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Software agents can be useful in forming buyers’ groups since humans
have considerable difficulties in finding Pareto-optimal deals (no buyer
can be better without another being worse) in negotiation situations.
What are the computational and economical performances of software
agents for a group buying problem? We have developed a negotiation
protocol for software agents which we have evaluated to see if the
problem is difficult on average and why. This protocol probably finds a
Pareto-optimal solution and, furthermore, minimizes the worst distance
to ideal among all software agents given strict preference ordering.
This evaluation demonstrated that the performance of software agents in
this group buying problem is limited by memory requirements (and not
execution time complexity). We have also investigated whether software
agents following the developed protocol have a different buying
behaviour from that which the customer they represented would have
had in the same situation. Results show that software agents have
a greater difference of behaviour (and better behaviour since they can
always simulate the obvious customer behaviour of buying alone their
preferred product) when they have similar preferences over the space of
available products. We also discuss the type of behaviour changes and
their frequencies based on the situation.

Keywords: Software agents; Coalition formation; Cooperative game
theory; Non-transferable payoff; Group buying

1. Introduction

The Internet has reduced the cost of communication and information search. This
reduction of cost has enabled the automation of some electronic commerce activities
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such as group buying negotiations which seek a better economic performance by

economies of scale. By negotiation we mean the ‘process by which agents

communicate with one another to try and come to a mutually acceptable agreement

on some matter’ (Lomuscio et al. 2001). Group buying is a natural application

domain for research on coalition formation in a multi-agent system (MAS).

Consumers have an incentive to regroup with the unit price reduction as a function

of the number of units bought by the group. However, as more and more consumers

become members of the same group, there is an increase in the number of

compromises that each consumer must make in order to agree on the product bought

by the group. In one extreme case, all the consumers can regroup in the same group

and buy the same product. In the other extreme case, all the consumers could buy

alone a different product, thus forming as many groups as consumers. Finding a

Pareto-optimal partition (no other partition gives more to one consumer without

giving less to another) of the set of consumers in buying groups would be a desired

solution to this problem.
The use of software agents is required since they perform better than humans in

finding a Pareto-optimal outcome in reasonably complex negotiations (Sandholm

1999). This is not only a widely accepted conjecture, but empirical evidence tends to

confirm it. Rangaswamy and Shell (1997) have conducted an experiment where two

people needed to agree on an outcome among 256 possible outcomes based on

preferences that were imposed on the participants. The results of this study showed

that humans agreed on a Pareto-optimal outcome in 11.1% of the situations. With

the help of a negotiation support system, that percentage rose to 42.6%. Therefore

in both cases humans were not able to find a Pareto-optimal outcome in more than

half of the situations (88.9% and 57.4%). Software agents differ from negotiation

support systems because they do not help humans to negotiate. Instead, they

negotiate on their behalf.
When there is a set of consumers desiring a product (e.g. a television set), group

buying consists of partitioning the set of such consumers into buying groups with

respect to the preferences of each consumer across all the possible buying groups.

Among all the possible partitions, we would also like to find a Pareto-optimal one.

Defined in that way, the computational problem is equivalent to the generation of

exact set covers known to be NP-hard (Garey and Johnson 1979). Incentives to

regroup (a larger group pays less per unit than a smaller one) create a special

structure, possibly making the problem computationally easier. An investigation of

whether this is the case or not has been conducted. It turns out that the average

execution time is less than exponential, but the memory requirements limit the

number of software agents in the system.
Some useful definitions to help in understanding this paper are given below

Definition 1: A partition p is dominated by a partition p0 if no consumer prefers p

to p0 and there exists at least one consumer who prefers p0 to p.

Definition 2: A partition is feasible if each consumer is willing to propose the

buying group containing him in this partition.

Definition 3: A feasible partition is Pareto-optimal if no other feasible partition

dominates it.

18 F. Asselin and B. Chaib-Draa
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Definition 4: The distance to ideal for a consumer agent A in relation to a partition
p is defined as the number of buying groups that were proposed by agent A before
the one that includes that agent in the partition p. For example, for agent A
in figure 2, the group that buys two units of Product#2 has a distance to ideal of 2
since two buying groups were proposed before it by agent A.

We have developed a protocol and associated algorithms which software agents
can use to find a Pareto-optimal partition that minimizes the worst distance to ideal
(see Definition 4) among all agents given a strict preference ordering (no two buying
groups are equally preferred) for each agent. In this paper we present the results of
the empirical evaluation of the computational and economical performances of the
protocol for different numbers of agents (with random preferences from consumers)
and products. It is organized as follows. In section 2 we briefly review related work.
A formal definition of the group buying problem with the assumptions used is
presented in section 3. In section 4 we present our protocol, and in section 5 we detail
some results and discuss them. Finally, we conclude in section 6. The choice of
Pareto-optimality as the solution to this coalition formation problem is discussed in
appendix A. In appendix B, we give a detailed presentation of the application of the
algorithms used in our protocol to the group buying problem.

2. Prior work on coalition formation in a multi-agent system

2.1 General research work

Research in coalition formation in MASs (Sandholm et al. 1999, Shehory and Kraus
1999, Larson and Sandholm 2000, Sen and Dutta 2000, Dang and Jennings 2004,
Tombus� and Bilgiç 2004) (the list of references is not exhaustive) has mainly focused
on transferable payoff; like Osborne and Rubinstein (1994), we consider the term
‘payoff’ to be synonymous with the term ‘utility’ when we analyse the process from
the game theory point of view. This case, which is specific, is defined by a payoff
attributed to each possible coalition. Members of a coalition must agree on a division
of that payoff among themselves. In group buying, transferable payoff is exemplified
by the work of Yamamoto and Sycara (2001). In their work, a set of agents forms
a buying group purchasing a certain quantity of an item at a certain total price. The
problem consists in determining which part of the total price each agent of the
buying group must pay.

However, the general case in cooperative game theory uses non-transferable
payoff (Osborne and Rubinstein 1994). Non-transferable payoff means that, for each
coalition, each of the members receives an individual payoff which does not come
from the payoff of the coalition because no such payoff exists. Whereas in the
transferable payoff case the sum of members’ payoff must equal the coalition payoff,
in the non-transferable payoff case the sum of members’ payoff can be anything.
As we can see, the non-transferable payoff case is the general case and the case of
transferable payoff is a specific case. In our version of group buying, each consumer
has a private evaluation for each possible buying group. This evaluation depends
only on the consumer’s preferences and constraints. The evaluation of a particular

Agents in non-transferable payoff group buying 19
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buying group by a consumer approximates the utility that this consumer receives in
belonging to this buying group.

We could allow agents to exchange money even in the non-transferable payoff
case. This means that each agent still has an individual payoff that depends only on

its preferences and constraints but it could give (or receive) a payment to (from)
another agent that influences both its payoff and the payoff of this other agent. That
could allow for a more efficient outcome but at the cost of a more complex problem.
Indeed, we would have to compute the payment for each agent as well as truthfully
eliciting the relationship between money and the payoff of each agent. As stated
by Kraus (2001), money exchange demands resources (and infrastructure) and can

be manipulated. However, the main reason we decided not to permit it was for
simplicity for the consumers. The common consumer might not understand and
accept that he must give a payment to another consumer buying the same item. This
could be worse if the payment is made to a consumer of a different buying group. If
the payment is included in the buying price, the same consumer would still not
understand or accept why he pays a greater price for the same item than another

consumer in his buying group. In short, money exchange goes beyond the scope of
our present research, but could be studied later.

Formally, we define coalition formation with transferable and non-transferable
payoff from cooperative game theory as follows (Osborne and Rubinstein 1994):

Definition 5: A coalition formation gamewith transferable payoff hM, vi consists of:

. a finite set M (the set of agents);

. a function v that associates with every non-empty subset S of M (a coalition)
a real number v(S) (the worth of S).

Definition 6: A coalition formation game with non-transferable payoff
hM,X,V, (�i)i2Mi consists of:

. a finite set M (the set of agents);

. a set X (the set of consequences);

. a function V that assigns to every non-empty subset S of M (a coalition) a set
V(S)�X;

. for each agent i2M a preference relation�i on X (formally written as (�i)i2M).
In the transferable payoff case, the preference relation of an agent is implicit
in the part of the worth v(S) of S received by the agent belonging to S (the

larger the real number, the better).

A coalition formation game with transferable payoff can be associated with
an equivalent coalition formation game with non-transferable payoff as follows:
X¼<M, V(S)¼ {x 2 <M:

P
i2S xi ¼ vðSÞ and xj¼ 0 if j2M\S} for each coalition S,

and x� i y if and only if xi� yi (the element i of the vector x is greater than or equal

to the element i of the vector y) (Osborne and Rubinstein 1994). Therefore every
transferable payoff case can be transformed into a non-transferable case but the
inverse is not true. Hence non-transferable payoff is more general than transferable
payoff.

Caillou et al. (2002) have proposed a coalition formation protocol which finds
a Pareto-optimal solution with agents using non-transferable payoff. However,
their protocol is not symmetric, i.e. it does not treat all agents with impartiality

20 F. Asselin and B. Chaib-Draa
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(our protocol is symmetric). The first agent to participate in their protocol chooses
its preferred partitions, the second agent chooses its preferred partitions among those
chosen by the first agent, the third agent chooses its preferred partitions among
those chosen by the second, etc., until the last agent chooses its preferred partitions
among those chosen by the next-to-last agent. Clearly, the first agent has an
advantage over the second agent, who has an advantage over the third agent, etc.
Therefore every agent is treated differently by the protocol, with each agent having
an advantage over the successive agents. In the general context of competitive agents
in electronic commerce, this is unacceptable. Competition requires that all
participants receive equal consideration.

Furthermore, in the worst case, all partitions, even those that are unacceptable to
the other agents, must be evaluated by the first agent in their protocol. In contrast,
our protocol makes agents compute only ‘number of agents� number of different
products of the same type’ coalitions (with a limit of one unit bought per agent). This
quantity is only a small fraction of the total number of all coalitions which, in turn,
is only a small fraction of the total number of all partitions. Finally, and more
significantly, the problem resolved by their protocol is a matching problem between
a group of professors and a group of classes in a course schedule, which is different
from our problem.

From the computer science point of view, research on coalition formation with
transferable payoff has been related to optimization problems. Generally,
researchers in this context have searched for the partition whose sum of the payoffs
of its coalitions is optimal. Theoretically, we could also formulate our problem as an
optimization problem by searching for the solution that minimizes the sum of the
distance to ideal (see Definition 4) of the agents. If we could find the optimal solution
to this formulation of our problem, then this optimal solution would also be Pareto-
optimal. However, that is theory; in practice the number of coalitions is so large,
even for small instances, that they cannot all fit in the memory. For example, our
protocol uses only a subset of all coalitions and yet it still went out of memory for
larger cases. In order to find an optimal solution, we must know many, perhaps all,
coalitions. In contrast, our protocol finds coalitions on an ‘as needed’ basis, saving
memory space. In doing this, it stops after the first coalition structure has been
detected which generally happens well before all coalitions are known. Therefore our
approach clearly saves memory space so that instances which are not computable
in the optimization approach are computable in ours.

2.2 Specific research work for group buying

The use of coalition formation for buying groups has recently attracted the attention
of researchers, mainly in the context of transferable payoff. Thus Tsvetovat et al.
(2001) have demonstrated the economical incentives of buying groups for both
consumers and manufacturers, and have provided models of coalition formation in
that context. Lerman and Shehory (2000) have used differential equations to describe
the macroscopic behaviour of coalitions when agents are allowed to leave and join
a coalition and finally reach a steady state in the distribution of the number of
coalitions of different sizes. In their model, agents are mobile and go from vendor
site to vendor site where they randomly encounter other lone agents (with whom they
form a buying group of two agents on the vendor site of their meeting) or a buying
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group already located at a particular vendor site (with whom they join to increase the

number of agents in the group by one). In the same model, buying groups stay at

their particular vendor site and, in cases where the agents are allowed to leave a

buying group to become alone again, the agents resume their random search for lone

agents or buying groups. Note that in the model of Lerman and Shehory (2000) all

agents have the same goal, i.e. to purchase a specific product at the lowest price

(the transferable payoff case). Since agents have no preference among vendors, the

optimal solution to their problem is to regroup all agents desiring the same product

in any vendor site. If all agents want the same product, then all agents should

regroup themselves in one buying group in any one of the vendor sites to attain the

optimal solution. Because of the random encounters and the fact that each agent has

only local information (such as the size of the buying group at the vendor site where

the agent is actually located), the optimal solution is rarely found in the Lerman–

Shehory approach, although agents with minimal communication skills could find it

(all agents tell a central mechanism which product they want, and the mechanism

regroups agents with the same product into a buying group; the agents could even

broadcast the product they want to each other, which would be feasible considering

the small quantity of communicated information). Furthermore, the solution found

using the Lerman–Shehory model is not provably Pareto-optimal. The primary

interest of their work (which is quite interesting) is the macroscopic model of

coalition formation which explains the distribution of the number of coalitions with

different sizes at different times until the steady state of the distribution is obtained.

It is not a practical protocol for group buying because of the absence of a guarantee

of the quality of the solution found. It does not guarantee Pareto-optimality.
Yamamoto and Sycara (2001) have separated agents into coalitions and divided

the profit generated by a coalition among its members in an efficient and stable way

using transferable payoff. Another interesting issue investigated by Ito et al. (2001)

has been how we can allow sellers to cooperate when a coalition requires more units

than a single seller can offer. Another facet has been investigated by Lin and Yuan

(2001) and concerns reputation in the choice of a coalition manager who represents

the other members of a coalition in the negotiation with sellers. Li and Sycara (2002)

have studied how to combine coalition formation with combinatorial auctions for a

more efficient marketplace. Vassileva et al. (2002) have studied the concept of trust in

long-term coalitions of buyers and sellers over repeated transactions. However, these

approaches studied group buying with transferable payoff and therefore did not

empirically evaluate an implemented system with non-transferable payoff. Hyodo

et al. (2003) applied a genetic algorithm to the group buying problem. He and

Ioerger (2004) have considered the problem of group buying in conjunction with

bundle search where a consumer needs to buy different goods as a bundle. Matsuo

et al. (2004) used the multi-attribute utility theory, in particular the Analytic

Hierarchy Process method, to form buying groups.
Sarne and Kraus (2003) have proposed a model for non-transferable payoff

group buying. In this model, each buying group is represented by an agent who

incurs a cost for searching for another buying group with which to merge in addition

to the cost of the internal coordination of the group members. The buying groups

change when agents must decide whether they continue the search for potential

merging partners or settle. The problem we have studied is different because it is

22 F. Asselin and B. Chaib-Draa
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composed of a static group of consumers for which we want a Pareto-optimal

partition into buying groups.
Leyton-Brown et al. (2002) have studied the concept of bidding clubs, as they

relate to buying groups, modelling collusion in auctions. However, their work is

different from ours because we do not use auctions for group buying. In particular,

the unit price paid by a member of a buying group is determined by a price
schedule and the number of units bought by the buying group, and is not subject

to negotiation as in auctions. Furthermore, agents in group buying are expected to

regroup, but collusion of agents is considered undesirable behaviour in an auction,

at least from the seller’s point of view.

3. Formal definition of the group buying problem

The group buying problem studied in this paper comprises the following.

. A finite and fixed set of consumer agents M with |M|¼m.

. A finite and fixed set of different available products R of the same type (e.g. a

set of different television sets from different manufacturers). Each product r2R
has a price schedule giving the unit price of r as a function of the number of

units bought by a buying group.
. The set of possible buying groups O from the consumer agent point of view is

determined by the function f : [1, . . . ,m]�R!O, meaning that a buying group

with one consumer agent and up to m consumer agents can buy any

product r2R.
. For a particular consumer agent i, not all buying groups o2O are desirable:

the unit price paid by the group could be higher than the maximum price the
consumer is willing to pay, some of the characteristics of the product bought by

the group could be unacceptable to the consumer, or the buying group could

be not individually rational (see appendix A for a definition). Hence we denote

by Oi�O the set of buying groups that are acceptable to consumer agent i.
. Each consumer agent i has a payoff function ui: Oi!< which attributes to all

acceptable buying groups for i a payoff representing the general level of

satisfaction of i for a particular buying group o2Oi. This payoff depends

not only on the unit price paid by the buying group o, but also on the other

characteristics of the product bought by the group.
. The set of possible buying groups S from the protocol point of view is

determined by the function g: 2M\Ø�R!S, meaning that a buying group in

the solution of the problem can be any non-empty subset of the set of consumer

agents M (the power set of M minus the empty set) buying any product r2R.
. A solution to the group buying problem is a collection of buying groups S0 �S

so that each consumer agent i2M is in one and only one set s2S0 (a partition,

or exact set cover, of the set of consumer agents M into buying groups2S0).

Furthermore, for all buying groups s0, s00 2S0, s0 and s00 buy different products
r0 and r00 (r0 6¼ r00) or else they would form together a unique buying group. The

partition must be Pareto-optimal.

Agents in non-transferable payoff group buying 23
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. The protocol is initiated by a grouping agent that directs its execution. Based
on the terminology of game theory, we could say that the grouping agent
implements the ‘social choice’ function h: [u1(O1), . . . , um(Om)]!S0, meaning
that the grouping agent takes the preferences ui of each consumer agent
i2M on their set of acceptable buying groups Oi and returns a collection of
buying groups S0 �S with the properties explained in the previous item.
The grouping agent is what is called, in game theory, a mechanism (Mas-Colell
et al. 1995).

We also make the following assumptions.

. All consumer agents are interested only in their own payoff and not in the
payoff of other consumer agents.

. The payoff of each consumer agent is non-transferable.

. Each consumer agent i2M has in its set of acceptable buying groups Oi

a group in which it buys alone a product. This is to ensure that at least one
partition (i.e. a solution) exists for the problem.

. No consumer agent can join the protocol after the grouping agent has closed
the registration phase. Once a consumer agent has told the grouping agent it is
ready to participate in the protocol after having seen the number of registered
consumer agents and the set of different available products R, that consumer
agent is bound to the solution found by the protocol.

. Every consumer agent i2M buys only one unit of the product. This assumption
is only to restrict the cardinality of the set O of possible buying groups from the
point of view of the consumer agent i. The protocol could support multiple
units, although with a little unfairness for the agent who bought multiple units
(explained in section 4.1).

. The payoff function ui of each consumer agent must represent strict
preferences. This means that for all o0, o00 2Oi, o0 6¼ o00 if and only if
ui(o

0) 6¼ ui(o
00). Note that if a large buying group o0 pays the same unit price

as a small buying group o00 for the same product, then ui(o
0)¼ ui(o

00) with
o0 6¼ o00, but in that case the grouping agent will consider that the consumer
agent i prefers the larger group to the smaller group so that strict preferences
are maintained. The protocol could be executed without this assumption, but
it helps in obtaining the properties described in propositions 1 and 2.

4. Overview of the protocol

In the protocol developed below, consumers tell their software agent which product
they want (e.g. a television set) as well as their preferences across the possible
instances of the chosen product (different television sets). Agents are then able to
find a buyers’ group which suits their consumer’s preferences.

4.1 Reduction of the possibilities space

The group buying problem can be decomposed into two computationally difficult
parts: (1) determining a preference ordering among all possible buying groups for
each software agent; (2) finding the best coalition structure. For the first component,

24 F. Asselin and B. Chaib-Draa
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we have found a reasonable restriction allowing the reduction of the number of

possible buying groups to be ordered from an exponential to a linear factor as a

function of the number of buyers. For N consumers and P products, the number of

possible buying groups is (2N� 1)�P. Indeed, the number of possible groups of

consumers from a set of N consumers is in relation to the number of possible subsets

of a set. There are 2N subsets of a set of N elements, including the empty set. Since

we do not consider the empty set as a valid buying group, there are 2N� 1 possible

groups of consumers. Each of them could buy one of P available products (e.g.

different television sets not just different units of the same television set). Hence there

are (2N� 1)�P possible buying groups.
This is a large number of possibilities even for a small number of consumers and

products. However, if we restrict the quantity of units each consumer can buy to only

one, the number of possibilities is greatly reduced. Consider a set with 10 consumers

and a product A. The number of subsets of three consumers buying product A is

equal to C10
3 ¼ 120. If we limit the quantity of units each consumer can buy to only

one, each group of the 120 groups of three consumers buys three units. Therefore

they all pay the same unit price since they all buy the same quantity of units. From

the consumer’s point of view, they are all the same because they buy the same

product at the same unit price (i.e. groups of the same size buying the same product

A are equally desirable). Consumers can now consider only one group of three

consumers instead of 120 different groups. For N consumers there are N non-empty

groups of different cardinality. Hence there are N�P possible buying groups when

we restrict the quantity of units each consumer can buy to only one. This is the

number of buying groups that an agent must consider when creating its list of

possible and different buying groups of which it could be a member. It is not the

number of all buying groups that the grouping agent of figure 1 considers when

searching for a Pareto-optimal partition (the second component of the group buying

problem) which remains equal to (2N� 1)�P.
If a consumer wants multiple units of the same product, he can delegate a special

agent. This special agent will be treated by the protocol as a number of different

Figure 1. Coalition formation protocol followed by all agents.

Agents in non-transferable payoff group buying 25
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agents equal to the quantity of units he wants (one agent per unit). For example, if
the consumer tells his agent to buy 50 units, then every buying group proposed by
this agent will be treated by the protocol as if the group was proposed simultaneously
by 50 different agents. The effects of these special agents on the scalability of the
protocol are part of future work. However, there is a disadvantage to this restriction
when a consumer wants multiple units of a product. If a consumer wants 50 units,
he will pay the same unit price as a consumer who wants only one unit while
contributing much more to its decrease than its counterparts. Since the restriction
permits a reduction of the number of possibilities from an exponential to a linear
factor as a function of the number of consumers, we believe that the restriction is
a good compromise. Also, when it comes to buying a high-priced product like a
dishwasher, a television, or home tools, consumers usually buy only one unit at
a time. High-priced products are exactly the kind of product we see as being well
suited for group buying. The purpose of the protocol is to offer to consumers who
want only one unit of a product the same price discount as if they wanted many units
of a product.

4.2 Sequence diagram of the protocol

Figure 1 shows a sequence diagram of the developed protocol. There are two types of
agents in the protocol: many consumer agents and a grouping agent. The consumer
agent represents a consumer who desires to buy one unit of a product. The grouping
agent tries to find a partition of the set of consumer agents from buying groups that
are effective (i.e. a buying group for which the number of agents who proposed it is
at least as great as the number of agents/units in that group). Since all the consumer
agents have the same behaviour, there is only one such agent in figure 1.

When the agent has received the product its consumer wants and the preferences
over instances of that product, it registers itself to the grouping agent in charge of
that product by the Register() operation. After a registration time has elapsed, the
grouping agent ends the registration period (shown by the WaitForRegister()
operation). It then sends information to the registered consumer agents via
the GiveMemberInformation() operation. The transmitted information consists of
the number of registered consumer agents, the specification of the different available
products of the chosen type, and their price schedules which return the unit price of
the product as a function of the number of units bought by the buying group. With
this information and with the preferences of its consumer, each consumer agent can
construct and sort a possibilities list from the most preferred to the least. Figure 2
shows such lists for three consumer agents and two products.

Agent A prefers to buy Product#2 with the two other agents (which means three
units bought). Agent B’s second choice consists of buying Product#2 with one of the
other agents (which means two units bought). Agent C’s third choice consists of
buying alone Product#1 (which means one unit bought). The shaded boxes indicate
possibilities that are not individually rational (they are situations giving less payoff
than the possibility of buying alone the preferred product). For Agent A in figure 2,
buying Product#1 with another agent (the shaded box labelled ‘Product#1 at two
units’) is not individually rational because it is less preferred than buying alone
Product#2 (the unshaded box labelled ‘Product#2 at one unit’). Buying alone
Product#1 is also not individually rational because it is also less preferred than
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buying alone Product#2. Such situations are inadmissible here since each agent can
buy a product alone.

If a consumer agent does not have an individually rational buying group in

which it is alone, it tells the grouping agent that it is not ready to propose by using
the ReadyToPropose() operation with an attribute assigned to false, and it quits
the coalition formation protocol; alternatively, it tells the grouping agent that it is
ready to propose by using the same operation but with an attribute assigned to

true. We impose the condition that each consumer agent must have a buying
group in its list of possibilities in which it is alone in order to ensure that a partition
exists. In this case, a partition in which each consumer agent is alone in its group is
a solution to the problem of group buying. This solution also is individually rational

(see appendix A for a definition), and therefore we are assured that an individu-
ally rational solution exists for our protocol to find. Otherwise, consumers could
wait hours and even days for other consumers to join them to form buying groups

and, in the end, no such group could be created because no partition existed for
the given set of consumers. We do not think that this restriction is limiting because
in the present situation where everybody is buying alone, someone for whom
buying alone any available product is not individually rational has the

same behaviour as the consumer agent quitting the protocol (it does not buy the
product).

When all registered consumer agents have told the grouping agent whether they
are ready or not to propose, the grouping agent asks each consumer agent who is
ready for its preferred buying group using the operation AskingForOneProposal().

The grouping agent also sends to each consumer agent who is ready, the number of
consumer agents who have declared themselves ready. In this way, each consumer
agent can only propose buying groups which are no larger than the number of ready
consumer agents. The consumer agents answer by giving the most preferred buying

group (i.e. the description of the product the group buys and the quantity of units
bought by the group) in their list which is not already proposed using the operation
GivingOneProposal(). Note that, for a given product, a consumer agent prefers a

larger buying group to a smaller one because of the possible unit price reduction (the
unit price in a larger group is never greater, and is sometimes less, than in a smaller
group). Knowing that, each consumer agent will propose, as its most preferred
group, a group with the maximum number of buyers (i.e. the total number of

Figure 2. Sorted lists of possibilities for three agents with two different available products.
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consumer agents that were ready to propose) and a larger group that buys a product
A will always be proposed before a smaller group that buys the same product A.

In the context of the Internet, consumer agents will not know the other consumer
agents with whom they try to form buying groups or their preferences. In other
words, the grouping agent will act as a trusted third party keeping secret the identity
and propositions of any consumer agent from the other consumer agents. Without
this information, the consumer agent has nothing with which to counter-speculate.
We could assume that each consumer agent has distributional information about
the preferences of other consumer agents. However, in practice, where do we find
accurate probabilities about the preferences of other consumers? Even if we do have
this information, we are not sure that the consumers with whom we are interacting
are a representative sample of the population on which the probabilities were
obtained. Furthermore, the advantage of using distributional information for a
consumer agent is only assured over a large number of executions of the protocol.
The only sure information available to the consumer agents is that the grouping
agent will stop asking for a proposal immediately after it has found a solution. The
group containing a particular consumer agent in the solution will have been
proposed by it. Therefore, if the preferences of the other agents and the time when
the grouping agent will find a solution are not known, a strategy for each consumer
agent is to reveal the individually rational buying groups in decreasing order of
preference. If a consumer agent does not propose the next most preferred buying
group (say BG1) but another one (say BG2), and the grouping agent finds a solution
with the consumer agent belonging to the BG2, then the grouping agent could have
found a solution with the consumer agent in the more preferred BG1 group instead
of the one with the BG2 group if BG1 was proposed before BG2. Nevertheless, if
the consumer had proposed BG2 in its right place in the preferences ordering, the
grouping agent would still have found the solution with the consumer agent
belonging to BG2 if this is Pareto-optimal. Nothing is lost, and sometimes something
is gained, by proposing buying groups in decreasing order of preference. Remember
also that if the grouping agent is a trusted third party, it has no interest in the
outcome of the protocol which is solely executed in the interest of consumers, in
order to save consumers money by forming buying groups. In other words, lying
without knowing the preferences of the other consumer agents but only the rules of
the protocol is damaging to the lying agent. Collusion is also difficult between
consumer agents since they do not know each other and therefore cannot
communicate with one another.

When all consumer agents have given their proposal, the grouping agent tries
to find buying groups that were created with the operation WriteProposal(). This
operation works as follows. A buying group is created when the number of consumer
agents that proposed it is at least as high as the number of members of the proposed
buying group. For a particular group of 10 consumers (out of, say, 15 consumers
who where ready to propose), if only nine consumer agents propose it, then it is not
created. However, if a tenth consumer agent proposes that group, it becomes
effective. This process is known as generation of K-subsets of a N-set which is a
combinatorial problem (Kreher and Stinson 1998). It consists of giving all subsets of
K elements from a set of N elements. We used a successor algorithm (Kreher and
Stinson 1998) which takes as an input a valid subset and gives as output the next
subset in the lexicographic order as shown by algorithm 3 (see appendix B). Having
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the first subset in this order and recursively calling this algorithm, we can generate
all valid subsets. Buying groups created in a round are stored in the memory for
consideration in later rounds.

Furthermore, since the number of consumers who will propose a given buying
group is not known in advance, it would be valuable to generate the proposed groups
incrementally. For example, if a twelfth consumer proposes a group of 10 consumers,
we would like to generate only the newly created groups by this consumer and not
also regenerate the groups created by the tenth and eleventh consumers, which are
already known. In other words, we would like an algorithm that computes solutions
to a partial input without knowing future items of input. This is known as an online
algorithm, in contrast with an offline algorithm (an algorithm with full input from
the start). It turns out that algorithm 3 can be transformed into an online algorithm
with only a simple change in its input. Since its structure is unchanged, there is no
loss of performance between the online and offline versions, which is surprising. For
example, if a tenth consumer proposes a group of 10 buyers, then the group created
is generated with the tenth consumer and nine (10� 1¼ 9) consumers chosen from
the nine preceding consumers. Since there is only one way to choose nine elements
from nine elements, only one group is generated. When an eleventh consumer
proposes the same group of 10 buyers, then the groups created are added to the
previously generated group. These newly created groups are generated with the
eleventh consumer and nine (10� 1¼ 9) consumers chosen from the 10 preceding
consumers. Since there are 10 ways to choose nine elements from 10 elements, 10 new
groups are created and added to the lone group generated by the tenth consumer.
The same scheme continues as more consumers propose the same group of 10 using
algorithm 3 but with preceding consumers as input. There are two exceptions to this
scheme. When a consumer has proposed a buying group in which he is alone and
when all consumers have proposed the same buying group including all of them,
these groups are generated without algorithm 3.

If new buying groups become effective in a proposal round, the grouping agent
tries to find a partition of the set of consumer agents that were ready to propose
among all the effective buying groups created since the beginning of the protocol
using the FindSolution() operation. This problem is equivalent to the generation of
exact set covers which is known to be NP-hard (Garey and Johnson 1979). We used
a backtracking algorithm (Knuth 2000) that takes advantage of a heuristic to prune
the search tree efficiently to find and generate partitions as shown by algorithm 4 (see
appendix B). The purpose of the FindSolution() operation is (i) to establish whether
a solution exists after a round of the protocol and then, after one solution is known,
(ii) to find a Pareto-optimal solution generated in the round. Algorithm 4 is
specialized to decide whether a solution exists but it can also find a Pareto-optimal
solution. In all but the most trivial instances of the problem, the first solution will be
found after many rounds, and hence many executions of algorithm 4. Therefore it is
important to chose an algorithm that performs well in deciding whether a solution
exists because this algorithm will be executed often. Once we know that a solution
exists, we need to find a Pareto-optimal solution by searching for the solution that
minimizes the sum of the distance to ideal (see Definition 4). This is an optimization
problem over all solutions generated in the last round and not over all possible
solutions. As explained at the end of section 2.1, we cannot generally solve the
optimization problem over all possible solutions because of the amount of memory
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needed, but solving it on only the solutions generated in the last round reduces the
memory requirement. Also, an optimization algorithm would be more efficient than
algorithm 4 in finding the solution in the last round once we know that a solution
exists. However, algorithm 4 is more efficient than an optimization algorithm would
be in deciding whether a solution exists in all but the last round. Therefore, in the
best situation, we would use algorithm 4 in all but the last round and an optimization
algorithm in the last round only. However, we would still have to translate the
information in the data structures of algorithm 4 into data structures suitable for the
optimization algorithm. The translation process would take additional execution
time and memory space. Since the first hurdle of our problem was the consumption
of memory space, we leave for future work any improvement of the execution time
of the algorithm used in the last round of the protocol.

If no partition exists among the effective buying groups, the grouping agent
launches other rounds of proposals until it finds one. We could ask why the
consumer agents do not send their complete list of individually rational buying
groups the first time that the grouping agent asks for a proposal. It is only in order to
reveal the private information of consumer agents on an as-needed basis. However,
the protocol would essentially be the same if consumer agents revealed their complete
list at once. The grouping agent would consider the consumer agents’ buying groups
proposals in decreasing order of preference in order to use minimal memory space to
store the buying groups that are actually created. Since the communication burden
of the entire protocol (see table 1 in section 5.1) is negligible compared with the
computational burden of the grouping agent (one combinatorial problem and one
NP-hard problem), we do not think that the multiple rounds of proposals add
significantly to the execution time of the protocol.

The protocol always terminates since there is always a partition composed of all
the buying groups in which each consumer agent is alone. It is also sound and
complete since it searches the partitions exhaustively. If the grouping agent finds at
least one partition, it terminates the protocol (Finish() operation) and sends to each
consumer agent that was ready to propose its buying group in the partition found
(SendResults() operation). This partition is one that minimizes the worst distance
to ideal among all agents and among all partitions already found.

4.3 Formal description of the protocol

Algorithm 1 gives a formal description of the protocol from the point of view
of the grouping agent without going into too much detail. The data structure

Table 1. Qualitative evaluation of the proposed protocol.

Attributes Proposed protocol

Efficiency Pareto-optimal and minimizes worst distance to ideal
Stability Pareto-optimal
Simplicity �(PN2) messages
Distribution Centralized
Symmetry Yes
Money transfer No
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RegisteredAgents[] is used to store consumer agents that registered. The data
structure ReadyAgents[] is used to store consumer agents that are ready to propose
buying groups to the grouping agent. The data structure StillProposingAgents[] is
used to store consumer agents that will propose another buying group in the next
round of the protocol. The variable newBuyingGroup is a flag used to indicate that
at least one new buying group has been created from the proposal in the current
round and therefore algorithm 4 must be called to try to find a solution. The variable
roundNumber indicates the number of the current round of the protocol. It is used to
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indicate at which round a given consumer agent has proposed a specific buying
group in order to calculate the sum of the distance to ideal of a particular solution
(solution.sumOfDistanceToIdeal, i.e. the sum of the round number where each
consumer agent proposed the buying group in which it is in that solution). Proposed
buying groups are stored in the data structure BuyingGroupsProposed[] and buying
groups actually created (synonymous with effective buying groups) are stored in a
data structure similar to the one shown in figure 7 (see below). If a consumer agent
proposes a buying group in which it is alone, then we know that it will not propose
further buying groups in the next rounds because they are not individually rational.
If all consumer agents in ReadyAgents[] proposed a buying group including all of
them, then this buying group is a partition of the consumer agents and therefore it is
a solution. Since many solutions can be generated in a given round, we choose the
one that minimizes the sum of the distance to ideal between all the solutions found in
a given round. If solution.sumOfDistanceToIdeal 6¼1 (its initial value), this means
that a solution was found and the protocol communicates it to all consumer agents
in the data structure ReadyAgents[]. Otherwise, the number of the current round is
incremented and a new round begins.

Similarly, algorithm 2 gives a formal description of the protocol from the point of
view of a consumer agent without going into too much detail. With information from
the grouping agent, each registered consumer agent can construct a list of preferences
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listOfPreference[] for buying groups in the data structure. If the consumer agent is
ready to propose, then it will extract the groups stored in listOfPreference[] one by
one in decreasing order of preference, ignoring the buying groups containing more
consumer agents than the number of agents that are ready to propose. The ready
consumer agent will either run out of groups in its listOfPreference[] or the grouping
agent will communicate the solution before the consumer agent has time to reach the
end of it. If the consumer agent is not ready to propose, then it sends an appropriate
message to the grouping agent and does nothing more.

5. Results and discussion

To the best of our knowledge, this is one of the first multi-agent coalition formation
protocols with non-transferable payoff, which is the general case. The problem of
group buying with non-transferable payoff belongs to this case and this is the main
reason why we studied it. Prior research has developed specific protocols for the
transferable payoff case. Unfortunately, these protocols cannot be used in group
buying with non-transferable payoff as it is defined here because transferable payoff
is a special case. Our protocol solves the general case and hence we could use it to
solve the specific case which is now solved by the existing algorithms for transferable
payoff. Because those algorithms are specialized, they would evidently outperform
our protocol on the specific case but they cannot be applied to the general case.
Therefore comparison with other protocols loses its relevance. Instead, this research
is a an evaluation of the performance of software agents in coalition formation with
non-transferable payoff studied in the context of a real world application, group
buying. We now present some analytical results obtained using our protocol.

5.1 Analytical results

Proposition 1: A partition p found in the first round where such a partition exists and
which minimizes the sum of the distance to ideal of the agents compared with other
partitions found in that round is Pareto-optimal given that the lists of possibilities do
not have buying groups which are equally preferred by a consumer (strict preferences).

The proof of Proposition 1 will be conducted in three steps: two lemmas and the
proposition.

Lemma 1: All the partitions that are found in a later round than the first round where
we find a partition cannot dominate a partition found in this first round given that the
lists of possibilities do not have buying groups which are equally preferred by a
consumer.

Proof If a partition is found in such a later round, there exists an agent that
proposed its buying group in this partition in that later round. Clearly, it would
prefer to be in its buying group of the partition found first than in the group it
proposed later which is part of the partition found in the later round. Since the first
condition of Definition 1 is not met because at least one agent prefers the first
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partition found to the one found in a later round, the first partition is not dominated

by partitions found in a later round. œ

Lemma 2: A partition p found in the first round where such a partition exists and

which minimizes the sum of the distance to ideal of the agents among partitions found in

that round cannot be dominated by such partitions given that the lists of possibilities do

not have buying groups which are equally preferred by a consumer.

Proof Suppose that there exists a partition p0 which dominates partition p. This

means that there exists at least an agent A whose distance to ideal is shorter in p0 than

in p. None of the other agents have a greater distance to ideal in p0 than in p.

Therefore the sum of the distance to ideal of the agents in p0 should be less than the

same sum in p. Thus there exists a sum which is less than the minimal sum of p.

By this contradiction, we prove that what we assumed to be true is false. No such

partition p0 dominates the partition p. œ

We now give the proof of Proposition 1.

Proof of Proposition 1: By Lemma 1, such a partition p is not dominated by

partitions found in the later rounds. Furthermore, by Lemma 2, such a partition p

is not dominated by partitions found in the same round. Since no partition exists in

rounds preceding the round when we first found a partition, we can say that a

partition p is dominated by no other feasible partition. By Definition 3, we have

proved that the partition p is Pareto-optimal. œ

The protocol finds a Pareto-optimal solution given that the lists of possibilities do

not have buying groups which are equally preferred by a consumer. If sellers reduce

the unit price, even minimally, for each additional member in the buying group to

incite regrouping, then we assume that equalities will be rare because groups will be

differentiated by the unit price. The consumer agent could be given a set of rules or

ask its consumer to settle equalities. Further research will include the study of the

burden that equalities impose on agents, consumers, and sellers.

Proposition 2: The partition found by the proposed protocol and its associated

algorithms minimizes the worst distance to ideal among all consumer agents that were

ready to propose in comparison with all other feasible partitions given that the lists of

possibilities do not have buying groups which are equally preferred by a consumer.

Proof The worst distance to ideal among all consumer agents in a partition is

always related to the round where we find that partition. It is the distance to ideal of

one of the consumer agents that proposed a buying group which became effective

with its proposal and that permitted the partition to exist. Since no partition exists

before the first round where we find one, and partitions found in later rounds return

a greater worst distance to ideal, the worst distance to ideal is minimized when we

choose a partition that is found in the first round where a partition exists. The

protocol returns such a partition as a solution to the problem of group buying. œ
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Rosenschein and Zlotkin (1994) have developed attributes for negotiation
mechanisms which were slightly extended by Kraus (2001). Table 1 summarizes these
attributes as well as the value they have in the proposed protocol.

The efficiency attribute evaluates whether or not the mechanism squanders
payoff in the solution returned. The proposed protocol returns a Pareto-optimal
solution; hence it does not squander payoff because no consumer could have more
without another consumer having less. Furthermore, the solution minimizes the
worst distance to ideal among all software agents so that an individual agent does
not receive a really poor payoff from the solution.

The stability attribute refers to the ways that an agent or a group of agents could
prefer another solution and abandons the proposed solution. Pareto-optimality is
not the most stable solution among all the solution concepts from cooperative game
theory (see appendix A), but it is the most appropriate since it always exists and does
not require summing (or comparing) utilities with an arbitrary scale of values and
knowing the payoffs of other consumers. Although theoretically unstable, the
Pareto-optimal solution found by the proposed protocol has some practical stability
since each consumer agent knows only its payoff. Therefore none of the consumer
agents can find another effective buying group in which all agents, including itself,
are at least as good as in the partition found by the protocol (their payoff in the
buying group is greater or equal to their payoff in the partition found) because of
their lack of information (i.e. the payoff of the other consumer agents). The only
buying group for which the consumer agents can know all the payoffs of its members
are those where they are alone, and they cannot be better than the buying groups
found since the solution is individually rational. Consumer agents who still want to
find a better buying group for themselves could be worse off than in the partition
found since Pareto-optimality means that if at least one agent is better off, at least
one other agent is worse off, and they could be that latter agent. Furthermore, the
solution found by the proposed protocol has some fairness in the sense that it
minimizes the worst distance to ideal among all consumer agents that were ready
to propose given strict preferences for all consumer agents.

The simplicity of a mechanism refers to its communication and computational
complexity.

Proposition 3: The number of messages exchanged in the theoretical worst case is in
�(PN2) for P products and N consumer agents.

Proof: In figure 1, for N consumer agents there are N messages for Register().
The grouping agent responds with N messages for GiveMemberInformation().
N messages come from the ReadyToPropose() operation. In the worst case, there
are 2N messages for each proposal round, an AskingForOneProposal() and a
GivingOneProposal() for each consumer agent. The number of proposal rounds is
bounded by the longest list of possibilities among all consumer agents. Since there
are P groups where the agent buys alone a product, then at least P� 1 buying groups
are not individually rational because one of the P products is preferred to the P� 1.
Thus, subtracting these P� 1 groups from the N�P possible groups gives at most
PN�Pþ 1 individually rational groups and consequently, the same number of
proposal rounds. Adding the N messages from the SendResults() operation, we now
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have 2PN2
� 2PNþ 6N (¼NþNþNþ 2N(PN�Pþ 1)þN) messages exchanged

in the theoretical worst case. Thus the communication complexity is �(PN2).

The exact set cover generation problem makes the worst-case execution time
complexity of the whole protocol more than polynomial. However, simulation results
presented in section 5.3 indicate that, in practice, the average execution time is at
least polynomial for 15 or less software agents. The generation of K-subsets of
an N-set problem makes the worst-case memory requirement complexity of the
whole protocol more than polynomial because the number of K-subsets of an N-set
increases exponentially with N increasing for a constant K. The simulation results of
section 5.3 indicate that, in practice, the average memory requirement complexity of
the whole protocol is at least polynomial for 15 or less software agents. Therefore
incentives to regroup (a larger group pays less per unit than a smaller one) could
have created a special structure, making the group buying problem computationally
easier from the point of view of execution time complexity but not from the point
of view of memory requirement complexity.

The distribution attribute indicates whether or not the solution is computed in a
distributed way. A distributed computation is preferred to a centralized computation
because it avoids bottleneck and is more robust to failure. The solution in the
proposed protocol is computed in a centralized way because of the inherent
computational complexity of the problem. Although we could benefit from the
parallelism of distribution on some occasions, it is much more difficult to design a
computationally efficient distributed system than a centralized system because we
need to consider the additional communication burden of the distributed system.

Symmetry refers to the property of a mechanism of treating its participants with
impartiality. The grouping agent interacts with all the consumer agents in the same
way and, in this sense, we could say that the proposed protocol has the symmetry
property.

Finally, the money transfer attribute, which was added by Kraus (2001), indicates
whether money is transferred to resolve conflicts between agents. Since money
transfer demands resources and can be manipulated, it would be preferable not to
be obliged to have it. Also, money transfer could generate discriminatory prices
(different agents buying the same product pay different prices) which might not be
well accepted or understood by the consumers. We decided to restrict the research
reported in this paper by not allowing money transfer.

5.2 Parameters of the evaluation

The following parameters have to be randomly generated for the empirical
evaluation of the proposed protocol:

. number of consumers

. number of different available products

. specifications of available products

. preferences of consumers over available products specifications.

The proposed protocol has been evaluated for several numbers of consumer
agents ({2, 3, 4, 5, 10, 15, and 20}) and several numbers of different available
products ({2, 10, 100, and 1000}). The specifications of available products were
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represented with 10 attribute-value couples. This kind of representation has already
been used by RosettaNet for electronic components selling and buying. Each
attribute could be assigned one of 10 discrete values. The price of each available
product was set by a randomly generated price schedule which returned a reduced
price with an increase of the quantity of units bought. The unit price for one unit of
each available product was chosen with the uniform distribution on the set {$1700,
$1740, $1780, . . . , $2500}. The difference between the worst unit price (for only one
unit) and the best (for 1000 units) was chosen with the uniform distribution on the set
{$800, $840, $880, . . . , $1200}. This difference was equally divided into 39 classes of
unit prices for the price schedule depending on the number of units bought by the
buying group (at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70,
80, 90, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900,
and 1000 units bought). The preferences of consumer agents were generated by
allocating a weight to each attribute and the price (based on a uniform distribution)
determining its relevance for a particular consumer. We decided according to a
uniform distribution on the set {0,1, . . . ,10} how many non-price attributes received
a non-zero weight for a particular available product and consumer agent. Therefore,
in one out of 11 chances, the price received 100% of the weight, meaning that the
consumer was only interested by a low price. Otherwise, the weight of the price was
chosen according to the uniform distribution on the set {10%, 11%, 12%, . . . , 50%}.
The non-price attributes receiving non-zero weight were picked randomly (also using
a uniform distribution) and their weight was sequentially chosen according to the
uniform distribution on the set {17%, 18%, 19%, . . . , 22%} of the remaining
unallocated weight except for the last one which received all the remaining
unallocated weight. The possible values for each attribute were divided into two sets:
the acceptable values and the unacceptable values. However, in the experiment, we
decided that all values would be acceptable for all consumers in order to avoid the
easy case where some agents have a short list of buying groups to propose. In the
evaluated case, all agents have a long list of buying groups to propose, making
the number of partitions of the set of agents very large and therefore making the
problem difficult. For the evaluation of a particular value of an attribute for a
consumer agent, values for an attribute received a weight relative to its rank in the
preference order among other values for the related attribute. Values were ranked
randomly, again using a uniform distribution for each consumer agent. The first
value picked received a weight of 100 points, the second a weight of 90 points, . . . ,
and the last value received only 10 points. The reserve price of each consumer was
chosen from a uniform distribution on the set {$1500, $1501, $1502, . . . , $2500} so
that all consumer agents would be ready to propose to the grouping agent. This was
done to ensure that the results for N agents were actually computed for N agents and
not for N minus the number of consumer agents that were not ready because no
buying group respected their reserve price.

5.3 Empirical results

We tested our protocol on a Pentium 4 with a 1.4GHz processor and 256MB of
RAM of which 130MB was dedicated to the execution of the protocol. Our protocol
was developed using Java Development Kit (JDK) 1.4 and JACK Intelligent
AgentsTM 3.5 (Agent Oriented Software Pty Ltd 2002), a framework for
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programming software agents. We have precisely executed the protocol 1000 times
for each number of agents–number of products couple (e.g. 1000 times for two

agents with two available products) with random preferences for the agents and
always the same list of available products with their price schedule. Each of the five

times we executed the protocol for the case of 20 agents and two products, the
program went out of memory (even with 130MB of available memory). Therefore

we consider the case with 20 agents to be the limit of the protocol on this computer
platform and focus our attention on cases with 15 agents or less. After the evaluation

was completed, we ran the protocol on a different platform with more memory but
less processing speed. With 450MB of dedicated memory, we had enough memory

for 20 agents but not for 25 agents. Although group buying is more profitable as
the number of units bought increases, we often see real-life situations where it is

beneficial for groups as small as only two consumers regrouping themselves to buy
two units (one for each) and split the savings.

Figure 3 shows the mean time (in milliseconds) of the 1000 executions of the

protocol for each couple between the time the grouping agent sends information to
registered consumer agents and the time it sends the solution to them. As expected,

the execution time increases with the number of available products, but it remains

sublinear on a logarithmic scale meaning that the complexity is less than exponential
for the range studied (2–15 agents). This result is a rather surprising in view of the

presence of two combinatorial problems (generation of K-subsets of an N-set and
generation of exact set covers). We can explain this by the incentive of there being

several members of a buying group in order to benefit from a price reduction which
pushes agents to aggregate quickly and by the fact that the list of possibilities for

each agent is bound by individually rational buying groups, thus greatly limiting the
number of proposal rounds.

Figure 3. Mean time of execution versus the number of consumer agents in the protocol for

different numbers of available products.
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Figure 4 demonstrates the mean quantity of memory used (in nodes which are
the data structure representing an agent in an effective buying group) of the 1000
executions of the protocol for each number of agents–number of products couple.
Surprisingly, a larger number of available products results in the use of less memory.
This is due to the ratio of agents to products; the greater this ratio is, the more dense
the agents are in the products space. With an increased density, agents are more
likely to form effective buying groups stored in the implementation of the protocol as
linked nodes which take memory space. This is why the case of 20 agents and two
products (a ratio of 20/2¼ 10) exceeds the memory capacity of the test platform. The
case of 20 agents and 100 products uses much less memory but we cannot ensure
that it would not become a case of 20 agents and two products if all the agents decide
that the same 98 products of the 100 are inadmissible (reserve price exceeded or
inadmissible value for an attribute). If this ratio is low, the agents are most sparse in
the product space and they form less effective buying groups (resulting in the use of
less memory space) because their preferences are more widely separated. The cases
with two products and between two and five agents used almost no memory because
the buying groups formed were already partitions of the set of consumers and
therefore included all consumers. The protocol did not store these groups in the
memory for later use because it terminated after finding these partitions.

If we use a computer with 450 MB of memory space allocated to the protocol, we
can compute cases with 20 agents. With more memory space, we can compute cases
with more than 20 agents but not many more because memory consumption
increases rapidly as a function of the number of agents (figure 4). If more than
20 agents desire to form buying groups, the grouping agent could divide the set of

Figure 4. Mean memory space used versus the number of consumer agents in the protocol

for different numbers of available products.
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consumers into subsets containing 20 agents or less. The division could be based
on the first few buying groups in the preferences list of each consumer agent.
Subsets would then contain consumer agents with similar preferences. After finding
a Pareto-optimal partition for each subset, the grouping agent could merge buying
groups with the same product. It would result in a partition of the initial set of
consumer agents. However, we cannot ensure that this partition is Pareto-optimal
among the set of all feasible partitions. The quality of this partition will be
investigated in future work.

Figure 5 shows the percentage change (more than 1000 executions for each
number of agents–number of available products couple) in the behaviour of the
consumers participating in the protocol in relation to the normal habit of buying
the most preferred product alone at the local store. A change of behaviour occurs in
two situations:

. the consumer buys his preferred product at a lower price than the one paid
for one unit

. he buys another product.

We can see in figure 5 that with fewer products, the proposed protocol has a
better chance of changing the behaviour of the consumers. For a fixed number of
products, figure 5 also shows that, with more consumer agents, there is an increase in
the percentage of consumers changing their behaviour for three of the four different
numbers of products. The cases with two products already had the maximum
behaviour change (100%). We can explain both observations by the fact that
consumer agents are denser in the space of possible products and it is easier to
aggregate into buying groups and to change their behaviour in that way. The 99.9%
of behaviour changes for the 10 agents–two products case was caused by one
execution where nine of the 10 agents desired one product and not the second, and
the other agent wanted the second product and not the first so that it ended up
buying its preferred product alone (and only one acceptable).

Figure 5. Mean percentage of behaviour change versus the number of consumer agents in the

protocol for different numbers of available products.
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There are only two types of change of behaviour and therefore their percentages
complement themselves to 100%. Therefore in figure 6 we show only the percentage
of consumers who change behaviour by buying the same product that they would
have bought alone but at a lower price. This figure shows that only the number of
available products influences the type of change of consumer behaviour. The
percentage is relatively the same for a fixed number of products as indicated by the
almost flat aspect of the curves for the four cases with different numbers of products.
This percentage changes for different numbers of available products, although the
cases with 10 and 100 products show similar percentages. When there is little choice
of products, few products will be in the preferences list of consumers because some of
the buying groups for those products will be considered non-individually rational
and not proposed by the consumer agents. Therefore consumer agents will regroup
with others having the same preferred product. However, if there is a very large
choice of products, although some buying groups will still be non-individually
rational, there will be enough buying groups with different products left to create
a margin for consumer agents to join groups buying a product other than the one
their consumer would have bought alone.

6. Conclusions and future work

In this paper, we have presented a centralized symmetric protocol without money
transfer for group buying which returns a Pareto-optimal solution that minimizes
the worst distance to ideal among all agents given that the lists of possibilities do not
have buying groups which are equally preferred by a consumer. We have found
that limiting to one the number of units of a product each agent can buy allows
the reduction of the number of possible buying groups to be ordered from an
exponential to a linear factor as a function of the number of buyers. The protocol

Figure 6. Mean percentage of agents paying less for the same product they would have bought

alone versus the number of consumer agents in the protocol for different numbers of available

products.
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changes the buying behaviour of consumers from the normal habit of buying the
most preferred product alone at the local store. More changes of buying behaviour
occur as the agents become more dense in the space of available products. If few
products are available, consumer agents buy the same product as they would have
bought alone but at a reduced price. When there is a very large choice of products,
consumer agents take the opportunity to join a group that buys a product other than
the one they would have bought alone. The execution time complexity of the
protocol is less than exponential on average for the range studied (15 agents or
fewer), meaning that incentives to regroup could have created a special structure
making the group buying problem computationally easier from the point of view of
execution time complexity. However, the memory requirements limit its use to no
more than 15 agents for 130MB of RAM allocated to the protocol (no more than
20 agents for 450 MBof RAM) in cases of a high ratio (around 10) of number of
agents to number of products on the computer platform used for evaluation. Its
communication complexity is �(PN2) messages for P products and N consumer
agents in the theoretical worst case.

Future work will include investigation of the quality of the partition of the set of
consumer agents obtained by merging buying groups with the same product from
partitions of the subsets limited to 20 consumer agents. We will also investigate the
burden imposed by possible equalities in the preferences list of consumer agents,
consumers, and sellers. The effects of special consumer agents (those buying multiple
units of a product) on the scalability of the protocol also require study. Finally,
further evaluation of the protocol will be conducted with different statistical

Figure 7. Data structures of an exact set cover problem with seven consumers and six buying

groups (from Knuth 2000).
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distributions of agents’ preferences of products, specifications of available products,
and price schedules.
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Appendix A. Choice of solution

In game theory, not only is finding the solution to a problem a valid research agenda,
but also determining what could be the solution to the problem. This is because
solutions in that domain are equilibria that are more or less stable (or stable in
different ways) and there is no dominating equilibrium. Game theorists do not even
communicate using the word ‘solution’. Instead, they use the expression ‘solution
concept’. Several solution concepts exist for cooperative game theory with non-
transferable payoff as well as general solution concepts which could also apply to this
case. We consider in this list of solution concepts properties of solutions (optimal
social welfare, Pareto-optimality, and individual rationality) as well as equilibria
(core, stable set, bargaining set, and kernel), although it is an abuse of language. The
most useful of these solution concepts are as follows.

Social welfare: this is the summation of the utility of each consumer. Since ‘each
agent’s utility function can only be specified up to positive affine transformation’
[a� u(.)þ b such that a>0 and b2< is such a transformation on u(.)] (Mas-Colell
et al. 1995, cited by Sandholm 1999), this solution concept is not applicable to the
group buying problem because it sums quantities (the utilities) with an arbitrary
scale of value.

Pareto-optimality: a solution is Pareto-optimal if no other solution gives more to
a consumer without giving less to at least one other. With this solution concept, there
is no comparison of utility between consumers. Instead, a payoff that a consumer can
receive is compared with the other payoffs that this consumer can receive. By
definition, there is always at least one Pareto-optimal solution.

Individual rationality: a solution is individually rational if each consumer receives
a payoff at least as great as the payoff he would have received if he had acted alone.
The partition composed of each consumer buying alone has the vector of the
minimum payoffs that each consumer could receive. If an individually rational
solution exists then there is also an individually rational Pareto-optimal solution.
Either an individually rational solution is Pareto-optimal or it is eventually
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dominated by a Pareto-optimal solution that is better and therefore also individually
rational itself.

Core: this is the most stable of all solution concepts in cooperative game theory since
no subgroup of consumers has an advantage in leaving a solution in the core. The
problem is that the set of solutions in the core can be empty (Osborne and Rubinstein
1994). Even determining whether it is empty or not is an NP-complete problem
(Conitzer and Sandholm 2003). So why design and implement a protocol that tries
to find a solution that does not always exist and, furthermore, whose existence is
computationally hard to determine? Hence this is not an appropriate solution
concept for the group buying problem.

Stable set: this solution concept is a relaxation of the constraints of the core. Every
stable set has the core as a subset. Unfortunately, the stable set has the same problem
as the core; it can be empty (Osborne and Rubinstein 1994).

Bargaining set: This solution concept uses objections and counter-objections. A
solution belongs to the bargaining set if for every objection there is a counter-
objection. This set is always non-empty and the core is always a subset of it
(Sandholm 1996). One disadvantage of this solution concept is that every partition of
the set of buyers has its bargaining set. Therefore it does not help to find a solution
when the best partition is unknown. Furthermore, consumers need to know the
payoff of the other consumers in order to make objections and counter-objections,
which is rarely the case in real situations. For all these reasons, this solution concept
is not applicable to the group buying problem.

Kernel: As is the case for the bargaining set, this solution concept uses objections
and counter-objections, although differently defined. Unlike the bargaining set, the
kernel requires that we compare the utilities of different agents which can have an
arbitrary scale of value, thus resulting in the same inapplicability previously seen in
the social welfare. Therefore ‘the kernel is an appropriate solution concept only in
situations in which the utilities of different players can be meaningfully compared’
(Osborne and Rubinstein 1994) which is not the case for competitive agents with
privately defined utilities as in this group buying problem.

The solution concept chosen for the group buying problem must have some basic
properties. First, it must always exist (not sometimes be an empty set), unlike the
core and the stable set. Secondly, it must not require to sum (or compare) utilities
with an arbitrary scale of value like social welfare (or the kernel) or have knowledge
of other consumers’ payoffs like the bargaining set. Since there is an individually
rational Pareto-optimal solution if an individually rational solution exists, and we
ensure that such a solution exists in our protocol (as explained in section 4.2), we
believe that individually rational Pareto-optimality is the most appropriate solution
concept for the group buying problem consideredin this paper.

Appendix B. Algorithms used

Algorithm 3 is used in the WriteProposal() operation of the protocol. It simply
generates all newly created buying groups.
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Before explaining algorithm 4, the data structures used must be examined. Each

consumer is represented by an object called a ‘column object’ within a double-linked

circular list which has a root object named h. Each buying group is also represented

by a double-linked circular list of objects, each representing a consumer that is

a member of the buying group. The lists of buying groups stack up as in figure 7 and

objects representing the same consumer are double-linked circularly among

themselves with the ‘column object’ representing that consumer. Of course, buying
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groups including all customers are not represented in the data structures used to find
a partition because we already know that they are a partition.

The main operations of algorithm 4 are R[x] (returns the neighbour to the right of

object x in the horizontal list), L[x] (returns the neighbour to the left of object x in
the horizontal list), D[x] (returns the neighbour under object x in the vertical list),

U[x] (returns the neighbour over object x in the vertical list), C[x] (returns the
‘column object’ linked to object x), S[y] (returns the number of buying groups

containing the consumer represented by ‘column object’ y), Cover a ‘column object’
(remove the ‘column object’ from its horizontal list and the objects of the buying

groups containing the consumer corresponding to this ‘column object’ from their
vertical lists), and Uncover a ‘column object’ (undo the operations of Cover for the

same ‘column object’).
Using algorithm 4, we generate all partitions of the set of consumers from

a set of buying groups by recursively choosing a buying group (Ok r) which does

not contain a consumer already in a previously chosen buying group. If no such
buying group exists and there are still consumers who are not in a chosen buying

group, we backtrack by replacing the group last chosen (Uncover column c and
Return which causes the execution to continue at the r Ok statement) with another

one. If we find a partition (R[h]¼ h which means that all customers are in one and
only one group), we print it and return, which also causes the execution to continue

at the r Ok statement which begins the replacement of the group last chosen by
another one to resume the search of partitions. When all cases have been tried,

the algorithm stops. Because an exhaustive search could be long, Knuth (2000)
used a heuristic (Golomb and Baumert 1965) to make the search tree as narrow

as possible so that the pruning of this tree eliminates as many search paths as
possible.
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