platoon. The Merger role also uses the Follow virtual vehicle
operator, which is a virtual representation of L2 ’s future preceding vehicle
(F1 ). This virtual vehicle is followed by L2 before it actually senses the real
vehicle with its laser. Finally, the Change Lane operator is used here, to switch
to the platoon’s lane and complete the merge.

• Gap Creator: a role filled by the agent driving the vehicle behind the merging
position, in the platoon (vehicle F2 in Figure 1). Within this role, an agent
defines the entry position for the merger, since its vehicle will be behind
the merger after the lane change. The Gap Creator role requires its filler
to execute the Maintain inter-vehicle distance operator (refer to Figure 5),
which maintains a distance large enough to safely fit a vehicle. Following
the execution of this operator, the Gap Creator has to execute the Monitor
front gaps operator when the merger is changing lane. This operator monitors
high gap values between the last front vehicle percept reading, to conclude
on the arrival of the merging vehicle in the platoon. At the end of the merge
manoeuvre, the Gap Creator executes the Maintain inter-vehicle distance with
a smaller distance value, in order to close the gap in the platoon.

• Virtual Vehicle: a role that was introduced to ensure a stable execution of
the manoeuvre. This role helps the manoeuvre executor (splitter or merger),
when it is in a different lane, to follow the vehicle that was or will be in front
of it. In the split and merge manoeuvres, this role is taken by vehicle number
F1 from Figure 1. Within the [Split Platoon] team operator (not illustrated
here), the Virtual Vehicle role applies the Simulate Vehicle operator if its own
velocity is modified after the splitting vehicle has changed lane and before
the split manoeuvre is over. This operator results in the communication of
information about the Virtual Vehicle’s new velocity. Within the [Merge Pla-
toon] team operator, the Simulate Vehicle operator is applied after vehicle F1
has transmitted an initial representation of itself to the merging vehicle. This
role thus ensures a safe entrance of the merger, which always has an up to
date representation of the vehicle it cannot sense when changing lane.

• Safety Observers: a role filled by one or more agents. The constraint on the
role fillers, is that they must be in a position ahead from the manoeuvre
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executor, so they can monitor dangers in advance. Using the communication
selectivity presented in Section 4.3.2, agents in the Safety Observers role
communicate their belief about dangers or unsafe deceleration to others, by
taking in account the dangers of sudden movements during the execution of a
manoeuvre. Agents filling this role conjointly execute the [Monitor task safety]
safety team operator, therefore executing observation plans individually.

4.3.2. Team Framework Operators To ensure a coherent execution of the
domain-level operators, STEAM’s framework incorporates architecture-level op-
erators (STEAM operators). These operators include: (i) Coherence Preserving
(CP); (ii) Monitor and Repair (MR); and (iii) Selective Communication (SC).
The CP and MR operators are not presented in this paper, since their use in our
application is very limited, so the reader should refer to [15] for more informa-
tion. In contrast, the CP operator has been very useful in order to support the
“intra-team” communications of our CDS, so it is detailed below.

The Selective Communication (SC) operator’s task is to synchronize mutual
beliefs within the execution of team operators (domain-level operators). A SC
operator simply monitors the agent’s local beliefs and compares them with the
team’s mutual beliefs. If it considers that the difference between these two beliefs
is important enough, it automatically communicates the agent local belief to other
team members and makes its local belief a mutual belief. In order to determine
if a new belief should be communicated, the SC operator uses the decision tree
represented in Figure 6. According to this tree, the SC operator communicates the
new belief considering a reward based on the following variables:

• ρ: the probability that the new belief is not known by its teammates.
• σ: the probability that the new belief opposes a threat to the execution of

the current team operator.
• Cc: the cost of communication.
• Cn: the cost of nuisance.
• Cmt: the cost for miscoordination.
• S: a reward for synchronization of the team’s belief during the execution of

a team operator.

By using the decision tree in Figure 6, the SC operator chooses to commu-
nicate iff the reward of making a new belief “mutual” is higher than the cost of
communications. With a probability of 1− σ, the new belief is not a threat to the
team operator, and therefore, there is no reward relating to this belief. If the agent
chooses not to communicate (No COMM (NC)) and the belief is a threat, with
a probability 1 − ρ, this belief was already known by its teammates so the agent
receives the standard reward of S. However, with a probability ρ, this belief was
not mutual, so the agent receives the standard reward of S − Cmt, where, in our
application, Cmt depends on the difference between the local and mutual belief
(if the local belief is much different from the mutual belief, Cmt is high). There-
fore, from Figure 6, the expected utility of not communicating can be defined as
EU(NC) = σ ∗ S − (ρ ∗ σ ∗ Cmt).
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Figure 6. Decision tree on team communicative acts, from [15].

In the situation where the agent decides to communicate (COMM (C)), a
cost of communication Cc is applied to further possible rewards and this cost
is fixed considering the current available communication bandwidth. Following a
decision to communicate, the new belief is definitely mutual, so the second branch
is irrelevant in Figure 6 (probability 0). However, the new belief can be a threat
with a probability σ, in which case the agent receives a reward of S. Nevertheless,
with a probability 1−σ, this was not a threat and the communication of this belief
has a cost of nuisance Cn to other team members. This cost depends on the type of
information that is communicated, but it is usually set to discourage agents from
communicating information that may disturb other team members, when it is not
necessary. According to this definition, the expected utility of communicating a
new belief to team members can be summarized as EU(C) = σ∗S−(Cc +(1−σ)∗
Cn). The two previous equations on expected utility can be merged to represent
the decision of the Selective Communication (SC) operator, which communicates
when EU(C) > EU(NC), i.e., iff:

ρ ∗ σ ∗ Cmt > (Cc + (1 − σ) ∗ Cn)

This kind of decision-theoretic selector being part of the STEAM framework, we
use it for all of the roles presented earlier. Probabilities, cost and rewards used by
the communication decision tree are initialized according to common knowledge
on Collaborative Driving System (CDS) and should be adapted through testing
using offline learning approach on patterns of communication within the team. For
the moment, the SC operators have been very useful to determine when a Safety
Observers or a Virtual Vehicle should communicate its new beliefs. For instance,
if the Virtual Vehicle (vehicle F1 in Figure 1) has to modify its velocity during the
merge, the probability ρ that this new information on F1 ’s velocity is commonly
known mainly depends on the probability P(L2,F1 ) that the merging vehicle L2
has F1 in its sensor’s range (if L2 is in the platoon). Furthermore, the probability
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σ that this information opposes a threat to the merge manoeuvre depends on the
difference between F1 ’s local belief on its velocity and the team’s mutual belief. If
the team is highly out of synchronization, the agent will communicate at a higher
probability. Finally, cost Cn will be low for this type of belief, while cost Cmt will
be higher, since changes on the virtual vehicle’s velocity affect the platoon safety.

5. Evaluation and Results

To develop the previous theory on coordination strategies, we have used an agent
development toolkit called JACK Intelligent AgentsTM[2] which supports the Belief
Desire Intention (BDI) agent model [13], as well as teamwork related strategies.
The BDI model allows us to develop our application in such a way that each
vehicle’s driving agent has a database of beliefs and a set of predefined desires that
rule its intentions, i.e. change lane, which result in the application of actions like
merging and splitting from a platoon. In the Team Oriented Programming (TOP)
vision relating to the STEAM model, a non-negligible advantage is the reusability
and flexibility of the operators [15], since it contains many infrastructure rules that
are not directly related to the domain level. Thus, using JACK’s representation
of an agent, we managed to develop collaborative driving teams that follow TOP
models.

The coordination models presented in Section 4 have been implemented ac-
cording to the architecture presented in Figure 2. We show as an example in Figure
7’s graphic, the results we got in the average coordination of a vehicle exit (split
manoeuvre), using a centralized coordination (in the two blue lines) as opposed
to the teamwork model of coordination (in the red blue lines). This graphic shows
results using the splitter’s (vehicle F2 in Figure 1) data and the splitter’s preced-
ing vehicle’s (vehicle F3 ) data. The preceding vehicle senses the splitting vehicle
and has to adjust from its departure by keeping a safe gap until the splitter is
safely out. The two bold lines present the difference between, the inter-vehicle
distance (IVD) between this vehicle and its front vehicle (splitter), and the safe
front distance. This safe distance is defined by a gap in time between vehicles that
agents should respect to insure security. In addition, the two thinner dotted lines
only show the inter-vehicle distance (IVD) from F3 ’s sensor, without applying a
difference.

Around time 14s in Figure 7, vehicle F3 has to create a larger and safer
distance with the splitting vehicle, so the two bold lines drop, but are readjusted
within almost 10s. The second outlined step arises at time 30s, and 27s for the
teamwork, when the splitter has went out of range of vehicle F3 ’s laser. At this
moment, the sensed distance raises on the IVD curves, but there is no gap con-
sidering the distance defined as safe (bold lines). Before the splitter has stabilized
itself on the next lane (time 37s or 34s), the gap creating vehicle of the centralized
model does not manage to keep the safe distance and has a difference of 2m with
the safe distance by the end. On the other hand, the splitting vehicle modelled
with the teamwork coordination is using communications from vehicle F1 through
teamwork rules, to maintain his virtual representation and follow it after it has
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changed lane. Thus, the splitting vehicle maintains the right safe distance more
easily in the teamwork model. This approach gives much better results, since the
difference with the safe distance does not go higher than 0.5m. When the split-
ter is stable in the other lane, the distance qualified as safe drops to the normal
intra-platoon distance. At that moment, the vehicle is at 17m (length of the gap
created by the vehicle that left) from the safe distance, reached by the end of the
manoeuvre. This graphics also shows that using a teamwork model, information is
exchanged faster since messages do not have to go through the leader, which results
in an overall faster response time of three seconds by the end of the manoeuvre.
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Figure 7. Inter-vehicle distance with the splitting vehicle.

The implementation of four different coordination strategies leads us to con-
clusions concerning their respective advantages and disadvantages. First, as men-
tioned in Section 4.1, a fully centralized coordination at its simplest version was
developed. Second, we developed another model which was centralized on the
leader, but allowing entrance anywhere inside the platoon. In the third approach,
the coordination is decentralized, so the vehicle executing the manoeuvre only has
to coordinate itself with the vehicle directly concerned by this manoeuvre. The
fourth approach uses the previously detailed teamwork model.

Strategies on decentralized approaches are still under development and ex-
tensive simulations including multiple platoons to increase traffic density will have
to be done to improve our results and the choice being done in the end. But using
the preliminary results, presented in Table 1, we show each of the four models
used for both a split and a merge, divided in four rows. We compared on the first
pair of column, the average total amount of messages exchanged by vehicles during
each manoeuvre. On the second pair of columns, we compare the amount of plans
(JACK plans), which were required to support each coordination model, showing
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the flexibility of their respective framework. These JACK plans refer to the co-
ordination plans developed in JACK Intelligent AgentsTMlanguage1 that made it
possible to support a specific manoeuvre, with a specific communication protocol.

Table 1. Total of messages and plans used by coordination model

Coordination Nb Messages Jack Plans
Merge Split Merge Split

Hard-Centralized 7 7.5 12 12
Centralized 11.5 8 20 13

Decentralized 8 5.5 12 9
Teamwork 8.75 6.75 14 10

By using the results presented in Table 1, along with the results presented in
Figure 7, each coordination model were analyzed and their respective advantage
and disadvantage are summarized as follows:

1. The first centralized coordination model (Hard-Centralized) is very benefic on
the amount of messages it exchanges. But the major disadvantage is the traffic
density it creates, as it must reach the platoon’s tail by either accelerating
or decelerating (considering his position), thus creating traffic waves and
diminishing the highway’s capacity.

2. The second centralized coordination model suffers from the amount of mes-
sages it encounters, as the leader redirects all the messages within the pla-
toon. Moreover, in average, more than three quarters of the messages were
sent or received by the leader, creating a bottleneck for this vehicle. The cen-
tralized model does not require the followers to keep a platoon knowledge,
which helps lowering communications compared to decentralized models. As
the previous model, the centralized coordination uses static coordination pro-
tocols supported by the leader, which has the disadvantage of not allowing
much flexibility on the coordination of unexpected situations.

3. The decentralized coordination model uses less messages, but is a lot less safer
than the other models. This fact will be proven using further simulations,
but since it uses only two actors, and no virtual vehicle (as mentioned for
the teamwork model in 4.3), this model would have to compensate by using
more sensors to attain the level of safety of the teamwork model. This model
also needs to communicate to initialize and maintain common knowledge
within the platoon, but since the “updates” on knowledge are done through
a broadcast, it does not require much more messages.

4. In the teamwork model, we managed to use an amount of messages that is in
the average of the three other models. It must be mentioned that this number
varies more than in the other models, from different contextual simulations,
because of the selective communications. On the other hand, the selective

1In JACK, Plans are pre-compiled procedures based on the PRS architecture [6]. A plan can
only be executed when it answers to internal or external events using relevance and belief context

criterions.
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communications enable a faster and safer execution of our manoeuvres, as
shown in Figure 7. Using a TOP model implemented with the STEAM vision
in JACK, even though there are more actors (to increase safety), we do
not need much more plans than the standard decentralized approach, which
was not developed using generic plans. Moreover, TOP uses less plans than
the decentralized model, developed in a more functional vision, in which
more plans are required to handle uncertainty, compared to STEAM’s vision.
Compared to the decentralized model, the TOP framework is in charge of
the platoon’s belief (common knowledge) and manages to handle better their
communications.

6. Conclusion and Future Work

Collaborative driving is emerging in the domain of ITS and it will ultimately
be part of the every day vehicle’s automation system, since it is the next step,
following the Adaptive Cruise Control (ACC). CDS can therefore be easily included
in the development plans of ITS for the upcoming years, as it will evolve until
vehicle level technologies like ACC meet AHS infrastructures technologies and
increase ITS benefits on safety, efficiency and environment.

This paper presented an autonomous driving system based on a strong ar-
chitecture giving a wide latitude to the definition of different inter-vehicle commu-
nication models. From these models, we have presented and tested four different
strategies, for which advantages and disadvantages were presented. The coordina-
tion model based on teamwork presented great avenues considering its flexibility
and its ability to safely and efficiently execute manoeuvres.

We will continue improvements on the longitudinal guidance system that
could enable us to lower the communication probabilities in the selective commu-
nication decisions of the Team Oriented Programming (TOP) infrastructure. The
different coordination strategies will be further extended and many more scenarios
involving uncertainty will be taken into account using our simulator, similarly to
the approach we have taken in [9].
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[8] Simon Hallé. Automated highway systems: Platoons of vehicles viewed as a
multiagent system. Master’s thesis, Université Laval, Canada, January 2005.
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