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Abstract

This chapter studies the use of agent technology in the domain of vehicle control. More specifically, 
it illustrates how agents can address the problem of collaborative driving. First, the authors briefly 
survey the related work in the field of intelligent vehicle control and inter-vehicle cooperation that is 
part of Intelligent Transportation Systems (ITS) research. Next, they detail how these technologies are 
especially adapted to the integration, for decision-making, of autonomous agents. In particular, they 
describe an agent-based cooperative architecture that aims at controlling and coordinating vehicles. 
In this context, the authors show how reinforcement learning can be used for the design of collabora-
tive driving agents, and they explain why this learning approach is well-suited for the resolution of 
this problem.

introduction

Modern automotive transportation technologies have faced, in recent years, numerous issues resulting 
from the increase of vehicular traffic and having important consequences on passenger safety, on the 
environment and on the efficiency of the traffic flow. 
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In response, both manufacturers and public institutions have focused on such issues through research 
and development efforts, and have come up with many solutions. Among them, as mentioned in the 
introductory chapters, the field of Intelligent Transportation Systems (ITS) has gathered particular inter-
est in the past twenty years. This chapter concerns a specific domain of ITS, which aims at designing 
fully autonomous vehicle controllers. 

Many terms have been used to describe this field and its related technologies, such as Collabora-
tive Driving Systems (CDS), Advanced Vehicle Control and Safety Systems (AVCSS) and Automated 
Vehicle Control Systems (AVCS). According to Bishop (2005), these systems could be defined as Intel-
ligent Vehicle (IV) technology. Bishop characterized IV systems by their use of sensors to perceive 
their environment and by the fact that they are designed to give assistance to the driver in the operation 
of the vehicle. This definition of Intelligent Vehicles describes both Autonomous Vehicle Control and 
Collaborative Driving systems that we consider in this chapter. 

Of course, the agent abstraction can be directly adapted to the definition of IV, as agents have the 
ability to sense their environment and make autonomous decisions to take the right actions. In the past, 
work related to the problem of autonomous vehicle control has already considered using intelligent 
agents. What we propose in this chapter is to show how agent technology can be used to design intel-
ligent driving systems. More precisely, we will detail the design of an agent architecture for autonomous 
and collaborative driving based on the use of reinforcement learning techniques. We intend to show 
that reinforcement learning can be an efficient technique for learning both low-level vehicle control and 
high-level vehicle coordination as it enables the design of a controller that can efficiently manage the 
complexity of the application, i.e. the number of possible vehicle states and the number of coordination 
situations. 

The next section of this chapter surveys the field of autonomous vehicle control and collaborative 
driving. It also details what has been done in this field in relation to agent technology. The third sec-
tion briefly explains agent learning techniques while the fourth and final section describes how rein-
forcement learning can be used to build agents that can drive and coordinate themselves with others 
autonomously. 

Survey of Collaborative Driving Systems Based on Agent 
Technology

This section first surveys what has been done in the field of autonomous vehicle control and collaborative 
driving systems. Then, it describes how the software agent abstraction and machine learning algorithms 
have already been used in the design of such systems.

Autonomous Vehicle Control and Collaborative Driving Systems

In response to the problems related to the increase of vehicular traffic, most industrialized countries 
have decided in recent years to adopt a road-map detailing the future of their investments in Intelligent 
Transportation Systems (ITS) research. Starting in the early ’90s, this resulted in the fact that many 
research projects, often in the form of partnerships between academia and industry, began addressing 
the design of autonomous vehicle control systems. Research has rapidly led to the development of vari-
ous applications, as detailed in Table 1. 
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Already, vehicle manufacturers have integrated some of these technologies in vehicles. For example, 
many luxury cars are now equipped with Adaptive Cruise Control (ACC) systems, automated park-
ing technologies and even lane-keeping assistance systems. Technologies that have been included in 
vehicles are, for the moment, used in the form of driving-assistance systems where most of the driving 
task still belongs to the driver. 

Of course, a great amount of research is still being done in this field in order to implement these 
technologies in consumer products. Clearly, it seems inevitable that the industry will, in a few decades, 
move towards fully automated vehicles. However, a couple of technological hurdles must be addressed 
before such sophisticated systems can become a reality. 

Currently, the next step towards the implementation of fully autonomous collaborative driving systems 
is the development of efficient communication technology. Clearly, a robust communication protocol, 
for both vehicle-to-vehicle (V2V) and road-to-vehicle (R2V) communication, is a pre-requisite for col-
laboration. As a result, many research institutions have already been working on the development and 
on the implementation of a standardized communication protocol named DSRC (Dedicated Short-Range 
Communication). Evidently, a lot of research is still being done in that field, and we refer to Tsugawa 
(2005) for more details on the state of the art of inter-vehicle communications. 

Technology  Description 
Collision Detection and Avoidance This technology uses sensors to monitor the 

surroundings of the vehicle and to detect possible 
collisions. The driver is alerted of possible accidents. In 
the future, these systems could even take action directly 
on the vehicle to avoid collision. 

Lane-Keeping Assistance This technology uses computer vision systems to detect 
the curvature of the highway. It can react accordingly, 
with small adjustments to steering, in order to keep the 
center of the current lane. 

Adaptive Cruise Control (ACC) This technology uses a laser sensor to detect the 
presence of a front vehicle. The system adapts the 
vehicle’s cruising velocity in order to avoid collision. 
Once the obstacle is gone, the vehicle goes back to its 
initial, desired velocity 

Cooperative Adaptive Cruise Control 
(CACC) 

This technology adds a communication layer to ACC 
systems. Information about the acceleration of a front 
vehicle is shared and is used to reduce the distance 
between vehicles. 

Platooning This technology takes CACC to the next level by using 
communication to exchange acceleration data of an 
important number of vehicles travelling in a platoon 
formation. 

Automated Longitudinal and Lateral 
Vehicle Control 

This technology uses fully automated controllers to act 
on a vehicle’s longitudinal and lateral components. 

Collaborative Driving This technology is the ultimate goal of autonomous 
vehicle control. It uses inter-vehicle communication in 
order to share sensor information and driving intentions 
with surrounding vehicles (not necessarily a platoon) 
and select an optimal driving action. 

Table 1. Autonomous vehicle control technologies and their description (Bishop, 2005)
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Research Projects

Many research projects have been active in the development and design of autonomous vehicle control, 
collaborative driving and related technologies. 

Perhaps the most famous and influential program in this field is the program of the University of 
California at Berkeley called PATH (Partners for Advanced Transit and Highway). This program re-
groups numerous research projects that share the ultimate goal of solving the issues of transportation 
systems through the use of modern technologies. PATH projects have designed and tested an important 
range of solutions related to vehicle control. They have studied solutions to complex problems such 
as automated longitudinal (Raza & Ioannou, 1997; Lu et al., 2000) and lateral vehicle control (Peng 
et al., 1992), cooperative collision warning systems (Sengupta et al., 2007) and platooning (Godbole 
& Lygeros, 1994; Sheikholeslam & Desoer, 1990). Bana (2001), has also worked on the use of vehicle 
communications for advanced vehicle coordination. For more details about the history of PATH and its 
future research directions, we refer to Shladover (2007). Finally, PATH is also famous in part because 
it has implemented and demonstrated an autonomous platooning control system as early as in 1997, as 
part of the Demo ’97 event (NAHSC, 1998). 

Another important research program has been Japan’s Advanced Cruise-Assist Highway Systems 
Research Association (AHSRA). Similarly to PATH, this program has focused on the development of 
intelligent systems for the infrastructure, but has also worked on Advanced Security Vehicle (ASV) 
systems which promote the development and integration of intelligent systems in vehicles. The next 
step of their project consists in linking both types of systems using a communication architecture. 
Their program is also well-known for its implementation and demonstration of ASV technologies in 
the Demo2000 (Tsugawa et al., 2000) event. Moreover, since AHSRA regroups many manufacturers, 
a large number of the technologies developed through this program have rapidly been integrated in 
Japanese vehicles. 

Many European countries have also been active in this field. For instance, recent work at the TNO 
Automotive (a research institute of The Netherlands) through the CarTalk2000 project, with partners 
DaimlerChrysler and Siemens, has focused on the development of communication systems and their 
application to autonomous vehicle control (de Bruin et al., 2004; Hallouzi et al., 2004). 

Of course, the projects described here only offer a glimpse of all the research that has been done on 
this topic. A lot of other research organizations have also financed projects in this field, such as Italy’s 
ARGO (Broggi et al., 1999), Canada’s Auto21 (Auto21, 2007) and European’s CHAUFFEUR projects 
(Schulze, 2007), just to name a few. 

Design of Intelligent Vehicles Using Agents and Machine Learning

As we have described earlier, the agent abstraction is especially adapted to the problem of automated 
vehicle control and collaborative driving. It is not surprising to see that a number of research projects have 
considered using agents to design such control systems. Moreover, since agents need a decision-making 
mechanism, the use of agents has often been in conjunction with machine learning techniques. This 
section overviews previous work on the use of agents and machine learning techniques for autonomous 
vehicle control and coordination. 
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Machine Learning for Vehicle Control

One of the first interesting applications of machine learning to the problem of vehicle control was 
Pomerleau’s ALVINN (Pomerleau, 1995). Pomerleau has designed a supervised learning system based 
on computer vision that featured a neural network which received, as inputs from the vision system, 
patterns representing the road ahead. The task of the network was to learn to match vision patterns to 
an accurate driving action. Examples were given by watching a real person driving. 

The PATH program, through its Bayesian Automated Taxi (BAT) (Forbes et al., 1995) project has 
also studied the use of agents and machine learning for autonomous driving in traffic. They have shown 
that the use of a decision theoretic architecture and of dynamic Bayesian networks has produced a good 
solution to the problems of sensor noise and uncertainty about the other vehicles’ behavior. 

Later, Forbes also introduced a longitudinal agent controller (Forbes, 2002) based on reinforcement 
learning. This controller has been compared to a hand-coded controller, and results showed that the 
hand-coded controller was generally more precise than the learned controller, but was less adaptable 
in some situations. 

Another interesting approach to longitudinal vehicle control was developed by Naranjo et al. (2003) 
as part of Spain’s AUTOPIA project. Naranjo and his colleagues designed a longitudinal controller based 
on fuzzy logic. Their controller used inter-vehicle communication to share positioning information of 
a lead vehicle. It was even embedded in a vehicle and tested in demo sessions of the IEEE (Institute of 
Electrical and Electronics Engineers) Intelligent Vehicles Conference of 2002. 

Machine Learning for Vehicle Coordination

The problem of coordination between vehicles has also received much interest from many researchers 
as this problem is especially adapted to multi-agent learning algorithms. 

Among the numerous examples is work by Ünsal et al. (1999). These researchers have tackled the 
problem by using multiple stochastic learning automata as a mean to control the longitudinal and lateral 
motion of a single vehicle. Using reinforcement learning, these automata were able to learn to act in 
order to avoid collisions. The interactions between the automata have been modeled using game theory, 
with the objective of optimizing the traffic flow. 

In his work, Pendrith (2000) presented a distributed variant of the Q-learning algorithm and applied 
it to a lane change advisory system. The author considered using a local perspective to gather state 
information, by considering the relative velocities of the surrounding vehicles. Whereas the solution 
provided by the algorithm increases the traffic efficiency, the problem of this algorithm is the lack of 
learning stability. 

Moriarty & Langley (1998) proposed a traffic management approach where vehicles select by them-
selves the lane which optimizes the performance of the traffic flow. The authors have used a combina-
tion of reinforcement learning and neuro-evolution methods to keep a set of possible strategies for the 
vehicles. They have shown that their approach optimizes the velocities of the cars while reducing the 
number of lane changes. 

Finally, Blumer et al. (1995) have used a neural network and an expert system to control vehicles 
from a coordination point of view (changing lanes, joining a platoon, etc.). The neural network was 
used to classify traffic situations and a reinforcement learning algorithm was used to evaluate the risk 
of the situation observed in order to choose the adequate action. 
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Agent Abstraction

Agents are autonomous software entities that try to achieve their goals by interacting with their envi-
ronment and with other agents (Russell & Norvig, 2002). With their ability for autonomy and social 
interactions, agents are a logical choice of mechanism to rely on in order to embed in vehicles a delibera-
tive engine adapted for control and collaboration. Indeed, this abstraction is especially adapted to the 
problem of collaborative driving that we address here, as vehicle controllers must autonomously make 
decisions in a decentralized manner while interacting with other vehicles in order to reach their goals 
of optimizing safety and traffic flow efficiency. 

The agent abstraction can also be used to model the driving task using a deliberative architecture, and 
many different approaches have already been considered. For example, Rosenblatt (1995) has proposed 
a framework based on a centralized arbitration of votes from distributed, independent, asynchronous 
decision making processes. This framework has been used for obstacle avoidance by vehicles. In related 
work, Sukthankar et al. (1998) have focused on tactical driving using several agents that are specialized 
on one particular task (e.g. change lane agent or velocity agent). A voting arbiter aggregates the recom-
mendation of all agents to choose the best vehicle action. Similarly, work by Ehlert (2001) describes 
tactical driving agents based on the subsumption approach (Brooks, 1991) and uses behavioral robotics 
to consider the real-time aspects of the driving task. 

A different agent architecture has been proposed by Hallé & Chaib-draa (2005). Their work features 
a deliberative architecture based on team work (Tambe & Zhang, 2000) and is used for platoon man-
agement. This approach relies on a three level architecture (Guidance, Management and Traffic) as in 
PATH’s architecture. In Hallé and Chaib-draa’s approach, each vehicle is assigned a specific role in the 
platoon (Leader, Follower, Splitter, etc.) according to its current task. They have also compared their 
approach to a centralized and a decentralized platoon and they have given advantages and disadvantages 
of each type of platoon organization. 

Of course, the papers we have presented here on the use of machine learning and of the agent ab-
straction applied to vehicle control and coordination only represent an overview of what has been done 
in this field. Nonetheless, it clearly illustrates what can be done when applying agent abstraction and 
machine learning to vehicle control. 

Learning and Agents

The resolution of the problems of autonomous vehicle control and of collaborative driving using intelli-
gent agents requires the use of methods that are adapted to making decisions in a complex environment. 
One important problem that agents must face is the presence, in most environments, of uncertainty. In 
recent years, reinforcement learning has gathered much interest for the resolution of such problems as 
it can be used in this context to obtain efficient control policies.

Thus, this section will briefly present the Markov Decision Processes (MDP) model and the cor-
responding reinforcement learning algorithms classically used to find an optimal solution for a single 
agent. Afterwards, we introduce multi-agent models and describe algorithms that can learn in situations 
where interaction and coordination between agents is possible.



246  

Learning Agents for Collaborative Driving

Markov Decision Processes

To take action, autonomous agents rely on a deliberation mechanism to select the appropriate action 
to take according to the current perception of the environment. Since driving can be considered as a 
sequential task where decisions need to be taken at fixed intervals of time, the framework of Markov 
Decision Processes (MDPs) is an efficient candidate to model this problem. More precisely, MDPs are 
sequential decision problems in which the goal is to find the best actions to take to maximize the agent’s 
utility (Sutton & Barto, 1998).

The Markov property is needed to find the optimal solution of an MDP via classic dynamic pro-
gramming or reinforcement learning approaches. This property is satisfied if the current state of the 
agent encapsulates all knowledge required to make a decision. More precisely, an environment is said 
to be markovian if its evolution can be described only by the current state and by the current action of 
the agent. 

The resolution of an MDP yields a policy, which is a function that maps states to actions and which 
actually represents the behaviour of the agents. When the dynamics of the system (represented by the 
probabilities of going from current state s to next state s’ when taking action a) are known, it is possible 
to use the Value Iteration algorithm (Russell & Norvig, 2002) to obtain a policy that maximizes the 
expected reward that the agent can obtain when executing it from starting state s (this policy is called 
the optimal policy). 

The Q-Learning algorithm is also particularly interesting for the resolution of an MDP. It is a model-
free approach that enables an agent to learn to maximize its expected reward without the availability of 
the transition and the reward functions that both characterize knowledge of the environment. With this 
algorithm, the agent learns an optimal action policy simply by trying actions in the environment and 
by observing their results. This algorithm is based on the notion of Q-value Q(s,a) which represents the 
reward an agent can expect to obtain when it is in state s and selects action a. 

The downside of these algorithms is that they face the “curse of dimensionality”. This curse refers 
to the fact that the size of the state space (the number of Q(s, a) pairs) can grow exponentially with 
the number of variables contained in the states and with the number of possible actions. This renders 
convergence nearly impossible for complex problems. Moreover, the use of a Q-values table means that 
continuous environments cannot be treated and need to be discretized. 

Policy-gradient algorithms can address some of these issues. Instead of updating a value function 
in order to obtain the optimal function, these algorithms work by updating directly a parameterized 
stochastic policy according to the gradient of a policy’s performance with respect to the parameters 
(the performance of a policy is generally defined as the expected reward one can get by following this 
policy). The advantages of these methods are that they can easily treat continuous state variables and 
that there is no problem related to the growth of the state space. For more details, we refer the reader 
to both Baxter & Bartlett (2001) and Williams (1992), as these authors make a good overview of this 
family of learning algorithms.

Multiple Agents

When multiple agents are involved, their interactions need to be handled since each agent needs to take 
into account the actions of others for efficient action selection. Usually, we can distinguish two cases: 
cooperative interactions, where all agents share the same goals, and non-cooperative interactions, where 
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agents may have different or even opposite goals. In this section, we will only focus on the cooperative 
case.

When several cooperative agents act in the same environment, a decentralized MDP (DEC-MDP) 
can be used to describe the interaction of these agents (Bernstein et al., 2002). DEC-MDPs adapt some 
concepts of MDPs to deal with multiple agents and partially observable domains. In DEC-MDPs, obser-
vations have a special property: each agent can observe only a part of the current system state and each 
joint observation corresponds to a unique system state. Note that in this model, any optimal solution 
maximizes the social welfare, i.e. the sum of all agent rewards. 

As far as we know, there exists no reinforcement learning algorithm that can find an optimal solu-
tion of a DEC-MDP without knowing the model of the environment. All working algorithms are based 
on dynamic programming (Bertsekas, 2000) and can only solve problems of small size because the 
DEC-MDP model is known as being an intractable problem (Bernstein et al., 2002). However, when 
agents are able to exactly observe the global state of the environment, the Friend Q-Learning algorithm 
introduced by Littman (2001) allows building an optimal policy for all agents. 

Notice that even if this algorithm converges to the optimal joint policy, agents need some informa-
tion about the others in order to achieve a good coordination. In general, individual states, individual 
actions and sometimes individual rewards need to be transmitted by communication between agents 
so that they can learn good policies. This multi-agent learning algorithm will be used later as part of 
the layer that manages vehicle coordination.

Design of Collaborative Driving Agents

In this section, we present how agents making decisions based on reinforcement learning algorithms can 
be used to design an autonomous vehicle controller and a collaborative driving system. First, we pres-
ent our architecture and the different layers it relies on to manage vehicle control. Then, we detail the 
design of both a low-level vehicle controller and a high-level coordination module. Finally, we describe 
the results we obtained by executing the policies learned for both modules. 

Architecture Design

For the past thirty years, manufacturers have integrated classic Cruise Control (CC) systems into ve-
hicles to automatically maintain a driver’s desired cruising velocity. More recently, constructors have 
introduced Adaptive Cruise Control (ACC) systems that make use of sensors to detect the presence 
of obstacles in front of a vehicle (Bishop, 2005). These systems are designed to react automatically 
to obstacles by taking direct action on the vehicle to adjust its current velocity in order to keep a safe 
distance behind the preceding vehicle. 

Cooperative Adaptive Cruise Control systems (CACC), which integrate the use of inter-vehicle 
communication in the control loop, are often seen as the next step towards autonomous control systems 
(Bishop, 2005). These systems use wireless communication for the broadcast of positioning, velocity, 
acceleration and heading information to other vehicles nearby, to improve the receiver’s awareness of 
the environment. By providing this extra information that would normally be out of the range of stan-
dard sensors, communication helps vehicles make better driving decisions and increase both traffic 
efficiency and safety. 
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In particular, CACC systems benefit from the use of communication to assure the string stability of 
a group of vehicles. This expression signifies that vehicles do not propagate and amplify perturbations 
of a front vehicle’s velocity. Thus, for example, vehicles do not have to brake more than the preceding 
vehicle when observing changes in velocity. Non-stability eventually leads to vehicles needing to brake 
to a stand-still in order to avoid collision, which is often what causes traffic jams. Sheikholeslam and 
Desoer (1990) have showed that communicating acceleration actions of preceding vehicles through 
inter-vehicle communication is necessary to observe the stability of a stream of vehicles separated by 
constant spacing. 

The Cooperative Adaptive Cruise Control (CACC) architecture presented here is thus based on 
this previous work of the automotive industry on vehicle control. The system, which is described in 
more detail in work by Desjardins et al. (2007), is actually an autonomous, intelligent agent that takes 
decisions in order to control the vehicle. This agent relies on two layers for decision-making and on a 
communication module to interact with other vehicles. 

The two control layers work at different abstraction levels yet are complementary at coordinating 
interactions and at achieving cooperation between vehicles. First, the Coordination Layer is responsible 
for the selection of high-level driving actions. It uses information from other communicating vehicles to 
select an action that is the best response it can take according to the other vehicles’ actions in order to 
maximize local and global security and traffic efficiency criteria. When such an action has been chosen, 
the low-level vehicle controller, also named the Action Layer, is responsible for selecting an action that 
has a direct effect on the vehicle’s actuators. Figure 1 shows how our CACC architecture acts as part of 
the basic control loop of the navigational system of a vehicle. 

When the current low-level action has terminated (either by success of by failure), the Action Layer 
notifies the Coordination Layer. This termination is then broadcast to the neighborhood to inform other 
vehicles. When all neighbors of a vehicle have finished their respective action, the Coordination Layer is 

Figure 1. CACC system architecture
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able to take another coordination action according to the current state. The state diagram of Figure 2 il-
lustrates the possible transitions that can be triggered by the Coordination Layer for a single vehicle. 

The exact behavior of each layer has been designed using reinforcement learning algorithms. This 
learning approach is particularly useful since it allows the agent vehicle to adapt to its environment even 
if it does not know its dynamics. More specifically, the Action Layer uses algorithms to learn the selec-
tion of the best low-level actions according to the environment’s state in order to achieve the high-level 
action selected, while the Coordination Layer uses learning to optimize the agent interactions. 

In the following subsections, we present the design of both layers in detail. 

Design of the Action Layer

For the design of our system’s Action Layer, we have focused on offering a control policy that enables 
secure longitudinal velocity control. In particular, instead of solving directly the complex problem of 
Cooperative Adaptive Cruise Control, the work we present here tries to solve a simpler problem by 
designing an Adaptive Cruise Control (ACC) system, as we intend to show that our approach based on 
reinforcement learning can lead to good results. 

First, we have considered for the inputs (state variables in the MDP framework) of the system the 
time headway, which gives the distance in time from a front vehicle (as illustrated in Eq. 1), and its 
difference between two timesteps, which indicates whether the follower has been closing in or going 
farther from its front vehicle (as given by Eq. 2). 

Figure 2. CACC system architecture interactions
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Headway =Hw , Position =Pt , Velocity = V
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The headway information is perceived by a laser sensor, and detects vehicles in front in a range of 
up to 120 meters. Through our experiments, we make the hypothesis that there are no delays in the 
sensory system (as sensor delay will be addressed in future work). 

Of course, this ACC state definition can easily be extended by using the communication system 
to propagate information about the state of surrounding vehicles (position, velocity, acceleration and 
heading). More specifically, we would like to integrate information about a lead vehicle’s acceleration 
as inputs of this process, so that our system becomes a fully-functional Cooperative Adaptive Cruise 
Control (CACC) system. 

For both the ACC and CACC cases, we will compute the control policies using reinforcement learn-
ing. This kind of learning is advantageous and efficient since it enables us to make an abstraction of 
the vehicle physics but still learn a valuable control policy. This is particularly useful when learning 
a control policy in an environment containing complex vehicle physics similar to the one used for our 
experiments (which we briefly detail at the beginning of the Results section). 

The reward function we use gives negative rewards when the vehicle is too far from or too close to 
a secure distance (2 seconds, a common value in ACC systems (Bishop, 2005)). Positive rewards are 
given when the vehicle is in the desired range. To direct the exploration of the vehicle to interesting 
places of the state space, we also give a positive reward to the vehicle if it is too far from the goal but 
is closing up. 

An interesting characteristic of this learning task is that the choice of these state variables was 
carefully considered. As a result, the behaviour learned does not depend on the current velocity of the 
vehicles and should generalize to any driving scenario. The only fixed aspect of the controller that would 
not change with different scenarios is the distance from which the vehicle is following, which depends 
on the goal region defined by the reward function. 

Finally, we also design manually a basic lane change policy, which can be triggered whenever needed 
by the vehicle Coordination Layer. The design of this layer is described in detail in the next section. 

Design of the Coordination Layer

The goal of vehicle coordination is to handle dynamically the interactions between cars on the road in 
order to obtain an intelligent collaborative driving system. To achieve this, the Coordination Layer uses 
policies defined by the Action Layer and chooses at each step which policy should be applied in order 
to improve the coordination. In this subsection, we describe the method we considered for the design 
of coordination policies. To solve this problem, we use multi-agent learning algorithms and DEC-MDP 
models, and we introduce the notion of distance of observation between vehicles. Basically, with com-
munication and sensors, each vehicle only has a limited view of its surrounding environment, and can 
choose an action which will give good coordination results. 

More formally, based on the DEC-MDP model described previously, we make assumptions about 
the observations of the vehicles, splitting these into two categories: observations over world states and 
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observations over actions. Each observation is assumed to be perfect but only for a sub-part of the 
environment. Moreover, each agent only has a partial view of the other agents and cannot perceive the 
complete environment to learn the optimal actions. To define these partial views, we define a neighbor-
hood function neigh, which returns the set of visible agents at a certain distance of observation from a 
central agent. Thus, observations are defined by the union of the exact states of visible agents. By this 
formulation, we assume that the need for coordination is higher when two agents are close than when 
they are far from each other. We also assume that every agent is in its own neighborhood and if an agent 
is in the neighborhood of another, the opposite is also true. Note that a maximal distance dmax is reached 
when each agent can observe all other existing agents. 

Applied to the vehicle coordination problem, the functions calculating the partial state and the joint 
action are defined by the sensors and the communication of the vehicles. Figure 3 shows the partial view 
(state and action) for each vehicle where the global environment state is composed of 3 vehicles V1, V2 
and V3. In this figure, 2

is  represents the partial vision of the vehicle i, which explains why the view 2
3s  is 

centered on Vehicle 3. Since the road is modeled as a ring, Vehicle 3 can observe Vehicle 2 in front of it 
and can observe Vehicle 1 behind it. At each step, the agent receives the information from other vehicles 
(velocities, positions) and the actions that have been chosen for the next step of the interaction. 

Once all information needed to construct a partial state and joint action is received, the Coordina-
tion Layer decides to act by sending its command to the low-level vehicle controller. A vehicle can be 
ordered to follow the preceding vehicle, to keep a constant velocity or to change lanes to the right or to 
the left. All these actions correspond to the policies offered by the Action Layer. 

Since the resolution of a DEC-MDP is known as an intractable problem, we will rather present an 
algorithm which finds an approximated joint policy using the distance of observation. Our algorithm, 

Figure 3. Joint and partial states of a vehicle coordination scenario for a distance of observation of 2
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called Partial Friend Q-Learning (PFQ), is based on Friend Q-Learning (Littman, 2001), a multi-agent 
version of Q-Learning. The basic idea is to apply Friend Q-Learning on partial views and partial joint 
actions instead of on fully observable states and joint actions to limit the number of possible Q(s,a) pairs. 
At each step, the agent chooses its action contained in the joint action that maximizes the Q-Value in 
the current state. Then, it observes partial states, partial joint actions and rewards, and updates the Q-
Value as usual. In the end, the algorithm computes a policy dp  for each agent and for a fixed distance 
d. Further details of the coordination approach can be found in Laumônier & Chaib-draa (2006). From 
a vehicle coordination point of view, this algorithm allows us to take into account only a limited part 
of the environment by neglecting the influence of cars farther away. Thus, changes in the environment 
far away have no influence on the resulting policy. 

Results

To test our architecture, we designed a microscopic traffic simulator in which vehicles are accurately 
modeled. It features vehicle physics and dynamics based on a single-track model (Kiencke & Nielsen, 
2000). This model integrates both longitudinal and lateral vehicle movements and uses a wheel model 
that is complex enough to simulate with precision the behavior of a vehicle. 

The simulator also includes an inter-vehicle communication system and a sensory system in order 
for vehicles to perceive their environment. The inter-vehicle communication module is a pre-requisite 
to an efficient CACC system as it makes possible extensive cooperation between vehicles. Both the 
Action Layer and the Coordination Layer rely on this module to share information and achieve good 
performance. The communication layer is loosely based on the DSRC protocol, which addresses many 
issues related to wireless inter-vehicle communications. 

Actions of the vehicles in the simulator are controlled by acting directly on their actuators. This 
means that the longitudinal actions available to vehicles are to accelerate or to brake by pressing on the 
corresponding pedal. It is also possible not to take an action at the current time. As for the use of the 
steering wheel, it leads to the possible lateral actions of the vehicle. Before selecting a driving action, the 
Action and Coordination Layers can use sensors and communication to perceive the environment. We 
make the hypothesis that there are no delays or noise in the system whether it is from sensors, actuators 
or communication. As explained in the conclusion below, taking care of the issues of sensor delay and 
noise will be addressed in the following steps of the development of our architecture. 

This simulation environment was used for learning control and coordination policies for both the 
Action and Coordination Layers of our system. How these experiments were done exactly for each layer 
is described in the following sections.

Vehicle Control

The Action Layer used for low-level vehicle control is designed using reinforcement learning. To obtain 
a control policy, we put the controller in “learning mode” in our simulated environment. 

We tested a “Stop & Go” scenario where a leading vehicle accelerates to a velocity of 20 m/s, slows 
down to 7 m/s and then accelerates again, this time to a 20 m/s cruising velocity. Our learning agent 
had to try actions in order to find the best longitudinal following policy. The goal was to reach a secure 
distance of 2 seconds behind a preceding vehicle, using only a front sensor, which effectively models 
the behavior of an ACC system. 
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The learning task definition corresponded exactly to what was presented in the “Design of the Action 
Layer” section. Experiments to learn an efficient control policy have been done using the OLPOMDP 
policy-gradient algorithm (Baxter & Bartlett, 2001). This reinforcement learning algorithm generates a 
stochastic parameterized policy (a policy that returns probabilities of selecting the actions in a particular 
state). To represent this policy, we have used a neural network, and the parameters of the policy are 
actually the weights of the network. As a result, the algorithm modifies the network’s weights in order 
to increase the probability of selecting the actions that give us positive rewards. 

Figure 4 illustrates data related to the execution of 10 learning simulations of 5,000 episodes. Since 
the algorithm is actually a stochastic gradient descent method, multiple learning simulations were 
needed in order to compare the resulting policies. Thus, the figure shows the worst, the average and 
the best policy obtained through the learning phase. Figure 4 also illustrates the fact that the learning 
algorithm did optimize the number of steps in which the vehicle is located in the desired “safe” region, 
as, by the end of the learning episodes, the vehicle is in the goal region for approximately 475 steps over 
500, which can be considered as a near-optimal behavior. 

After the learning phase, we executed a “Stop & Go” scenario with two vehicles, the follower being 
controlled by using the learned ACC policy. Figure 5 illustrates the velocities of both vehicles during 
this execution scenario. This figure illustrates the fact that the learned policy was able to precisely match 
the velocity of the front vehicle, even when it did accelerate or brake. 

Furthermore, Figure 6 shows the associated headway metric of the second vehicle during the execu-
tion scenario. It clearly shows that the learned policy resulted in an efficient behavior, with the headway 
oscillating closely around the desired value for the duration of the simulation. 

Figure 4. ACC learning results
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Work still needs to be done to achieve our goal of  designing a complete longitudinal CACC control-
ler but, for now, the results we have obtained with our Adaptive Cruise Control (ACC) system show that 
reinforcement learning can be used to provide efficient vehicle following controllers.

Vehicle Coordination

The PFQ algorithm has been tested on a simplified three vehicles scenario as described in Figure 3, 
where each vehicle had to choose the best lane in order to optimize the velocity of every vehicle. This 
coordination scenario uses simpler dynamics than the single track model. Moreover, we discretize the 
positions and velocities of the vehicles and, for each car, we note Y the longitudinal position (in meters, 
assuming that a car is a 1 m2 square) and X the current lane. We discretize also the velocities to the set 
V = 0, 4, 8, 12, 16, 20 m/s. Learning coordination allows us to design an efficient controller which can 
take into account the actions of the other vehicles situated at a close range. Here, we summarize these 
results to show that each vehicle only needs to observe a subset of the other vehicles, those that are close 
to itself, to learn a near-optimal coordination policy. 

With the results of those simulations, we can compare empirically the performance of a coordination 
policy learned in a fully-observable environment (using Friend Q-Learning) with the performance of an 
approximated coordination policy learned using observations of a subset of the environment (using our 
approach, PFQ). Here, we compare the algorithms on two situations: the scenario S1 is defined by size 
X = 3, Y = 7, by the set of velocities V = 0, 4, 8, 12, 16, 20 m/s and by the number of agents N = 3. In the 
second scenario S2, we enlarge the number of lanes and the length of the road (X = 5, Y = 20, V = 0, 4, 
8, 12, 16, 20 m/s and N = 3). Consequently, in these problems, the maximal distance that we can use to 
approximate the total problem is dmax = 3 for S1 and dmax = 10 for S2. In the initial state (Figure 3), ve-

Figure 5. ACC vehicle velocities
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locities of the agents are V1 = 4 m/s, V2 = 8 m/s and V3 = 12 m/s. We present, for all results, the average 
velocity of all vehicles, averaged over 25 learning simulations, with each episode lasting 10 steps. 

Figure 7 shows the results of PFQ with distance from d = 0 to d = 3. This algorithm is compared to 
the total observation problem resolved by Friend Q-learning. For d = 0, d = 1 and d = 2, PFQ converges 
to a local maximum, which increases with d. In these cases, the approximated values are respectively of 
76%, 86% and 97% of the optimal velocity. When d = 3, which is when the local view is equivalent to 
the totally observable view, the average velocity converges to the optimal average velocity. Thus, without 
observing everything around them (distance d = 2) vehicles are able to coordinate themselves and learn 
a near optimal policy while reducing the number of vehicles taken into account in the coordination. 

Practically, the observation distance is determined by the distance of communication between ve-
hicles. In general, using communication protocol like DSRC, the distance of communication depends 
on the density of vehicles. Indeed, in order to keep the number of messages relatively low, vehicles 
can only send to their close neighbors if there are many vehicles around. By doing this, we limit the 
number of vehicles taken into account in our reinforcement learning algorithms. This limitation is also 
coherent with the fact that current communication and sensor systems are not designed to handle the 
perception of remote vehicles. Consequently, we are able to design a coordination layer with good ef-
ficiency limiting the number of states in which the optimal policy should be found. The collaborative 
driving policy learned using a total distance of observation (d = 3) is represented by Figure 8. We can 
observe that, with this near optimal policy, Vehicle 3 learned to pass Vehicle 2 and Vehicle 1 learned 
to let Vehicle 2 to pass. 

Figure 6. ACC headway results
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Figure 7. Velocity for partial friend q-learning

Figure 8. Coordination between 3 vehicles. Vehicle 3 learned to pass Vehicle 2 and Vehicle 1 learned 
to let Vehicle 2 pass.
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Conclusion

In this chapter, we proposed a system for autonomous vehicle control and collaborative driving based 
on the use of agent technology and of machine learning. More specifically, we presented a multi-layered 
architecture that relies on both an Action Layer and a Coordination Layer: the Action Layer is used 
to manage low-level vehicle control actions such as braking, accelerating or steering, while the Coor-
dination Layer is responsible for high-level action choice by integrating cooperative decision-making 
between vehicles. These two layers were designed using agent and multi-agent reinforcement learning 
techniques. Finally, we showed that the integration of reinforcement learning techniques at all levels 
of our autonomous driving controller gives efficient results for vehicle control and coordination. This 
approach clearly facilitates the efforts of the system’s designer, as the complex details related to vehicle 
control and related to the numerous possibilities of inter-vehicle interactions are automatically handled 
by the learning algorithm. 

Unfortunately, even though our approach was tested on a realistic vehicle dynamics simulator, we 
obviously did not take into account all of the requirements needed for the implementation of our system 
in a real vehicle. For example, we assumed the sensors of the vehicle to be perfect and without noise. 
In practice, however, sensors like GPS and lasers have limited precision. Obviously, this can lead to a 
degradation of the efficiency of the Action and the Coordination Layers’s policies. Therefore, future 
work could consider solving this particular problem, which could be done by using Partially Observable 
Markov Decision Processes (POMDPs). This framework generalizes MDPs and can be used to find 
control policies under uncertainty and partial observability of the environment. Moreover, the control 
of the Action Layer should consider continuous actions instead of discrete ones in order to improve 
the efficiency of the vehicle following behavior. As for the Coordination Layer, experiments should be 
done on more complex scenarios in order to improve performance in high-density vehicular traffic. In 
this case, some approximation techniques could be considered in order to find an efficient coordination 
policy for a large number of vehicles. 
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