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Abstract

Visual Place Recognition (VPR) is a crucial part of mo-
bile robotics and autonomous driving as well as other com-
puter vision tasks. It refers to the process of identifying
a place depicted in a query image using only computer
vision. At large scale, repetitive structures and weather
changes pose a real challenge, as appearances can dras-
tically change over time. Along with tackling these chal-
lenges, an efficient VPR technique must also be practical
in real-world scenarios where latency matters. To address
this, we present in this paper, a new holistic feature ag-
gregation technique. It uses feature maps from pre-trained
backbones as a set of global features whose receptive field
covers the entire input image. Then, it individually incor-
porates a global relationship between elements in each fea-
ture map in an isotropic way eliminating the need for lo-
cal or pyramidal aggregation as in NetVLAD or TransVPR.
We demonstrate the effectiveness of our technique through
extensive experiments on multiple large-scale benchmarks.
Our method outperforms all existing techniques by a large
margin while having 2x and 3x less parameters compared
to CosPlace and NetVLAD respectively. Thus, we achieve
a new all-time high recall@1 score of 94.6% on Pitts250k-
test, 88.0% on MapillarySLS, and more importantly 57.1%
on Nordland. Finally, while our method does not perform
re-ranking, it still outperforms Patch-NetVLAD, TransVPR
and SuperGLUE which are techniques executing a second
matching pass that performs spatial verification of the local
features.

1. Introduction

Visual place recognition (VPR) is an essential part of
many robotics [11, 9, 10, 15, 18, 22] and computer vi-
sion tasks [1, 23, 27, 16, 17, 45, 6] such as autonomous
driving [12], SLAM [48], image geo-localization [38, 7],
virtual reality [31] and 3D reconstruction [29]. A visual
place recognition system retrieves the location of a given
query image by first gathering its visual information into

Figure 1. Comparison of performance on the challenging Nord-
land benchmark. All methods have been trained on the exact same
dataset, using the same backbone architecture.

a compact descriptor (image representation), then match-
ing it against a database of references with known geoloca-
tions. This task can be extremely challenging due to short
term appearance changes (e.g., illumination, occlusion and
weather) as well as long terme variations (e.g., seasonal
changes, construction and vegetation). Therefore, a robust
VPR technique should be capable of producing descriptors
that are invariant to these changes.

Traditionally, VPR technique used hand-crafted local
features such as SIFT [30] and SURF [5] which can be
further aggregated into a global descriptor that represents
the entire image such as Fisher Vectors [20, 34], Bag of
Words [35, 44, 14] and Vector of Locally Aggregated De-
scriptor (VLAD) [21, 2]. Following the growth of deep
learning, where convolutional neural networks (CNNs)
have shown outstanding performance in several computer
vision tasks, including image classification [19], object
detection [28] and semantic segmentation [25], many re-
searchers have proposed to use CNNs for VPR. For in-
stance, Sünderhauf et al. [40] showed that features extracted
from intermediate layers of CNNs trained for image classi-
fication can perform better than hand-crafted features. As a
result, many have proposed to train CNNs directly for the
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task of place recognition [1, 39, 23, 27, 16], by designing
end-to-end trainable layers that can be plugged into pre-
trained networks (backbone) to aggregate their rich feature
maps into robust representations. These approaches demon-
strated great success at large scale benchmarks [44, 46]
thanks to the availability of pre-trained networks and the
VPR-specific datasets for fite-tuning.

Despite all the progress in the field of visual place recog-
nition, most existing state-fo-the-art techniques either use
NetVLAD [1, 46, 17, 49] or provide a variant that in-
corporates attention [51], context [23], semantics [33] or
multi-scale [17]. These techniques emphasize the aggre-
gation of local features which have proved to be invariant
to viewpoint changes. However, local features are notori-
ously known to fail under sever illumination and seasonal
changes [31].

Alternative approaches to NetVLAD focus on regions
of interests instead of local features, by spatially pooling
from the feature maps of the backbone. Such techniques in-
clude MAC (i.e., max pooling), R-MAC [42] and General-
ized Mean (GeM) [36]. Despite their performance in image
retrieval [8] these methods have been repeatedly shown to
underperform NetVLAD in the task of VPR. Most recently,
Berton et al. [6] proposed CosPlace, which is a variant that
builds on GeM aggregator, showing strong performance on
multiple VPR benchmarks.

Currently, all existing state-of-the-art techniques pro-
pose shallow aggregation layers that are plugged into very
deep pre-trained backbones cropped at the last feature-rich
layer. By contrast, Wang et al. [45] proposed TransVPR, a
place recognition architecture that builds on the success of
vision Transformers [13] and fuse multi-level attentions to
generate global and local descriptors. TransVPR achieved
strong results for local feature matching. However, its
global representation performance did not surpass that of
NetVLAD or CosPlace.

With recent advances in isotropic architectures, it has
been shown that self-attention is not critical to Vision Trans-
formers [26]. For instance, Tolstikhin et al. [43] introduced
MLP-Mixer, an architecture based exclusively on multi-
level perceptrons, achieving competitive results on multiple
vision tasks. In this paper, we introduce MixVPR, a novel
holistic aggregation technique that takes in the intermediate
activations of a pre-trained backbone and iteratively incor-
porates a global relationship between all elements in each
feature map. It does this through a series of isotropic blocks
that we call Feature-Mixer, which consist of only multi-
layer perceptrons (MLPs). The effectiveness of MixVPR
is demonstrated by several qualitative and quantitative re-
sults where it achieves a new state-of-the-art performance
on multiple benchmarks, surpassing existing techniques by
a wide margin all while being extremely lightweight.

2. Related Works
The task of visual place recognition has long been ap-

proached as an image retrieval problem, where the loca-
tion of a query image is determined according to the geo-
tags of the most relevant images retrieved from a refer-
ence database. With the success of deep learning, al-
most all recent VPR techniques make use of learned rep-
resentations. This usually involves using features extracted
from a backbone network pretrained on image classification
datasets [24], followed by a trainable aggregation layer that
transforms these features into robust compact representa-
tions. One notable aggregation technique is NetVLAD [1],
which is a trainable variant of the VLAD descriptor, where
local features are softly assigned to a learned set of clus-
ters. As a result of the success of NetVLAD, many vari-
ants have been proposed in literature. Kim et al. [23] intro-
duced Contextual Reweighting Network (CRN) which es-
timates a weight for each local feature from the backbone
before feeding it into a NetVLAD layer; their approach in-
troduced a slight but consistent performance boost. Fur-
ther on, SPE-VLAD [49] has been proposed, to enhance
NetVLAD with spatial and regional features, by incorpo-
rating pyramid structure. More recently, Zhan et al. [51]
proposed Gated NetVLAD, which uses a gating mechanism
that incorporates attention in the computation of NetVLAD
residuals.

Other techniques focus on regions of interest in the fea-
ture maps. Among the first techniques is MAC [4], a sim-
ple aggregation method that applies max-pooling on each
individual feature map, selecting only the most activated
neurons. Building on that, Tolias et al. [42] introduced
R-MAC (Regional Maximum Activations of Convolutions)
that consists of extracting multiple Region of Interest (RoI)
directly from the CNN feature maps to form representa-
tions. These techniques showed impressive performance
on the task of image retrieval and have since been used in
VPR. Another notable aggregation technique is the Gener-
alized Mean (GeM) [36] which is a learnable generalized
form of global pooling. Building on GeM, Berton et al. [6]
recently proposed CosPlace, a lightweight aggregation tech-
nique that combines GeM with a linear projection layer.
Their method showed impressive performance on the task
of VPR, outperforming GeM and NetVLAD and achieving
state-of-the-art results on multiple benchmarks.

Another trend in recent VPR works [17, 45] is to con-
sider using a two-stage strategy, which consists of running
a first global retrieval step to retrieve, for each query, the
top k candidates from the reference database. This step
is generally more efficient because it uses k-NN on the
global descriptors. Then, a second computationally heavy
step is performed where the candidates are re-ranked ac-
cording to their local features [41, 37, 38]. For instance,
Patch-NetVLAD [17] uses NetVLAD descriptor for global
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Figure 2. Overview of our newly proposed architecture for place recognition. MixVPR takes as input flattened feature maps from interme-
diate layers of a pretrained backbone. It incorporates spatial relationship in each individual feature map through a succession of Feature
Mixer blocks. The resulting output is then projected into a compact representation space and used as global descriptor.

description, then in a later stage, uses the local features
composing NetVLAD in order to refine the retrieved candi-
dates. This approach demonstrated good performance when
re-ranking is used. Recently, TransVPR [45] used a combi-
nation of CNN and Transformer by using multi-head self-
attention (Transformer encoder) on top of a shallow CNN
backbone. Their aim is to incorporate attention in the re-
sulting tokens of the Transformer network. While their lo-
cal feature demonstrated great performance for re-ranking,
the global descriptors generated by the transformer network
were not as powerful as NetVLAD or CosPlace.

In this paper, we follow recent advances in isotropic
all-MLP architectures such as MLP-Mixer [43] and
gMLP [26], and propose MixVPR, a novel all-MLP ag-
gregation technique, which in contrast to TransVPR [45]
and Patch-NetVLAD [17], does not incorporate self-
attention or regional feature pooling. Although our method,
MixVPR, generates global descriptors and does not per-
form re-ranking, it performs better than two-stage tech-
niques such as TransVPR [45], Patch-NetVLAD [17] and
SuperGlue [38].

3. Methodology
Our aim is to learn global compact representations that

integrate features in a holistic way. Given an image I, we
first extract its feature maps F ∈ RC×H×W from the inter-
mediate layers of a cropped CNN backbone F = CNN(I).
The 3D tensor F can be seen as a set of 2D features of size
N = H ×W such as:

F = {Xi}, i = {1, . . . , C} (1)

where Xi corresponds to the ith activation map of the fea-
ture maps F which sweeping across all the image (each fea-

ture map carries a certain amount of information regarding
the whole image).

Existing techniques, such as TransVPR [45], Patch-
NetVLAD [17], NetVLAD [1], consider F as a set of C-
dimensional spatial descriptors, where each descriptor cor-
responds to a receptive field in the input image. These
features are then aggregated spatially using GeM [36],
NetVLAD [1], a pyramid scheme or multi-head self atten-
tion as in TransVPR [45].

MixVPR adopts an isotropic architecture, that consists
of a cascade of L MLP blocks of identical structure as il-
lustrated in Fig. 2. It takes as an input F ∈ RC×N a set
of flattened feature maps, and aggregate them by indepen-
dently incorporating a spatial relationship in each feature
map. In other words, all feature maps are projected using
the same projection layer.

For this, we use what we call Feature Mixer, which is a
shared MLP that individually projects every flattened fea-
ture map Xi ∈ F such as:

Xi ←W1(σ(W2 ∗Xi)) +Xi, i = {1, . . . C} (2)

where W1 and W2 are the weights of two fully-connected
layers that compose the MLP, and σ is a nonlinearity (ReLU
in our case). The inputs to the MLP are added back to the
resulting projection in a skip connection. This is proven to
add regularization and help the flow of gradients.

The intuition behind the Feature Mixer is that, instead
of focusing on local features, and forcing the network to go
through attention mechanism, we take advantage of the ca-
pacity of fully connected layers to automatically aggregate
features in a holistic way. Feature Mixer (FM) replaces hier-
archical (pyramidal) aggregation thanks to its full receptive
field, where each neuron has a glimpse into the entire input
image. We use a cascade of Feature Mixer blocks as shown
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in Fig. 2 in order to iteratively incorporate relationship be-
tween spatial features in each individual feature map.

For a given input F ∈ RC×N , Feature Mixer (FM) gen-
erates an output Z ∈ RC×N of the same shape (because of
its isotropic architeccture) as follows:

Z = FML(FML−1(. . . FM1(F))), i ∈ {1, . . . L} (3)

To reduce dimensionality of the output of the final FM
block, we follow it by two fully connected layers that
reduce dimensionality row-wise and channel-wise succes-
sively, this could be seen as a weighted pooling operation
that enables control of the dimension of the final global de-
scriptor. First, we apply channel-wise projection that maps
Z from RC×N to RC′×N as follow:

Z′ = Wh(Transpose(Z)) (4)

where Wh are the weights of the fully-connected layer that
maps from RC 7→ RC′

. We then apply a row-wise weighted
pooling that projects the output Z′ from RC′×N to RC′×N ′

such as:
O = Wv(Transpose(Z

′)) (5)

where Wv are the weights of the fully-connected layer that
maps from RN 7→ RN ′

. The final output O has a dimen-
sionality d = C ′×N ′, which is flattened and L2-normalized
as usually done in VPR [1, 16, 6].
Connection to existing architectures. Our technique is re-
lated to MLP-Mixer [43] where the token mixing is applied
on spatial non-overlapping image patches. We in the other
hand, use activation from CNN that incorporate inductive
bias and regard the resulting activation maps as global fea-
tures. Also, MLP-Mixer performs channel-mixing that is
shared across individual spatial descriptors, which we do
not employ.

Overall, MixVPR computations are mostly matrix multi-
plications (of fully-connected layers) which are efficient in
terms of computation compared to self-attention where the
complexity scales quadratically [43]. Also, since MixVPR
uses feature maps from intermediate layers, it reduces the
number of parameters by more than half as most parame-
ters of a pre-trained backbone are present in the last layers.

4. Experiments
In this section, we run extensive experiments to show the

effectiveness of the proposed MixVPR compared to existing
state-of-the-art techniques by evaluating on multiple chal-
lenging benchmarks. In what follows, we present imple-
mentation details, datasets, evaluation metrics, performance
comparisons and ablation studies.

4.1. Implementation details

Architecture. We implement MixVPR in PyTorch frame-
work [32] and use existing implementations of GeM [36],

NetVLAD [1] and CosPlace [6]. However, for tech-
niques without existing implementation, such as SPE-
NetVLAD [49] and Gated NetVLAD [51], we do our best
to faithfully reimplement them following their respective
papers. For all techniques, the CNN backbone is cropped
at the last convolutional layer as recommended by their au-
thors. MixVPR uses a backbone cropped in the middle (i.e.,
at the second last ResNet residual block) so that the Fea-
ture Mixer receives feature maps with a spatial dimension of
20×20. For fairness, we use the exact same CNN backbone
for all compared techniques (i.e., ResNet-50 [19]). The pro-
jection operation in Feature Mixer is the Linear layer of Py-
Torch which we follow by a relu nonlinearity. As for the
normalization layer we use LayerNorm. Finally, the output
of the Feature Mixer is projected to a smaller representation
space using one fully-connected layer on the horizontal di-
mension and one on the vertical dimension, resulting in a
descriptor of size d = C ′ × dv = N ′. This makes MixVPR
an all-MLP architecture. Unless otherwise stated, we fix
L=4 the number of stacked Feature Mixer layers.

Training. Using a ResNet [19] backbone pre-trained on
ImageNet [24], we train all techniques on the same dataset
following the standard framework of GSV-Cities [3], which
proposes a highly accurate dataset of 67k places depicted by
560k images. We use batches containing P = 120 places,
each depicted by 4 images resulting in mini-batches of 480
images. We use Stochastic Gradient Descent (SGD) for op-
timization, with momentum 0.9 and weight decay of 0.001.
The initial learning rate of 0.05 is divided by 3 after each 5
epochs. Finally, we train for a maximum of 30 epochs using
images resized to 320× 320.

Evaluation. For evaluation we use the following 5 bench-
marks. Pitts250k-test [44], which contains 8k queries and
83k reference images, collected from Google Street View
and Pitts30k-test [44] which is a subset of Pitts250k and
comprises 8k queries and 8k references. Both Pittsburgh
datasets show significant viewpoint changes. SPED [50]
benchmark contains 607 queries and 607 references from
surveillance cameras presenting significant seasonal and il-
lumination variations. MSLS [46] benchmark has been col-
lected using car dashcams and presents a wide range of
viewpoint and illumination changes. Finally, Nordland [50]
is an extremely challenging benchmark which has been col-
lected in 4 seasons using a camera mounted in front of a
train, it comprises scenes ranging from snowy winter to
sunny summer with extreme appearance changes. We fol-
low the same evaluation metric of [1, 23, 46, 50, 45, 6],
where the recall@k is measured. The query image is deter-
mined to be successfully retrieved if at least one of the top-k
retrieved reference images is located within d = 25 meters
from the query one.
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Method Pitts250k-test MSLS-val SPED Nordland
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

AVG [1] † 62.6 82.7 88.4 59.3 71.9 75.5 54.7 72.5 77.1 4.4 8.4 10.4
GeM [36] † 72.3 87.2 91.4 65.1 76.8 81.4 55.0 70.2 76.1 7.4 13.5 16.6
NetVLAD [1] † 86.0 93.2 95.1 59.5 70.4 74.7 71.0 87.1 90.4 4.1 6.6 8.2
AVG [1] 78.3 89.8 92.6 73.5 83.9 85.8 58.8 77.3 82.7 15.3 27.4 33.9
GeM [36] 82.9 92.1 94.3 76.5 85.7 88.2 64.6 79.4 83.5 20.8 33.3 40.0
NetVLAD [1] 90.5 96.2 97.4 82.6 89.6 92.0 78.7 88.3 91.4 32.6 47.1 53.3
SPE-NetVLAD [49] 89.2 95.3 97.0 78.2 86.8 88.8 73.1 85.5 88.7 25.5 40.1 46.1
Gated NetVLAD [51] 89.7 95.9 97.1 82.0 88.9 91.4 75.6 87.1 90.8 34.4 50.4 57.7
CosPlace [6] 91.5 96.9 97.9 83.0 89.9 91.8 75.3 85.9 88.6 34.4 49.9 56.5
MixVPR (Ours) 94.6 98.3 99.0 88.0 92.7 94.6 85.2 92.1 94.6 57.1 74.4 80.0

Table 1. Comparison of different techniques on popular benchmarks. † are results reported by the authors and confirmed using their
trained networks. We however, train all six techniques on the same dataset using the same backbone network (ResNet-50). NetVLAD
and its variants obtain third best performance just after the recent CosPlace method. Our technique, MixVPR, obtains by far the best
performance on all benchmarks, and with big margins.

4.2. Comparison to the state of the art

In this section, we compare the performance of MixVPR
against existing methods in visual place recognition on 4
challenging benchmarks. We compare against AVG [1],
GeM [36], NetVLAD [1] and two of its recent variants
SPE-VLAD [49] and Gated NetVLAD [51], and CosPlace
which recently demonstrated state-of-the-art performance.
Results are shown in Table 1. The lines with the sign †
are performance of AVG, GeM and NetVLAD trained on
Pitts30k-train dataset. For fair comparison, we retrain them
using the same backbone and dataset as the other tech-
niques. Results are shown in the rest of the table. As can
be seen, our technique convincingly outperforms all other
techniques on all benchmarks with a large margin. For in-
stance, MixVPR achieves a new all-time high recall@1 of
94.6% on Pitts250k-test which is 3.1% absolute increase
over the recent CosPlace technique and over 4.1% increase
compared to NetVLAD.

On MSLS, performances are even more interesting,
where we achieve 88.0% recall@1, which, to the best of
our knowledge, is the best score ever achieved. This is 5.0%
and 5.4% absolute increase over CosPlace and NetVLAD
which achieved 83.0% and 82.6% recall@1 respectively.
This shows the effectiveness of our technique on datasets
presenting a lot of viewpoint variations.

On SPED benchmark, where places exhibit drastic ap-
pearance change due to seasonal changes and day-night
illumination, our technique surpasses all other techniques
achieving 85.2% recall@1, which is 7.5% more than
NetVLAD, the second best performing technique on SPED.

Finally and most importantly, on the extremely challeng-
ing Nordland benchmark, MixVPR achieves 66% and and
75% relative improvement over CosPlace and NetVLAD
(57.1% vs 34.4% and 32.6% resp.), and more than double
compared to the rest of the methods.

4.3. Comparing against two-stage techniques

Some techniques use a two-stage recognition framework,
where a first pass is performed to retrieve the best 100 can-
didates using global representations, then a second pass (re-
ranking) is executed to perform geometric verification on
the local features between the query and each one of the
candidates [45]. This is known to increase recall@N per-
formance at the expense of heavy computation and mem-
ory overhead. We compare against Patch-NetVLAD [17],
DELG [7], SuperGlue [38] and TransVPR [17] which are
state-of-the-art techniques that perform two-stage visual
place recognition. Table 2 shows performances on the
MSLS Challenge. Although our technique does not perform
any re-ranking, it achieves better performance than exist-
ing two-stage techniques while being orders of magnitudes
more efficient in terms of memory and computation. We
believe that MixVPR can replace two-stage techniques in
applications where time and resources are of great impor-
tance. For instance, MixVPR takes only 6 milliseconds to
generate an image representation, while the second fastest
method, TransVPR, takes 45 seconds. Matching latency
does not apply to MixVPR since it is a global technique
and does not perform re-ranking. However, it is clear from
Table 2 that the re-ranking phase takes a lot of time, making
such techniques infeasible in real-time applications.

Method Extraction
latency (ms)

Matching
latency (s)

Mapillary Challenge
R@1 R@5 R@10

Super-Glue [38] 160 7.5 50.6 56.9 58.3
DELG [7] 190 35.2 52.2 61.9 65.4
Patch-NetVLAD [17] 1300 7.4 48.1 59.4 62.3
TransVPR [45] 45 3.2 63.9 74.0 77.5
MixVPR (Ours) 6 - 64.0 75.9 80.6

Table 2. Comparison with 2-stage recognition techniques. All
these techniques use a second refining pass to re-rank top can-
didates in order to enhance retrieval performance. MixVPR (ours)
does not use re-ranking and still outperforms existing state-of-the-
art.
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4.4. Ablation studies

We conduct multiple ablation experiments to further val-
idate the design of MixVPR.

4.4.1 Hyperparameters

In order to showcase the effect of the Feature Mixer, we
conduct multiple experiments by varying the number of
Feature Mixer blocks used. First, we train a baseline net-
work without Feature Mixer (depth= 0), and compare its
performances when trained with multiple stacked Feature
Mixer layers (depth ∈ {1, 2, 4, 8}). Results are shown in
Table 3, where we see that introducing only one Feature
Mixer layer improves recall@1 performance by 1.8% ab-
solute recall@1 from 89.5% to 91.3% on Pitts30k-test and
4% on MSLS from 82.9% to 86.9%. Overall, the best re-
sults are obtained with 4 Feature Mixer layers, although all
configurations achieve similar performance. Feature Mixer
adds 340k parameters to networks, therefore we can refer to
Table 3 to choose the best compromise.

FM
depth

Pitts30k-test MSLS-val
R@1 R@5 R@10 R@1 R@5 R@10

0 89.5 95.0 96.2 82.9 90.7 91.9
1 91.3 95.6 96.5 86.9 92.8 94.3
2 91.3 95.8 96.6 87.6 93.1 94.6
4 91.9 95.9 96.7 87.6 93.5 95.0
8 92.3 95.9 96.6 87.2 92.6 93.9

Table 3. Ablation on the number of Feature Mixer blocks. The
baseline (depth= 0) does not use Feature Mixer. We compare it to
various depth configurations. Overall, 4 stacks of Feature Mixer
perform the best on all benchmarks.

4.4.2 Backbone architecture

In Table 4 we conduct multiple experiments using differ-
ent backbone architectures. Since we crop the backbone
at the 4th residual layer (instead of the last) we end up
cropping out half the total number of parameters thus ac-
celerating computation and reducing memory use. As can
be seen in Table 4. Using ResNet-18 [19] we end up with
only 3.5M parameters, which is 15% the number of param-
eters in CosPlace or NetVLAD, all while getting competi-
tive results. We believe ResNet-18 can be used in applica-
tions where real-time is top priority. Importantly, MixVPR
obtains state-of-the-art performance using only ResNet-34
which comprises less than 30% the number of parameters
of CosPlace while outperforming it by 2.3% recall@1 (ab-
solute difference) on MSLS. The best overall results are
obtained with ResNet-50 where the number of parameters
(9.4M) is less than half that used in NetVLAD or CosPlace.
Interestingly, using ResNeXt50 [47] did not increase perfor-
mance compared to ResNet-50. We believe this is because

MixVPR draws much of its performance from the Feature
Mixing rather than the backbone network.

Backbone Total
# of param.

Pitts30k-test MSLS-val
R@1 R@5 R@10 R@1 R@5 R@10

ResNet-18 3.5M 89.5 95.0 96.2 82.7 89.1 91.8
ResNet-34 8.2M 90.5 95.2 96.3 85.3 91.6 93.4
ResNet-50 9.4M 91.6 96.0 96.7 88.0 92.8 94.5
ResNeXt-50 9.4M 91.7 95.7 96.5 87.0 93.5 94.7

Table 4. Comparing different backbones. Each backbone is
cropped at the fourth residual block (before the last one), which
results in half the number of parameters of the same backbone
used in CosPlace or netVLAD. MixVPR only needs intermediate
features of the backbone.

4.5. Qualitative Results

Fig. 3 illustrates qualitative results of the retrieval of
some challenging queries. We discuss 5 scenarios where all
other techniques struggle retrieving the correct match while
MixVPR succeeds. Repetitive structures: this is a seri-
ous problem for VPR techniques, since different places may
contain the same type of building or structure with the same
layout or texture, this can fool the recognition system and
induce a lot of false positives as we can see in the first two
rows of Fig. 3, where only MixVPR succeeded in retrieving
the right reference, while all other techniques retrieved im-
ages of different places that are overly similar to the query.
Viewpoint change: for this scenario, techniques that focus
on local features, such as NetVLAD, tend to perform better.
However, in rows 3-4 of Fig 3, only MixVPR retrieved the
right references, which highlights its capacity to deal with
extreme viewpoint changes. Skyline: some environments
contain few static structures such as buildings and poles,
making the image lack distinctive textures. In this case,
the skyline constitutes an important signature of the place.
As we can see in row 5 of Fig 3, only MixVPR succeeded
in retrieving the correct reference based most likely on the
skyline all while ignoring the cloud texture. Illumination
change: we believe this to be the most important aspect of
a robust VPR system, because illumination variations occur
on a daily basis, such an example is illustrated in rows 6-
7 of Fig 3 where the query is taken during the night and
its reference is taken during the day. CosPlace, NetVLAD
and Gated NetVLAD all retrieved images of locations taken
at nighttime, in contrast, MixVPR retrieved the correct ref-
erence even though it is visually very tricky even for the
human eye. This highlights the robustness of our method
in extremely challenging situations. Occlusions: this can
be challenging when part of the image is obstructed with an
object that can affect the global semantic of the image. For
instance, row 8 of Fig 3 shows a query with two cyclists in
the middle of the field of view (FoV), which tricked other
techniques to retrieve the wrong references containing cy-
clists in the middle of the FoV. Only MixVPR ignored the
cyclists and successfully retrieved the right reference.
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Figure 3. Comparison of challenging retrieval scenarios on MSLS and Pitts30k datasets. MixVPR succeeds the retrieval of all these
challenging queries, while all other techniques fail. This qualitative results highlight the robustness of MixVPR to extreme scenarios.

4.5.1 Visualizing learned weights

Fig 4 illustrates a subset of learned weights from the first
hidden layer of Feature Mixer (24 neurons our of 400). The
weights of each unit have been reshaped to 20×20 to match
the spatial size of each feature maps coming from the back-
bone. As we can see, hidden units in Feature Mixer learned
a wide range of regional feature selection. We observe that

some neurons focus on one or multiple small spots of the
image, while other focus on the entire input. We believe
the combination of these neurons can replace attention and
pyramidal scheme in deep model for VPR.
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Figure 4. Illustration of learned weights from a subset of 24 neu-
rons from the first Feature Mixer block. Blue color corresponds to
positive weights and Red corresponds to negative weights.

5. Conclusion
In this work, we designed a novel all-MLP aggregation

technique that employs feature maps from intermediate
layer of pretrained networks, and learns robust repre-
sentations in a cascade of feature mixing. MixVPR is
composed of a stack of Feature Mixers, where each
block incorporates a global spatial relationship between
individual feature maps. We demonstrated the effec-
tiveness of the feature mixing through ablation studies,
and showed that MixVPR outperforms existing state-
of-the-art by a wide margin on every benchmark we
tested on. Finally, we also compared performance of
MixVPR against two-stage techniques such as Patch-
NetVLAD and TransVPR and showed that our technique
is superior while consuming a fraction of the resources.
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