
Satisfaction Equilibrium: Achieving Cooperation

in Incomplete Information Games ?

Stéphane Ross and Brahim Chaib-draa

Department of Computer Science and Software Engineering
Laval University, Québec (Qc), Canada, G1K 7P4

{ross,chaib}@damas.ift.ulaval.ca,
http://www.damas.ift.ulaval.ca

Abstract. So far, most equilibrium concepts in game theory require
that the rewards and actions of the other agents are known and/or ob-
served by all agents. However, in real life problems, agents are generally
faced with situations where they only have partial or no knowledge about
their environment and the other agents evolving in it. In this context,
all an agent can do is reasoning about its own payoffs and consequently,
cannot rely on classical equilibria through deliberation, which requires
full knowledge and observability of the other agents. To palliate to this
difficulty, we introduce the satisfaction principle from which an equilib-
rium can arise as the result of the agents’ individual learning experiences.
We define such an equilibrium and then we present different algorithms
that can be used to reach it. Finally, we present experimental results
that show that using learning strategies based on this specific equilib-
rium, agents will generally coordinate themselves on a Pareto-optimal
joint strategy, that is not always a Nash equilibrium, even though each
agent is individually rational, in the sense that they try to maximize
their own satisfaction.

1 Introduction

Game theory provides a general framework for decision making in multi-agent
environments, though, general game models assume full knowledge and observ-
ability of the rewards and actions of the other agents. In real life problems,
however, this is a strong assumption that does not hold in most cases.

One game model proposed by Harsanyi [1] considering incomplete informa-
tion are Bayesian games. These games allow the modelling of unknown infor-
mation as different agent types and a Nature’s move that selects randomly each
agent’s type according to some probability distribution before each play. The
agent must choose the action that maximizes its reward considering the prob-
abilities it associates to each of the other agents’ types and the probabilities it
associates to the actions of the other agents when they are of a certain type.
However, the concept of Nash equilibrium in these games can be troublesome if

? This research was supported in part by the Natural Science and Engineering Council
of Canada (NSERC).

2

not all agents have the same common beliefs about the probability distribution
of all agents’ types. Furthermore, a Nash equilibrium requires that each agent
knows the exact strategy of the other agents, which is not always the case when
an agent faces unknown agents1.

Another recent approach based on Bayesian games is the theory of learning
in games which relaxes the concept of equilibrium. Instead of considering an
equilibrium as the result of a deliberation process, it considers an equilibrium as
the result of a learning process, over repeated play, and it defines the concept
of self-confirming equilibrium [2] as a state in which each agent plays optimally
considering its beliefs and history of observations about the other agents’ strate-
gies and types. However, they showed that if an agent does not observe the other
agents’ actions, then the set of Nash equilibria and self-confirming equilibria may
differ. While self-confirming equilibrium is a very interesting concept and worth
consideration, we note that when an agent faces unknown agents and does not
observe the other agents’ actions, thinking rationally on possibly false beliefs
may after all, not be optimal.

In order to address this problem, we consider here that an equilibrium is
the result of a learning process, over repeated play, but we differ in the sense
that we pursue an equilibrium that arises as the result of a learning mechanism,
instead of rational thinking on the agent’s beliefs and observations. To make this
equilibrium possible, we introduce the satisfaction principle, which stipulates
that an agent that has been satisfied by its payoff will not change its strategy,
while an unsatisfied agent may decide to change its strategy. Under this principle,
an equilibrium will arise when all agents will be satisfied by their payoff, since
no agent will have any reason to change its strategy. From now on, we will refer
to this equilibrium as a satisfaction equilibrium.

We will show that if the agents have well defined satisfaction constraints,
Pareto-optimal joint strategies that are not Nash equilibria can be satisfaction
equilibria and that henceforth, cooperation and more optimal results can be
achieved using this principle, instead of rational thinking.

In this article, we will first introduce the game model we will use to take into
account the constrained observability of the other agents’ actions and rewards
and we will also present the different concepts we will need to analyze a game
in terms of satisfaction. Afterward, we will present different algorithms that
converge towards satisfaction equilibria with experimental results showing their
strengths and drawbacks in some specific games. Finally, we will conclude with
future directions that can be explored in order to achieve better results.

2 Satisfaction Equilibrium

In this section, we will introduce the game model we will use to formalize a game
where the agents do not know nor observe the actions and rewards of the other

1 By “unknown agents”, we mean that an agent does not know strategies, actions,
outcomes, rewards, etc. of other agents.

3

agents. Afterward, we will formally define the satisfaction equilibrium based on
the satisfaction function of the different agents.

2.1 Game Model

The game model we will consider will be a modified repeated game in which we
introduce an observation function and a modified reward function in order to let
agents observe their rewards but not the other agents’ actions.

Formally, we define the game as a tuple (n,A,Ω,O,R1, R2, . . . , Rn); where
n defines the number of agents, A defines the joint action space of all agents,
i.e., A = A1 × A2 × . . . × An and where Ai represents the set of actions agent
i can do, Ω is the set of possible outcomes in the game observed by the agents,
O the observation function O : A → Ω which returns the observed outcome
by the agents associated to the joint action played and finally Ri the reward
function Ri : Ω → R, which defines the reward of agent i given the outcome it
observed. Each agent participating in the game only knows its own action set
Ai and its reward function Ri. After each play, each agent is given the outcome
o ∈ Ω, corresponding to the joint action played, to compute its own reward.
However, since the agents do not know the observation function O, they do not
know which joint action led to this outcome.

2.2 Satisfaction function and equilibrium

To introduce the satisfaction principle in the game model previously introduced,
we add a satisfaction function Si : R → {0, 1} for each agent i, that returns 1 if
the agent is satisfied and 0 if the agent is not satisfied. Generally, we can define
this function as follows:

Si(ri) =

{

0 if ri < σi

1 if ri ≥ σi

where σi is the satisfaction constant of agent i representing the threshold at
which the agent becomes satisfied, and ri is a scalar that represents its reward.

Definition 1. An outcome o is a satisfaction equilibrium if all agents are sat-
isfied by their payoff under their satisfaction function and do not change their
strategy when they are satisfied.

(i) Si(Ri(o)) = 1 ∀i
(ii) st+1

i = st
i ∀i, t : Si(Ri(ot)) = 1

st+1
i defines the strategy of agent i at time t + 1, st

i its strategy at time t and
ot the outcome observed at time t. Condition (i) states that all agents must
be satisfied by the outcome o, and condition (ii) states that the strategy of
an agent i at time t + 1 must not change if it was satisfied at time t. This is
necessary in order to have an equilibrium. As a side note, this definition requires
deterministic payoffs, because if Ri(o) can be higher and lower than σi for the
same observation o, then o will not be an equilibrium.

4

C D

C -1,-1 -10,0

D 0,-10 -8,-8

σi = −1

=⇒

C D

C 1,1 0,1

D 1,0 0,0

Fig. 1. Prisoner’s dilemma game matrix (left) and its satisfaction matrix (right).

We can now represent a satisfaction matrix by transforming a normal form
game matrix with the satisfaction function of each agents. For example, the figure
1 shows the prisoner’s dilemma game matrix with its transformed satisfaction
matrix when both agents have a satisfaction constant set to -1.

While the game matrix and satisfaction matrix are not known to the agents,
the satisfaction matrix is a useful representation to analyze the game in terms of
satisfaction. Here, we can easily see that the only satisfaction equilibrium is the
joint strategy (C,C), which is a Pareto-optimal strategy of the original game.
This was the case in this example because we set both satisfaction constants to
−1, which was the reward of the Pareto-optimal joint strategy of each agent.
From this, we can conclude the following theorem 1.

Theorem 1. In any game containing a Pareto-optimal joint strategy s, the out-
come O(s) and its equivalent outcomes2 are the only satisfaction equilibria if
σi = Ri(O(s)) ∀i.

Proof. see [3].

Therefore, we see that a major part of the problem of coordinating the agents
on a Pareto-optimal joint strategy is to define correctly the satisfaction constants
of each agent. While we have assumed so far that these constants were fixed at
the beginning of the learning process, we will show an algorithm in the last
section that tries to maximize the satisfaction constant of an agent such that it
learns to play its optimal equilibrium under the other agents’ strategies.

2.3 Satisfying strategies and other problematic games

Similarly to the concept of dominant strategies, we can define a satisfying strat-
egy as a strategy si for agent i such that it is always satisfied when it plays this
strategy. The existence of a satisfying strategy in a game can be problematic if
by playing such a strategy, no satisfaction equilibrium is possible. Furthermore,
other games with some specific payoff structure can also be troublesome. For
example, we will consider the following 2 games presented in figure 2.

In the first game (left), we see that the row agent has a satisfying strategy
A. Therefore, if row agent starts playing strategy A, then column agent will be
forced to accept an outcome corresponding to joint strategy (A,A) or (A,B).
This is problematic since none of these outcomes are satisfaction equilibria. In

2 We consider that an outcome o′ is equivalent to another outcome o if the rewards of
all agents are the same in o and o′ : Ri(o) = Ri(o

′)∀i

5

A B

A 1,0 1,0

B 1,1 0,0

A B C

A 1,1 0,1 0,1

B 1,0 1,0 0,1

C 1,0 0,1 1,0

σi = 1

=⇒

A B C

A 1,1 0,1 0,1

B 1,0 1,0 0,1

C 1,0 0,1 1,0

Fig. 2. A game containing a satisfying strategy (left) and a problematic game (right).

B F

B 2,1 0,0

F 0,0 2,1

σi = 1

=⇒

B F

B 1,1 0,0

F 0,0 1,1

Fig. 3. Battle of sexes game matrix (left) and its satisfaction matrix (right).

the second game (right), there exists a unique Pareto-optimal joint strategy
(A,A). With the satisfaction constants set to 1 for both agents, the corresponding
satisfaction matrix is the same as the original game matrix. But, what we can
see in this example is that we can never reach the satisfaction equilibrium (A,A)
unless both agents starts with strategy A. Effectively, if one of the agent plays A
but the other agent plays B or C, then the agent playing A will never be satisfied
until it changes its strategy to B or C. This problem comes from the fact that
an agent playing B or C will always be satisfied when the other agent plays A,
and therefore, it will never change its strategy to A when the other agent plays
A. Also, there is no joint strategy where both agents are unsatisfied that could
allow a direct transition to joint strategy (A,A). From this, we conclude that
if both agents do not start at the point of equilibrium (A,A), they will never
reach an equilibrium since there exists no sequence of transitions that leads to
this equilibrium. The effects of such payoff structures on the convergence of our
algorithms will be showed with experimental results in the next sections.

2.4 Games with multiple Satisfaction Equilibria

In some games, more than one satisfaction equilibrium can exist depending on
how the satisfaction constants are defined. For example, we can consider the
battle of sexes, presented in figure 3 with satisfaction constants set to 1. What
will happen when more than one satisfaction equilibrium exists is that both
agents will keep or change their strategy until they coordinate themselves on
one of the satisfaction equilibrium. From there, they will keep playing the same
action all the time.

2.5 Mixed Satisfaction Equilibrium

In some games, such as zero sum games in which each agent either get the
maximum or minimum reward, it is impossible to find a satisfaction equilibrium
in pure strategy, unless we set the satisfaction constant to the minimum reward.

6

However, higher expected rewards could be obtained by playing mixed strategies.
This can be achieved by playing a mixed satisfaction equilibrium.

Definition 2. A mixed satisfaction equilibrium is a joint mixed strategy p such
that all agents are satisfied by their expected reward under their satisfaction
function and do not change their strategy when they are satisfied.

(i) Si(Ei(p)) = 1 ∀i
(ii) pt+1

i = pt
i ∀i, t : Si(Ei(p)) = 1

Ei(p) represents the expected reward of agent i under the joint mixed strat-
egy p. Condition (ii), as in definition 2.5, ensures that an agent keeps the same
mixed strategy when it is satisfied. This more general definition of the satisfac-
tion equilibrium is also applicable in the case of stochastic payoffs, contrary to
definition . However, the only way an agent will have to compute its expected
reward will be to compute the average of the past n rewards it obtained under
its current strategy, since it does not know the strategy of the other agents.

3 Learning the Satisfaction Equilibrium

We now present an algorithm that can be used by agents to learn over time to
play the satisfaction equilibrium of a game.

3.1 Pure Satisfaction Equilibrium with fixed constants

The most basic case we might want to consider is the case where an agent tries
to find a pure strategy that will always satisfy its fixed satisfaction constant.

Our algorithm 1 (called PSEL for Pure Satisfaction Equilibrium Learning)
implements the satisfaction principle in the most basic way: if an agent is sat-
isfied, it keeps its current action, else it chooses a random action in its set of
actions to replace its current action.

Algorithm 1 PSEL: Pure Satisfaction Equilibrium Learning

Function PSEL(σi, K)
si ← ChooseAction()
for n = 1 to K do

Play s and observe outcome o

if Ri(o) < σi then

si ← ChooseAction()
end if

end for

return si

In this algorithm, the constant K defines the allowed number of repeated
plays and the ChooseAction function chooses a random action uniformly within

7

the set of actions Ai of the agent. Under this learning strategy, once all agents
are satisfied, no agent will change its strategy and therefore all agents reach
an equilibrium. Once the agent has played K times, it returns its last chosen
strategy. Evidently, in games where there exists no satisfaction equilibrium under
the agents’ satisfaction constants, those agents will never reach an equilibrium.
Furthermore, if agent i has a satisfying strategy si, then we are not sure to reach
a satisfaction equilibrium if si does not lead to an equilibrium (see figure 2 for
an example).

3.2 Using an exploration strategy

While we have considered in our previous algorithm 1 that the ChooseAction
function selects a random action within the set of actions of the agent, we can
also try to implement a better exploration strategy such that actions that have
not been explored often could have more chance to be chosen. To achieve this,
the agent can compute a probability for each action, that corresponds to the
inverse of the times it has chosen them, and then normalize the probabilities
such that they sum to 1. Finally, it chooses its action according to the resulting
probability distribution3. The results presented in section 3.3 will confirm that
using this exploration strategy, instead of a uniform random choice, offers a
slight improvement in the average number of plays required to converge to a
satisfaction equilibrium.

3.3 Empirical results with the PSEL Algorithm

We now present results obtained with the PSEL algorithm in different games.
We have used 2 standard games, i.e. the prisoner’s dilemma with satisfaction
constants set to −1 for both agents (see figure 1 for the corresponding satisfac-
tion matrix) and the battle of sexes with satisfaction constants set to 1 for both
agents (see figure 3 for the corresponding satisfaction matrix). We also tested
our algorithm in a cooperative game and a bigger game to verify the perfor-
mance of our algorithm when the joint strategy space is bigger. These games
are presented in figure 4. Finally, we also present results with the 2 problematic
games introduced in sections 2.3.

In the cooperative game, the satisfaction constants were set to 3 for both
agents such that the only satisfaction equilibrium is joint strategy (C,C). In the
big game, they were set to 5 for both agents and therefore, the only satisfaction
equilibrium is joint strategy (E,D).

For each of these 6 games, we ran 5000 simulations, consisting of 5000 re-
peated plays per simulation, varying the random seeds of the agents each time.
In figure 5, we present for each of these games the number of possible joint strate-
gies, the number of satisfaction equilibria (SE), the convergence percentage to a
SE and a comparison of the average number of plays required to converge to such
an equilibrium (with 95% confidence interval) with the random and exploration
strategies presented.

3 A detailed presentation of this algorithm is available in [3]

8

A B C

A 0,0 1,1 0,0

B 2,2 0,0 0,0

C 0,0 0,0 3,3

A B C D E F G H

A 0,0 0,0 -1,4 0,0 2,-2 0,0 3,0 0,0

B 1,2 0,0 0,0 3,0 0,0 0,0 0,3 1,1

C 0,0 3,3 0,0 1,1 0,0 0,0 2,2 0,0

D 4,4 0,0 5,1 0,2 2,2 1,4 0,0 0,0

E 0,1 0,0 0,0 5,5 0,0 0,0 2,1 0,0

F 0,4 2,2 0,2 0,0 0,0 3,3 0,0 4,4

G 0,0 5,3 3,0 0,0 -1,3 0,0 2,-1 0,0

H 0,0 2,4 1,1 0,0 0,0 -3,2 0,0 0,0

Fig. 4. Cooperative game matrix (left) and big game matrix (right).

Fig. 5. Convergence percentage and plays needed to converge to a SE in different games
with the PSEL algorithm

Random Exploration
Game |A| nSE conv. % Avg. plays Avg. plays Improvement4

Prisoner’s Dilemma 4 1 100% 8.67± 0.23 6.72± 0.18 22.49%

Battle of Sexes 4 2 100% 1.97± 0.04 1.95± 0.04 1.02%

Cooperative Game 9 1 100% 8.92± 0.23 7.82± 0.19 12.33%

Big Game 64 1 100% 67.95± 1.89 61.51± 1.65 9.48%

Problematic Game 9 1 10.88% - - -

Game with satisfying strategy 4 1 33.26% - - -

In each of these games, the SE were corresponding to Pareto-optimal joint
strategies and the satisfaction constants were set according to theorem 1. In all
non problematic games, we always converged to a SE within the allowed 5000
repeated plays. Therefore, we see from these results that, in non problematic
games, when the satisfaction constants are well defined, we seem to eventually
converge toward a Pareto-optimal satisfaction equilibrium5 (POSE). However,
in the problematic games, we see that the convergence percentage of the PSEL
algorithm is dramatically affected. We note that in such games, the convergence
of the algorithm is highly dependant on the initial joint action chosen by the
agents, since some initial choices can never reach a SE. This is not the case of the
other non problematic games where a SE is always reachable by doing a certain
sequence of joint strategy transitions.

3.4 Convergence of the PSEL algorithm

While we have already showed that the PSEL algorithm does not work in all
games, there is a specific class of games where we can easily define the conver-
gence probability of the PSEL algorithm according to theorem 2.

4 The improvement corresponds to the percentage of gain in average plays required to
converge to a SE with the exploration strategy : Avg(Random)−Avg(Exploration)

Avg(Random)
∗100%

5 We define a Pareto-optimal satisfaction equilibrium as a joint strategy that is a
satisfaction equilibrium and also Pareto-optimal.

9

Theorem 2. In all games where all agents have the same satisfaction in all out-
comes, i.e. (Si(Ri(o)) = Sj(Rj(o))∀i, j, o), the PSEL algorithm, using a uniform
random exploration, will converge to a SE within K plays with probability 1−qK

where q = 1 − nSE/|A| and the expected number of plays required to converge is
given by |A|/nSE.

Proof. see [3].

Here, |A| represents the joint action space size and nSE is the number of SE
in the game. This theorem will always be applicable to identical payoffs games6

if we use the same satisfaction constant for all agents. In this case, since all
agents have the same rewards and satisfaction constants, they will always have
the same satisfaction in all outcomes. From theorem 2, we can conclude that
in such games, as K → ∞, the convergence probability will tend toward 1. In
practice, for the cooperative game (figure 4) where theorem 2 applies, we see that
the the expected number of plays required to converge is 9 and the probability
to converge within 50 plays is around 99.7%.

4 Learning the Satisfaction Constant

While the PSEL algorithm has showed interesting performance in some games,
it has the disadvantage that the satisfaction constant must be correctly set in
order to achieve good results. To alleviate this problem, we present a new learning
strategy that tries to maximize the satisfaction constant while staying in a state
of equilibrium.

4.1 Limited History Satisfaction Learning (LHSL) Algorithm

In order to achieve this, we present an algorithm (called LHSL for Limited
History Satisfaction Learning) that implements the strategy of increasing the
satisfaction constant when the agent is satisfied and decreasing the satisfaction
constant when it is unsatisfied. We also decrease the increment/decrement over
time in order to converge to a certain fixed satisfaction constant. This will be
achieved by multiplying the increment by a certain factor within the interval]0, 1[
after each play. Moreover, we keep a limited history of the agent’s experience in
order to prevent it from overrating its satisfaction constant, by checking whether
it was unsatisfied by its current strategy in the past when its satisfaction constant
was higher than a certain threshold. We will see in the results, that this technique
really helps the convergence percentage of the algorithm compared to the case
where we do not prevent this, as in the special case where the history size will
be 0.

In this algorithm, the satisfaction constant σi is initialized to the minimum
reward of agent i and the constant δi is used to increment/decrement this satis-
faction constant. More precisely, δi is decremented over time, such that it tends

6 An identical payoffs game is a game where all agents have the same reward function

10

Algorithm 2 LHSL : Limited History Satisfaction Learning

Function LHSL(δi, γi, ni)
σi ← min(ri); si ← ChooseAction()
S[0..|Ai| − 1, 0..n− 1]← a matrix initialized with true values
Σ[0..|Ai| − 1, 0..n− 1]← a matrix initialized with min(ri) values
while δi > εi do

Play si and observe outcome o

lastStrategy ← si; satisfied← (Ri(o) < σi); tmp← 0
if not satisfied then

si ← ChooseAction(); tmp← −δi

else if not unsatisfied with si and σi + δi in history then

tmp← δi

end if

If n > 0 add satisfied and σi in history of lastStrategy and remove oldest values
σi ← σi + tmp; δi ← δi · γi

end while

return (si, σi)

toward 0, by multiplying it by the constant γi ∈]0, 1[after each play. The matrix
S keeps a history of the last n states of satisfaction for each action and the ma-
trix Σ keeps, for each action, a history of the last n satisfaction constants when
the agent played these actions. This history is used to check, before incrementing
the satisfaction constant, whether or not the agent was unsatisfied by its current
strategy in the past when its satisfaction constant was below its new satisfac-
tion constant. Finally, after each play, we update the history of the agent. We
consider that the algorithm has converged to the optimal satisfaction constant
when δi is lower than a certain constant εi ' 0. At this point, the algorithm
returns the satisfaction constant and the last strategy chosen by agent i. When
all agents have converged, if they are all satisfied by their strategy, then we have
reach a satisfaction equilibrium since their satisfaction constant will be stable7.
While we are not guaranteed to converge toward a POSE, we will see that in
practice, this algorithm yields a convergence percentage of almost 100% toward
the POSE in any non problematic games.

4.2 Empirical results with the LHSL Algorithm

To test the LHSL algorithm, we have used the same 6 games we have presented
for the results with the PSEL algorithm and we now try to learn the POSE
without giving a priori its value to set accordingly the satisfaction constant.
The results were obtained over 5000 simulations and we show the convergence
percentage to the POSE obtained with the best γi value and history sizes we

7 The satisfaction constants become stable when the floating point precision is insuf-
ficient to account for the change caused by the addition of δi. Therefore, we must
choose εi such that σi ± δi = σi when δi ≤ εi. In fact, we could use σi ± δi = σi as
our convergence criteria.

11

Fig. 6. Convergence percentage to a POSE in different games with the LHSL algorithm
With history Without history

Game |A| conv. % γi ni conv. % γi

Prisoner’s Dilemma 4 100% 0.99 64 89.96% 0.90

Battle of Sexes 4 100% 0.90 16 97.60% 0.80

Cooperative Game 9 99.66% 0.995 128 97.62% 0.95

Big Game 64 99.66% 0.995 16 93.88% 0.99

Problematic Game 9 9.86% 0.95 128 7.88% 0.50

Game with satisfying strategy 4 98.06% 0.95 128 38.78% 0.95

 50

 60

 70

 80

 90

 100

 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

C
on

ve
rg

en
ce

 %

Gamma

n=0
n=16
n=32
n=64

n=128
 40

 50

 60

 70

 80

 90

 100

 0.75 0.8 0.85 0.9 0.95 1

C
on

ve
rg

en
ce

 %

Gamma

Random
Exploration

Fig. 7. Convergence percentage to a POSE in the prisoner’s dilemma under different
γ values, history sizes and exploration strategies

have tested8. We also compare these results to the special case where we do
not use a history, i.e., n = 0. In all cases, δi was set to 1 and the convergence
threshold εi was set to 10−20.

In all cases, the best results, showed in figure 6, were obtained with the
exploration strategy we have presented in section 3.2. In most games, except the
problematic game (figure 2), we were able to get a convergence percentage near
100%. We can also see that the use of a history offers a significant improvement
over the results we obtain without a history. As a side note, the convergence
percentage of the LHSL algorithm seems to vary a lot depending on the history
sizes and gamma values. This is illustrated in figure 7.

The first graphic in figure 7 compares the results with different history sizes
and γ values. We can see that the bigger the history size, the closer to 1 γ
must be in order to achieve better performances. While, in general, the more
slowly we decrement δ and the bigger the history size is, the better are the

8 In these results, γi, δi, εi, σi and the history size were the same for all agents

12

results, we see that small histories can also lead to very good results when γ
is well defined. Since the closer γ is to 1, the more repetition will be needed
for δ to reach ε, we can conclude that if we have only a few plays to learn
the equilibrium, than it is better to use a small history, since it can achieve
better convergence percentage when the number of repeated play is small. In
the second graphic, we compare the convergence percentage of the 2 different
exploration approaches under different γ values for the prisoner’s dilemma, in
the case where no history was used (n = 0). This graphic confirms that the
exploration strategy presented in section 3.2 improves slightly the convergence
percentage of the LHSL algorithm.

5 Conclusion and future works

While this article covered a lot of new concepts, it laid out only the basic theo-
retical foundations of the satisfaction equilibrium. The algorithms we have pre-
sented have shown great performance in practice, but we have seen some games
with specific payoff structures that could pose problems or render impossible
the convergence to a satisfaction equilibrium. We have identified possible solu-
tions, such as allowing mixed satisfaction equilibrium and trying to maximize the
satisfaction constant, that could sometimes palliate these problems. Although,
what we may discover is that in some games it might not always be possible to
converge to a satisfaction equilibrium, or to a POSE. What we might want to
do in these games is to converge toward a Nash equilibrium. If convergence to a
Nash equilibrium is always possible, then we may try to find an algorithm that
converges in the worst case to a Nash equilibrium, and in the best case, to a
Pareto-optimal satisfaction equilibrium. In order to achieve this goal, the next
step will be to develop an algorithm that can converge to a Pareto-optimal mixed
satisfaction equilibrium. Also, a lot of theoretical work needs to be done to prove
and/or bound the efficiency of the presented algorithms and identify clearly in
which cases the algorithms will converge or not to a satisfaction equilibrium.
Afterward, another long term goal is to apply the satisfaction equilibrium to
stochastic games in order to allow agents to learn a Pareto-optimal joint strat-
egy without knowing anything about the other agents in these type of games.

References

1. Harsanyi, J.: Games of incomplete information played by bayesian players. Man-
agement Science 14 (1967) 159–182, 320–334, and 486–502

2. Dekel, E., Fudenberg, D., Levine, D.K.: Learning to play bayesian games. Games
and Economic Behavior 46 (2004) 282–303

3. Ross, S., Chaib-draa, B.: Report on satisfaction equilibria. Technical report,
Laval University, Department of Computer Science and Software Engineering,
http://www.damas.ift.ulaval.ca/∼ross/ReportSatisfactionEquilibria.pdf (2005)

