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Abstract

This paper treats the problem of distributed planning in
general-sum stochastic games with communication when the
model is known. Our main contribution is a novel, game theo-
retic approach to the problem of distributed equilibrium com-
putation and selection. We show theoretically and via exper-
imentations that our approach to multiagent planning, when
adopted by all agents, facilitates an efficient distributed equi-
librium computation and leads to a unique equilibrium selec-
tion in general-sum stochastic games with communication.

Introduction
Stochastic games is a natural generalization of MDPs to a
multiagent decision problem setting. In this context, the
reward the agent obtains is determined by the state of the
environment and the joint-action of all agents. Solving a
stochastic game (SG) consists of finding a joint-policy that
prescribes to each agent an action to do given the environ-
ment state and (possibly) some other information available.
A solution of a (stochastic) game is usually called an equi-
librium. In this sense, an equilibrium is a joint-policy, com-
posed of policies of all players. This joint-policy is such that
no player is interested in deviating from its own policy given
that all other players stick to theirs.

When the model of the environment is known to all
agents, planning is an approach to solving an SG. In con-
trast to the learning, a model-free trial-error based approach,
there has been a relatively small number of algorithms pro-
posed in the planning context (Shapley 1953; Vrieze 1987;
Kearns, Mansour, & Singh 2000). The first algorithm cre-
ated for planning in SGs (Shapley 1953) deals with SGs
having a particular structure: two-player strictly competitive
(zero-sum) games. So, this algorithm cannot be easily appli-
cable to any game. The second algorithm (Vrieze 1987) is
essentially Fictitious play adapted to the SG context. Since
it inherits convergence properties of Fictitious play, it can
only converge in zero-sum games and in the games that are
solvable by iterated strict dominance. Furthermore, Ficti-
tious play is not guaranteed to converge to an equilibrium:
often it converges only in estimates of the opponents’ strate-
gies (Fudenberg & Levine 1999).

For us, the most interesting planning approach is the one
proposed by Kearns, Mansour, & Singh (2000) and called
FINITEVI. It is an algorithm of finite value iteration in SGs.

While two other algorithms of planning in SGs, which we
have mentioned above, have limitations relative to the re-
ward structure of the game that can be solved by them,
FINITEVI has been proven to yield an equilibrium in any
SG. This algorithm, however, requires a high level of cen-
tralization. Indeed, it requires the presence of an oracle that
is always available during the planning process (a) to select
an equilibrium (if they are numerous) in each state at each
iteration and (b) to assign it to all agents thereafter.

Communication is considered by many researchers as a
natural way to avoid centralization in decentralized systems.
In this paper, we propose an original way of avoiding cen-
tralization in planning algorithms and facilitating distributed
equilibrium computation by means of communication be-
tween agents. Our main contribution consists in a novel,
game theoretic approach to the problem of distributed equi-
librium computation and selection in SGs with multiple
equilibria. We show theoretically and via experimentations
that our decentralized planning approach, called FINITEVI-
COM, when adopted by all agents, leads to a unique Nash
equilibrium in any general-sum SG without need (in prin-
ciple) that the particular algorithms adopted by the agents
be the same. To our knowledge, currently there are no al-
gorithms capable of having such properties without imply-
ing additional strong restrictions on the environment. These
restrictions can be, for example, a need for a centraliza-
tion in the equilibrium selection task (Hu & Wellman 2003;
Kearns, Mansour, & Singh 2000), or a requirement of a
particular reward structure, such as zero-sum games, team
games and others (Littman 1994; Wang & Sandholm 2002).

Stochastic games
As we have already mentioned above, SGs could be viewed
as a generalization of MDPs to multiagent systems. In SGs,
there are n agents. We will refer to j to denote some agent
chosen among n, and to −j to denote the set of all other
agents 1 . . . n except the agent j. Each agent j has a set
Aj of available actions (or pure strategies) denoted as aj .
When agents simultaneously execute their actions, we say
that a joint-action has been executed. A joint-action is a
vector a = (a1, a2, . . . , an) containing one simple action
per agent. The set A ⊆ A1×A2× . . .×An is called joint-
action space, with a ∈ A. The environment has a finite set
of states S, with a vector s = (s1, s2, . . . , sn) ∈ S called



joint-state. This vector is composed of respective personal
states of agents, and there is a special state s0 called start
state. It is assumed that the game always starts from s0.
There is a transition function T : S×A×S 7→ [0, 1] which
defines a probability of transition from one state to another.
This function has the following property:

∑
s′ T (s,a, s′) =

1 ∀s ∈ S, ∀a ∈ A. Similarly to MDPs, once an action
is executed, the agents receive a real-valued reward (also
called immediate utility) from the environment. This reward
is defined by the reward functions Rj , one for each agent,
where Rj : S×A 7→ R is a reward function of agent j.

One can consider the states of an SG as being matrix (or
normal-form) games (Fudenberg & Levine 1999). Indeed,
each state s of the environment has its own reward function
Rj(s, ·) for each agent j and the value that this agent obtains
in each state depends on the actions played simultaneously
by all agents in this state.

Solving an SG consists of finding a joint-policy π that as-
signs a strategy to execute to each agent. Since π is a joint-
policy, therefore it is a vector π = (π1, π2, . . . , πn) contain-
ing individual policies (or just “policies”) for each agent. A
policy πj , in turn, is a rule assigning to an agent j a strat-
egy, πj(s), to execute in each state s. These strategies can
be pure or mixed. A pure strategy, as we already noted, is a
simple (i.e., non-joint) action. A mixed strategy is a proba-
bility distribution over simple actions.

Each joint-policy π has a set {U j(π) : j = 1 . . . n} of
real-valued utilities associated with it. According to these
utilities agents can prefer one joint-policy to another. A
Nash equilibrium is a joint-policy π̂, in which every agent
among n has no interest in unilaterally changing its policy
given the policies of other agents are unchanged. This means
that for each agent j, the utility U j(π̂) is not lower than the
utility of any other joint-policy in which player j plays some
other policy whereas the other agents play according to π̂.
More formally, a policy π̂ = (π̂j , π̂−j) is a Nash equilibrium
if and only if ∀j and ∀πj 6= π̂j : U j(π̂) ≥ U j(πj , π̂−j).

A Nash equilibrium strategy π̂∗ is said to be non-Pareto
dominated by no other Nash equilibrium of the game if and
only if ∀π 6= π̂∗ ∃j such that U j(π) < U j(π̂∗). Any
stochastic game has at least one Nash equilibrium, while
there can be more than one such equilibrium in a game. Such
a multiplicity of equilibria is a matter of difficulties of all
planning algorithms for both matrix and stochastic games.
This is because different agents can prefer different equi-
libria. Indeed, this is an important open problem in both
multiagent and game theory communities and is referred to
as an “equilibrium selection” problem (Myerson 1991). As
we will show below, our approach permits overcoming this
difficulty in SGs with communication (Com-SGs).

Planning in stochastic games
As in MDPs, there can be two types of planning in SGs:
planning with a finite horizon and planning with an infi-
nite horizon1. A horizon of planning is a number of time
steps (or transitions of the environment between states) start-

1Sometimes throughout the paper, we will also say “SG with
finite or infinite horizon” in the same sense.

ing from which the agent becomes indifferent to the re-
wards it obtains from the environment. When the horizon
is finite, the utility for a given agent, say j, of a sequence
seq = [s0,a0, s1,a1, s2,a2, . . .] of state transitions (possi-
bly infinite) is given as follows:

U j
H(seq) = Rj(s0,a0) + Rj(s1,a1) + . . . + Rj(sH ,aH)

where H is the length of horizon. Note that in this case,
U j

H(seq) = U j
H+k(seq), ∀k > 0.

An agent in an SG with an infinite horizon always has a
non-zero interest to all future rewards. To maintain prefer-
ences between different sequences of possible state transi-
tions, the agent uses a discount factor permitting it to calcu-
late a utility of any sequence of joint-state–joint-action pairs
so as not to obtain infinite values.

In short, the FINITEVI algorithm by Kearns, Mansour, &
Singh (2000) for planning in SGs with finite horizon works
as follows. In every joint-state s ∈ S, a list of Q-values is
maintained. At each iteration, these Q-values are updated
using a form of Bellman update:

Qj(s,a, t)← Rj(s,a) +
∑
s′

T (s,a, s′)uj
f (s′, t− 1)

where uj
f (s, t− 1) is the utility of an equilibrium of the ma-

trix game composed of Q-values calculated on the previous
iteration in the state s. This value is returned by a certain
function f , called Nash selection function. This function
constructs a matrix game from the Q-values of all agents in
the state s and then solves this game so as to find a unique
equilibrium. If the game has several equilibria, the function
f must choose one of them and communicate it to all agents.
As one can see, this is an obvious centralization point of the
given algorithm which can be viewed as an oracle. A need of
an oracle is generally seen as a drawback to the application
of this algorithm in distributed systems.

In their paper, Kearns, Mansour, & Singh claim that an
algorithm of value iteration in SGs with infinite horizon that
would converge in arbitrary general-sum games cannot ex-
ist. (This claim has been recently justified by Zinkevich,
Greenwald, & Littman (2005).) On the other hand, they
have shown that a finite horizon value iteration can converge
to a Nash equilibrium in general-sum SGs (their FINITEVI
always converges provided an arbitrary Nash selection func-
tion). We will rely on this result by proposing our algorithm
of planning in Com-SGs with finite horizon.

Planning with communication
In this section, we present our approach to planning in Com-
SGs. As we already mentioned above, the main disad-
vantage of FINITEVI is its strong centralization originating
from using the function f , which should find a unique equi-
librium and communicate it to all agents. Such a centraliza-
tion is often undesirable for the following reasons. First of
all, as we have already noted, this function can be viewed
as an oracle, which, informally speaking, “knows better”
what is “good” for all agents. This property is often dif-
ficult to assert, especially when different agents can have



different preferences about what is “good” and what is “not
so good” for them. One can imagine a situation when each
agent has its own function f j , which would permit avoid-
ing the need of an oracle. In this case, however, the prob-
lem still persists, since now all agents, in order to select the
same equilibrium, are required to have the same function f j ,
i.e., f1 = f2 = . . . = fn, which in general cannot be as-
sured in distributed systems. Besides, even if such function
(the same for all agents) can exist, it must be deterministic.
This means that if f j(s, t) returns to some agent j a strategy
π̂j(s, t) pertinent to some Nash equilibrium π̂(s, t), then all
other agents must receive, from their respective Nash selec-
tion functions, strategies belonging to the same equilibrium
π̂(s, t). Obviously, in general (not explicitly cooperative)
case such property is also not easy to guarantee.

It is required to note that a similar problem is observed in
some other algorithms for SGs. For example, in Hu & Well-
man’s Nash-Q learning algorithm (Hu & Wellman 2003) the
agents are required to always choose the first computed equi-
librium, or the second, and so on. I.e., the agents not only
need to always make the same decisions but also to compute
always the same sets of equilibria. This makes impossible to
the agents to use different algorithms of equilibrium compu-
tation or certain efficient non-deterministic methods.

In this paper, to avoid such a centralization and add
some other desirable properties which a decentralized sys-
tem could have (such as a distributed solution computation)
we propose a communication based game theoretic equilib-
rium selection approach for value iteration in SGs. How-
ever, instead of using a unique and centralized function f
computing and selecting a unique equilibrium in a state
for all agents, we divide the equilibrium selection process
into two phases. The first phase is an “equilibrium com-
putation” phase. During this phase, each agent computes a
(not necessarily complete) set of equilibria for a joint-state–
time pair by using any known equilibrium computation tech-
nique (not necessarily the same for all agents). The sec-
ond phase is a “communication” phase. During that phase,
the agents communicate between them in order to (possi-
bly) share their computed equilibria and to select a unique
equilibrium among those calculated. According to our ap-
proach, the communication phase is held in a form of a ma-
trix game. This (new) game, which we call “communica-
tion game”, is dynamically constructed from the equilibria
computed by the agents during the equilibrium computation
phase. In the next section, we will explain in detail how this
new game is constructed and played. Then, we will show
that once a game playing process in communication game
has converged to a (pure) equilibrium, this equilibrium cor-
responds to a unique (possibly, mixed) equilibrium of the
original, stochastic game.

Communication games

In this subsection, we present our new FINITEVICOM algo-
rithm of distributed planning in Com-SGs with finite hori-
zon, we define the notion of communication games and give
an example of such a game.

Equilibrium selection as a game The FINITEVICOM al-
gorithm of finite horizon value iteration in Com-SGs is pre-
sented in Algorithm 1.

1: function FINITEVICOM(H,C,P)
2: returns: a joint-policy.
3: inputs: H , a horizon; C, a vector of equilibrium computa-

tion algorithms; P, a vector of game playing algorithms.
4: t← 0
5: while t ≤ H do
6: for all s ∈ S do
7: for all j = 1 . . . n do
8: for all a ∈ A do
9: if t = 0 then

10: Qj(s,a, t)← Rj(s,a) . Initialization
11: else
12: Qj(s,a, t)←

∑
s′ T (s,a, s′)uj

E(s′, t−1)+

Rj(s,a) . Q-value update
13: Ej ← Cj(s, t)
14: E = (E1, E2, . . . , En)
15: πj(s, t)← Play(P, s, t, E)
16: t← t + 1 . Next iteration
17: return π = (π1, π2, . . . , πn)

Algorithm 1: Finite horizon value iteration algorithm to
compute a Nash equilibrium in Com-SGs.

The algorithm uses three input parameters: H , the hori-
zon of planning, and two others, C and P, that need to be
described in more detail. C = (C1, C2, . . . , Cn) is a vec-
tor containing algorithms of equilibrium computation, Cj ,
one for each agent. In practice, Cj may be any algorithm
that is able to compute all or just a subset of equilibria of
a normal-form game, given the game matrix (McKelvey &
McLennan 1996). P = (P 1, P 2, . . . , Pn) is a vector of
game playing algorithms for matrix games. This vector con-
tains one algorithm P j for each agent. Similarly to vec-
tor C, the algorithms P j of vector P can be different for
different agents. A particular algorithm P j may be any
known algorithm of game playing in matrix games. For
example, such algorithm can be Fictitious Play, Adaptive
play, Joint-Action Learner, PHC (Fudenberg & Levine 1999;
Young 1993; Bowling & Veloso 2002) or others.

During the value iteration, the set of Q-values is updated
using a Bellman equation (line 12) in which uj

E(s, t − 1)
is the value of the equilibrium selected in the state s at the
previous iteration. In each state s and at each iteration t
of FINITEVICOM, a unique equilibrium selection is held as
follows. First, each agent uses its algorithm Cj to compute
a set Ej of equilibria of the matrix game, which is given by
the Q-values, Qj(s,a, t), of the state s at iteration t (line 13).
Then, during the communication phase (the function Play,
line 15 of Algorithm 1), the agents use their game play-
ing algorithms P j to play a communication game CG(s, t)
against all other agents. In this communication game, the ac-
tions available for agents are the equilibria from their respec-
tive sets Ej . Notice that throughout this paper, we will call
these actions “communication actions” to distinguish them
from the actions available to the agents in the Com-SG.

On a game turn, each agent communicates an equilib-
rium from its set Ej (or, we can also say that it “executes



a communication action”) to all other agents and observes
the communication actions played by others. If all players
have played the same equilibrium as the one played by j,
the reward the agent j obtains after this play is its respec-
tive utility in the equilibrium corresponding to the commu-
nication action played. In all other cases, all players obtain
a zero-reward. (For simplicity of presentation, we assume
that all equilibria of the original SG are non-negative in any
state. The approach can be easily extended to the games
with negative equilibria. To do that, the reward associated
in CG(s, t) with a joint-communication action in which not
all players play the same equilibrium of the original game
should be set for player j to the lower bound on the utility of
this player in the original SG.) The game CG(s, t) is played
by the agents repeatedly until convergence to a pure strategy
equilibrium in CG(s, t) (see next section for convergence
results). This equilibrium, unique, will then be used to do
value iteration in the original SG.

To demonstrate how an equilibrium is being chosen dur-
ing the communication phase, let us show an example. For
simplicity, consider a two-player case and suppose that in
a state s at iteration t the sets of equilibria the agents have
calculated using their algorithms C1 and C2 are as follows:
E1 = E2 = {e1, e2, e3}. In that case, the game CG(s, t)
will constitute a set of two matrices, one per agent. Each
matrix will have the following form: uj(e1) 0 0

0 uj(e2) 0
0 0 uj(e3)


Assuming that player 1 plays by selecting rows of the ma-
trix and player 2 selects its columns, uj(ek) is the reward
the agent j obtains in the communication game when both
players play a communication action corresponding to the
same equilibrium ek of the original SG. This reward is sim-
ply the utility of equilibrium ek for player j according to the
Q-values in state s at iteration t.

Distributed equilibrium computation During the game
playing process, the agents are interchanging their pre-
computed equilibria in order to eventually select a unique
equilibrium. If all the agents used the same deterministic
algorithm of equilibrium computation, it would be easy to
assure that E1 = E2 = . . . = En as in the above example.
In that case, the game matrix CG(s, t) would be guaran-
teed to contain at least one joint-communication action that
all agents would prefer. In practice, however, each agent
can use its own equilibrium computation method that can
be able to compute only a subset of equilibria (McKelvey
& McLennan 1996) and can be non-deterministic, i.e., to
compute different subsets of equilibria after each run. Such
methods have recently been observed to be very fast in prac-
tice (Pavlidis, Parsopoulos, & Vrahatis 2005).

In the above example, if in some state at some iteration
E1 ∩ E2 = ∅, the players could never select an equilibrium.
To avoid this and to profit from the distributed character of
the problem, the agents must be able to put “unknown” equi-
libria, communicated by the other agents during communi-
cation game playing, into their equilibrium sets. We say that

an equilibrium ek, ek 6∈ Ej , communicated by some agent
k = 1 . . . j − 1, j + 1 . . . n can be safely put by the agent j
into its own set Ej of equilibria if the following two condi-
tions hold: (1) ek can be verified by j to be a true equilib-
rium of CG(s, t) in a reasonable time (for example, polyno-
mial in the game size) and (2) ek is non-Pareto-dominated
by no other equilibrium from Ej .

The second condition is obvious: no agent is interested in
a convergence to an equilibrium Pareto-dominated by some
other known equilibrium. This property is easily verifiable2

by comparing the utility of ek with the utilities of equilib-
ria of the set Ej . The following theorem satisfies the first
condition as well.

Theorem 1. Let MG be a matrix game where n is the num-
ber of players, Aj is the action set of player j, j = 1 . . . n,
and A−j is the joint-action set of all players except j. In
any game MG, a pure and a mixed Nash equilibrium can
be verified in O(n|Aj ||A−j |) ∀j.

Proof. We will prove this theorem by providing a polyno-
mial time algorithm to verify a given joint-strategy to be an
equilibrium of a matrix game (Algorithm 2).

1: function VERIFYEQUILIBRIUM(e, GM )
2: returns: true or false.
3: inputs: e, a pure or a mixed joint-strategy; GM , a

game matrix.
4: for all j = 1 . . . n do
5: Save in tmp the utility of e for player j according

to GM .
6: for all bj ∈ Aj do
7: if e is pure then
8: Let e = a = (aj ,a−j) ∈ A.
9: Set U j(bj)← uj(bj ,a−j).

10: else
11: Compute U j(bj) using Equation (1).
12: if U j(bj) > tmp then
13: return false.
14: return true.
Algorithm 2: The algorithm to verify a Nash equilibrium.

In the above algorithm, U j(bj) is the utility for player
j of playing a pure action bj ∈ Aj . There can be two
cases: e, the joint-strategy to verify (i.e., an “unknown”
equilibrium communicated by certain opponent agent) can
be pure or mixed. If e is pure (i.e., e is a certain joint-
action a = (aj ,a−j) ∈ A) then U j(bj) is simply the utility
for the player j of some joint-action in A according to the
game matrix GM (this utility is denoted in Algorithm 2 as
uj(bj ,a−j) ∀bj ∈ Aj). In the mixed strategy case, U j(bj)
is the expected utility of playing the pure strategy bj by the
player j given that the other players play according to the
mixed strategy equilibrium e. This expected utility is given
by,

U j(bj) =
∑

b−j∈A−j

uj(bj ,b−j) Pr(b−j |e) (1)

2More precisely, the verification time is in O(|Ej |2).



where Pr(b−j |e) is the probability that a certain joint-action
b−j will be played by the other players according to the
equilibrium e.

Thus, due to two nested “for” loops and one nested
summation over A−j , we can conclude that the time re-
quired to verify a Nash equilibrium (pure or mixed) is in
O(n|Aj ||A−j |) ∀j.

Convergence results
In this section, we present the main theoretical results con-
cerning our approach to finite horizon planning in Com-SGs.

Convergence in stochastic games
Kearns, Mansour, & Singh have shown that FINITEVI is
guaranteed to converge to a unique Nash equilibrium in any
SG with finite horizon by proving the following theorem.
Theorem 2 (Kearns, Mansour, & Singh (2000)). Let SG
be a two-player stochastic game (the extension to n-player
games with n > 2 is straightforward), let f be any Nash
selection function, and let H be a horizon. Then the joint-
policy π = (π1, π2) output by the FINITEVI(H, f ) algo-
rithm is a Nash equilibrium for SG.

From the above result of Kearns, Mansour, & Singh, the
following Theorem can be formulated for the FINITEVI-
COM algorithm.
Theorem 3. Let SG be a two-player stochastic game (the
extension to n-player games with n > 2 is straightforward),
and let H be a horizon. If the algorithms in vector P have
a property of mutual convergence to a pure strategy equi-
librium in any communication game, then the joint-policy
π = (π1, π2) output by the FINITEVICOM(H,C,P) algo-
rithm is a Nash equilibrium for SG.

Proof. (Sketch) As one can observe, the FINITEVICOM al-
gorithm inherits the convergence properties of FINITEVI,
given the convergence of the former to an equilibrium in all
communication games played during the planning process.
This is true, since in that case the communication game of
FINITEVICOM plays a part of the Nash selection function f
used in FINITEVI. As soon as, according to the Theorem 2,
FINITEVI converges to a Nash equilibrium, FINITEVICOM
will also do so.

Convergence in communication games
As noted above, in order to assure fulfilment of the condi-
tions of Theorem 3, the process of equilibrium selection dur-
ing the communication phase (the function Play at the line
15 of Algorithm 1) must yield a unique pure equilibrium,
which then will be used as a part of agents’ policies. Be-
sides, the value of the equilibrium selected on the previous
iteration will also be used in the Q-value update (line 12).

As one can observe, in communication games there can be
pure and mixed equilibria. All pure equilibria lay on the di-
agonal of the communication game matrix. The mixed equi-
libria can be formed out of an arbitrary number of pure equi-
libria by playing the communication actions corresponding
to those equilibria according to some nontrivial probabil-
ity distribution. The following theorem shows that all such

mixed equilibria are Pareto-dominated by the pure equilib-
ria used to construct them. Therefore, using game playing
algorithms converging to mixed equilibria in communica-
tion games is not only impractical for our purposes (we want
agents to choose a unique equilibrium in any state–iteration
of the original stochastic game, and not a mixture of equilib-
ria) but also it is not rational from a game theoretical view-
point. Such algorithms hence can be excluded from consid-
eration in relation to using them in communication games.

Theorem 4. Let CG(s, t) be a two-player communica-
tion game (the extension to n-player games with n > 2
is straightforward). Any mixed strategy equilibrium in
CG(s, t) is Pareto-dominated by each pure strategy equi-
librium from its support.

Proof. Let e1, e2, . . . , ek denote at once pure equilibria,
used to construct a certain mixed equilibrium, and corre-
sponding communication actions of players. This set of
communication actions is called a support of the mixed equi-
librium. Obviously, each action in the support is played with
a non-zero probability, because if not (i.e., if there was an
action el, 1 ≤ l ≤ k, not played with a non-zero probabil-
ity) that action could be removed from the support without
changing the mixed equilibrium. Let for simplicity denote
players i and j, where (i, j) ∈ {(1, 2), (2, 1)}.

Proof by contradiction. Let el, 1 ≤ l ≤ k, be a pure
equilibrium whose the value for both players is lower than
the value of the mixed equilibrium. For each player, in the
mixed equilibrium there is a non-zero probability pi(el) < 1
associated with the action el. According to the definition of
a communication game, the value vi(el) of the pure action
el played by player i is given as:

vi(el) = pj(el)ui(el) +
∑

1≤l′≤k∧l′ 6=l

pj(el′) · 0

= pj(el)ui(el)

< ui(el)

Recall a property of a mixed equilibrium: for each player,
every pure action in the support of this mixed equilibrium
has the same value as the value of the equilibrium. Thus, the
above inequality states that the mixed equilibrium having
the action el in its support has the value lower than the value
of the pure equilibrium el. Since we did not precise the
way according to which the action el has been chosen, it is
clearly a contradiction to the original assumption.

There is a number of game playing algorithms possess-
ing a property of convergence to an equilibrium in matrix
games. While the performance of different game playing
algorithms against each other has recently been studied in
some cases, the formal proofs of convergence to an equilib-
rium are typically given in the literature for the two-player
and/or two-action case.

In FINITEVICOM, such well-known algorithms for ma-
trix games as Fictitious play (Fudenberg & Levine 1999),
IGA (Singh, Kearns, & Mansour 1994), GIGA (Zinkevich
2003), Adaptive play (Young 1993), ReDVaLeR (Banerjee
& Peng 2004), AWESOME (Conitzer & Sandholm 2007),



Joint-Action Learner (Claus & Boutilier 1998) and even a
single-agent Q-learning could be used as a game playing
technique for communication games. To present our main
theoretical results, we have opted for Adaptive play (AP)
algorithm (Young 1993) as a game playing technique for
communication games. Our choice is dictated by the follow-
ing considerations. Some algorithms (such as Joint-Action
Learner (Claus & Boutilier 1998) or a single agent Q-
learning) although tested in a wide range of different prac-
tical situations still do not have formal convergence proofs.
The theoretical guarantees that some other algorithms men-
tioned above possess (e.g., Fictitious play, IGA and GIGA)
are based on the assumptions that are too restrictive (two-
player or two-action case, for example). ReDVaLeR and
AWESOME, could indeed be taken as a game playing tech-
nique for communication games. However, they also require
some important preconditions to be satisfied. Furthermore,
their capabilities and structural complexity surpass the min-
imal requirements with which such technique should com-
ply in order to be an appropriate game playing technique for
communication games. Finally, the question of convergence
of all these algorithms to a pure strategy Nash equilibrium
in communication games is itself an important theoretical
and practical issue to explore. In contrast, AP is structurally
simple, it requires neither the game matrix to be known in
advance (nor even to be able to be explicitly constructed)
nor the observability of the opponent’s actual strategy. And,
as we will show below, it does converge to a pure Nash equi-
librium in any communication game.

Adaptive play in communication games
Adaptive play works as follows. Let al ∈ A be a joint-
action played at iteration l by all players. Fix integers k and
m such that 1 ≤ k ≤ m. While l ≤ m, adaptive player j
randomly chooses its actions and plays them.

Let Hl = a−j
l−m,a−j

l−m+1, . . . ,a
−j
l−1 denote the m most

recent joint-actions played by the opponent agents so far.
Starting from l = m + 1, player j randomly and without
replacement draws k samples from Hl and saves them in
the set Ĥl (Ĥl ⊆ Hl). Let C(a−j |Ĥl) be the number of
times a certain opponents’ joint-action a−j appears in the
set Ĥl. Let uj(a) be the reward agent j obtains when the
joint-action a ∈ A is played. The expected utility U j(aj)
of playing a simple action aj ∈ Aj is computed by player j
as follows:

U j(aj) =
∑

a−j∈A−j

uj(aj ,a−j)
C(a−j |Ĥl)

k

The set of best responses, denoted as BRj
l , is then formed

as BRj
l = {aj : aj = argmaxbj∈Aj U j(bj)}. At each

iteration l, the adaptive player j plays an action randomly
drawn from BRj

l by giving a non-zero probability to any
action aj ∈ BRj

l to be drawn. As we already mentioned, the
convergence of AP to an equilibrium in self-play has been
proven for a class of games called “weakly acyclic” (Young
1993). Let us now define this notion.

Definition 1 (Weakly acyclic game (Young 1993)). Let MG
be a n-player matrix game. Let BRj(a−j) denote the set of
best responses of agent j to an opponents’ joint-action a−j .
The best-response graph constructed on MG has A as its
set of vertices and there is a directed edge between vertices
a = (aj ,a−j) and a′ = (a′j ,a′−j) if and only if (i) a 6= a′
and (ii) ∃!j = 1 . . . n : a′j ∈ BRj(a−j) ∧ a′−j = a−j . The
game MG is said to be weakly acyclic if, in its best-response
graph from any initial vertex a, there exists a directed path
to some vertex a∗ from which there is no outgoing edge.

In the above definition, the vertex a∗ is essentially a Nash
equilibrium in pure strategies.
Theorem 5. Any communication game constructed as de-
scribed in the previous section is weakly acyclic.

Proof. Let us first limit ourselves to a two-player case. We
will show next that the result can be extended to the n-player
case as well. Recall the example of the communication game
matrix of agent j in state s: uj(e1) 0 0

0 uj(e2) 0
0 0 uj(e3)


In the above game, we assume that both players, j and −j
have the same sets of equilibria, i.e., Ej = E−j = E . Indeed,
if these sets were different, i.e., if there existed a non-empty
set E ′ = (Ej∪E−j)\(Ej∩E−j), the communication actions
corresponding to the equilibria of the set E ′ would never
be played simultaneously by both players and, hence, both
players would always obtain zero after having played them.
In the terms of the best response graph, this situation corre-
sponds to a vertex al of the best response graph from which
there is always a path to some other vertex resulting from
the communication actions of the set Ej ∩ E−j . Therefore,
in our proof we can limit ourselves to a case Ej = E−j = E .

By observing the structure of a communication game,
CG(s, t), note that in such a game, there are always equi-
libria (of this, communication game) in pure strategies and
all these equilibria lie on the diagonal of the game matrix.
This is true because if one player has an intention to play
a certain communication action (some equilibrium e from
the set E), another player cannot do better than to play its
communication action corresponding to the same equilib-
rium e. Therefore, the resulting joint-communication action
will be a Nash equilibrium of the communication game and
will necessarily lie on the diagonal of the game matrix.

Now, to show that CG(s, t) is weakly acyclic, we must
consider two cases: 1) current vertex of the best-response
graph, al ∈ E × E , corresponds to a diagonal element of
matrix CG(s, t) and 2) al does not correspond to a diagonal
element of CG(s, t). In the case 1), al corresponds to a
vertex a∗ of the best response graph since there cannot be
outgoing edge from al (it is already an equilibrium). In the
case 2), agent j has only one communication action a′j ∈
E in its best-response set BRj(a−j

l ). This communication
action a′j is such that (a′j ,a′−j) is a diagonal element a′ of
matrix CG(s, t) and the following two conditions hold (i)
(aj

l ,a
−j
l ) 6= (a′j ,a′−j) and (ii) a′−j = a−j

l . Hence, in both



cases there exists a directed path from the initial vertex to a
vertex a∗ from which there is no outgoing edge. Therefore,
by definition any two-player communication game CG(s, t)
is weakly acyclic.

Now, consider an n-player case. The difference between
this situation and the two-player case considered above lies
in the case 2). We must show that if the current vertex al of
the best-response graph does not correspond to a diagonal
element of CG(s, t), then there is a directed path from al to
some a∗ from which there is no outgoing edge. Let’s denote
by k, k = 1 . . . |E|, the k-th communication action available
to a player, and by k ∈ ×jE the joint-communication action
in which ∀aj ∈ E , a1 = a2 = . . . = an = k. In this context,
k is a diagonal element of the communication game matrix
and hence it corresponds to a vertex a∗ of the best response
graph from which there is no outgoing edge. Take note that
if the current vertex al of the best response graph is not k
for a certain k then there exists a player j = 1 . . . n such that
aj

l 6= k. Let’s denote by D(al, k) the set of all such players
with respect to k. We will say that a joint-communication
action a is closer to some k than some other action a′ ∈ ×jE
if and only if |D(a, k)| < |D(a′, k)|. Remark now that if
there is an edge in the best-response graph from al to some
vertex a′ then, necessarily, |D(a′, k)| = |D(al, k)| − 1 for
some k. If |D(al, k)| 6= 1 ∀k, then for each player j =
1 . . . n the set of best responses to a−j

l contains all available
actions since the utility of each best response is 0. Hence,
there will necessarily be an edge in the best response graph
from al to some a′ such that |D(a′, k)| = |D(al, k)| − 1
for some k. In the other words, if |D(al, k)| > 1 there is
always an edge from al to some vertex, which is closer to an
equilibrium. If the current vertex al is such that for some k,
|D(al, k)| = 1 (i.e., there is exactly one player j such that
aj

l 6= k) then there will be exactly one edge from al to k
in the best response graph. As we have noted above, since
k is an equilibrium, there is no outgoing edge from it and,
hence, it corresponds to the vertex a∗ of the best response
graph. The latter observation permits us to conclude that the
result of the Theorem is extended to the n-player case.

Young (1993) has shown that Adaptive play converges to
a Nash equilibrium in any weakly acyclic game by proving
the following theorem.

Theorem 6 (Young (1993)). Let MG be a weakly acyclic
n-player normal-form game. If the parameters of AP, k and
m, are such that k ≤ m/(LG + 2), then AP converges to an
equilibrium w.p. 1.

In the above theorem, LG is the length of the short-
est directed path in the best response graph from a ver-
tex to a Nash equilibrium. The maximal such path
over all starting vertices is taken. In our case, in
each communication game, LG should simply be set to
maxa∈E×E mink=1...|E| |D(a, k)|.
Corollary 1. If, during the planning process, all agents use
AP in communication games (i.e., the vector P is such that
its components P j = AP, ∀j) the algorithm FINITEVI-
COM will converge to a Nash equilibrium in any Com-SG.

The above corollary is a direct implication of Theorems
3, 5 and 6. It shows that there exists at least one vector P
for which the algorithm FINITEVICOM converges to a Nash
equilibrium in any Com-SG. This vector is the one in which
all players use AP.

It is interesting to note here that even if AP can only con-
verge to a pure equilibrium in any communication game the
resulting equilibrium of the original, stochastic game can
still be mixed! Indeed, this fact only depends on the SG
itself: AP is only a way to “choose” between the equilibria
computed by the agents.

In the next section, we present the results of experiments
justifying the theoretical results stated above.

Experimental results
We tested our FINITEVICOM algorithm on a sort of a multi-
robot grid-world problem created by Hu & Wellman (2003)
to test their Nash-Q algorithm. Briefly, the problem con-
sists of two robots on a square grid. The initial positions of
robots are respectively bottom-left and bottom-right corners
of the grid. The robots have their respective goal cells in the
opposite corners of the grid. The actions they have in their
disposal are L (go left), R (go right), U (go up) and NoOp
(do nothing). Both robots have the following reward func-
tion. The reward of 100 is obtained if a robot makes an ac-
tion in its goal cell; the reward of -1 is obtained if there was
a collision (both robots tried to simultaneously transit into
the same cell) and the reward of 0 is obtained in all other
cases. This sort of grid-world game possesses all the key el-
ements of SGs: location- or state-specific actions, inter-state
transitions, and immediate and long-term rewards.

It is easy to see that when the transition function is de-
terministic this game has ten equilibria (joint-trajectories) in
the 3× 3 grid for the horizon H = 4, as shown in Figure 1.

Figure 1: Equilibria of deterministic 3× 3 grid-world game.
Other five are obtained by symmetry.

When the planning horizon is H ≥ 5 = 4 + k, k =
1, 2, 3, . . ., the above trajectories do not change. However,
the equilibria in these cases will contain k additional actions
NoOp to execute in the goal cell. On the other hand, when
the horizon is H ≤ 3, multiple optimal solutions of this
game exist, all bringing the utility of 0 to both agents re-
gardless of the actions of the opponent player. One of them
could be to always execute the NoOp action in the start cell.



t = 4
U , L R , U U , L U , L U , L U , U R , U R , U R , U U , U

16.62% 16.73% 11.08% 11.12% 5.69% 5.44% 11.1% 11.05% 5.55% 5.63%

t = 3
R , L R , L R , L U , L U , U U , L R , L R , U U , U R , U

16.62% 16.73% 11.08% 11.12% 5.69% 5.44% 11.1% 11.05% 5.55% 5.63%

t = 2
R , U U , L U , U R , U R , L U , U U , L R , L

16.62% 16.73% 11.08% 11.12% 11.12% 11.1% 11.05% 11.18%

t = 1
U , U R , U U , L

33.35% 33.32% 33.33%

Table 1: Observed distribution over equilibrium actions in the 3× 3 grid with horizon 4 for each time step.

The tests have been done for the case when both agents
use AP as a game playing algorithm. Like Hu & Well-
man (2003), we used the Lemke-Howson algorithm (McK-
elvey & McLennan 1996) to compute equilibria. Since the
latter algorithm is deterministic, the sets of equilibria calcu-
lated by each agent were always the same. To simulate the
case when these sets are different we stochastically with-
drew some equilibria from the sets of both agents.

We observed the convergence to a Nash equilibrium in all
tests in both cases, i.e., when all equilibria were available
and when some of them were stochastically withdrawn. The
distribution over the found equilibria of this SG is presented
in Table 1. For example, at the time step 1 there are three
different equilibrium joint-actions to which FINITEVICOM
might converge: (U,U), (R,U) and (U,L). (Here, (·, ·) stands
for (a1, a2) where a1 ∈ A1 and a2 ∈ A2.) One can note
that the distribution over these joint-actions is close to being
uniform. This is not surprising since AP guarantees a con-
vergence to an equilibrium given that all actions are selected
from the set of best responses with a non-zero probability. In
our tests, we used a uniform distribution to choose between
best response actions, that is why the distribution over equi-
libria themselves is also uniform.

Conclusion and future work
In this paper, we presented a novel approach to distributed
equilibrium computation and selection in finite horizon
planning problems in stochastic games. We proposed an al-
gorithm using this approach and showed its validity, both
theoretically and via experimentations.

In our work, we did not consider such important features
which a particular communication game can have as com-
munication cost and reliability. Indeed, we assumed that the
communication is always available, reliable and free. In re-
ality, however, this is often not the case. In our future work,
we plan to explore in detail these questions.

One more important question is the scalability of the pro-
posed approach. The influence of such parameters as the
number of stochastic game states, the number of equilibria
in each state (and also the fraction of this number computed
by the agents during the equilibrium computation phase) on
the algorithm’s running time need to be explored and detail.

Another interesting research direction is an analysis of
the convergence properties of different game playing algo-
rithms in combined play, first experimentally and then theo-
retically. Indeed, in the context of the analysis of applicabil-
ity of FINITEVICOM in either situation, one of the principal

question is to know what the vectors P are in which all al-
gorithms P j , ∀j = 1 . . . n, converge against each other to a
pure Nash equilibrium in communication games.
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