
February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

International Journal on Artificial Intelligence Tools
Vol. 21, No. 1 (2012) 1250003 (25 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213012500030

STOCHASTIC RESOURCE ALLOCATION IN

MULTIAGENT ENVIRONMENTS: AN APPROACH BASED

ON DISTRIBUTED Q-VALUES AND BOUNDED REAL-TIME

DYNAMIC PROGRAMMING

PIERRICK PLAMONDON and BRAHIM CHAIB-DRAA

DAMAS Laboratory, Laval University, G1K 7P4, Québec, Canada

chaib@ift.ulaval.ca

Received 17 May 2010
Accepted 10 October 2011

This paper contributes to solve effectively stochastic resource allocation problems in
multiagent environments. To address it, a distributed Q-values approach is proposed
when the resources are distributed among agents a priori, but the actions made by an
agent may influence the reward obtained by at least another agent. This distributed Q-
values approach allows to coordinate agents’ reward and thus permits to reduce the set
of states and actions to consider. On the other hand, when the resources are available
to all agents, no distributed Q-values is possible and tight lower and upper bounds are

proposed for existing heuristic search algorithms.
Our experimental results demonstrate the efficiency of our distributed Q-values in

terms of planning time as well as our tight bounds in terms of fast convergence and
reduction of backups.

Keywords: Stochastic resource allocation; real-time dynamic programming; Markov de-
cision processing; distributed Q-values.

1. Introduction

Dynamic resource allocation problems lie in general at the core of many real-world

scheduling problems. In such problems, a scheduling process suggests the action

(i.e. resources to allocate) to undertake to accomplish certain tasks, according to

the perfectly observable state of the environment. When executing an action to

realize a set of tasks, the stochastic nature of the problem induces probabilities

on the next visited state. In general, the number of states is the combination of all

possible specific states of each task and available resources. In this case, the number

of possible actions in a state is the combination of each individual possible resource

assignment to the tasks. The very high number of states and actions in this type of

problem makes it very complex to solve.

In principle, this type of problems can be treated as Markov decision processes

and solved using approximate dynamic programming (DP) algorithms.1 In dis-

1250003-1

http://dx.doi.org/10.1142/S0218213012500030


February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

A t 3

Resources K

A t 2

Resources J

A t 1

Resources I

Case 1: Resources are already distributed to agents and actions made 

by an agent do not influence the state of another agent.

Agent 3Agent 2Agent 1

by an agent do not influence the state of another agent.

Resources I Resources J Resources K

Constraints

Agent 1 Agent 2 Agent 3

Case 2: Resources are already distributed to agents and actions of one 
agent may influence the reward obtained by at least another agent.  

Constraints

Resources I Resources J Resources K

Case 3: All resources are available to all agents.  

Agent 1 Agent 3Agent 2

Fig. 1. Different types of resource allocation problems.

tributed environment inhabited by several agents, those agents can be face to three

types of resource allocation problems, as can be seen on Figure 1. Firstly, the Case 1

where the resources are distributed among agents a priori, and the actions made

by an agent do not influence the state of another agent, the globally optimal pol-

icy can be computed by finding a policya separately for each agent. This problem

can be solved using existing approaches of approximate dynamic programming as

suggested for instance by Refs. 1–3. Examples of this case include: a network of

computers where each has its own resources and does not impact others through its

actions; robots having their predetermined tasks in a factory, etc.

The Case 2 of Figure 1 presents a second type of resource allocation problem. It

is the case where the resources are distributed among agents a priori, but the actions

made by an agent may influence the reward (or the cost) obtained by at least another

agent. Examples here include major railroads, truck companies, etc. To solve this

aFinding a policy is also called “planning” and it consists (in a stochastic domain) to find a
function which associates an action to a state.

1250003-2



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

problem efficiently, we propose a distributed Q-values approach where a planning

agent manages each task and all agents have to share the limited resources. The

planning process starts with the initial state s0, in which, each agent computes her

respective Q-value. Then, the planning agents are coordinated through an arbitrator

to find the highest global Q-value by adding the respective possible Q-values of each

agent. Doing so, allows to reduce the number of states and actions and consequently

to get an approximate solution to the resource allocation problem.

Finally, when the resources are available to all agents, as in Case 3 of Figure 1, no

distributed Q-values is possible. Examples here are robots in manufacturing, soft-

ware agents through the web, etc. A common way of addressing this large stochastic

problem is by using Markov Decision Processes (MDPs), and in particular real-time

search where many algorithms have been developed recently. For instance, Real-

Time Dynamic Programming (RTDP)4 and its variants,5–7 HDP (a combination

of an heuristic search with dynamic programming),8 and LAO⋆ (a version of AO⋆

with loops)9 are all state-of-the-art heuristic search approaches in a stochastic envi-

ronment. RTDP is an algorithm which updates states in trajectories from an initial

state s0 to a goal state sg. The original RTDP approach is much more effective if the

action space can be pruned of sub-optimal actions. To do this, McMahan,6 Smith

et al.,7 and Singh and Cohn10 proposed solving a stochastic problem using a RTDP

type heuristic search with upper and lower bounds on the value of states. McMahan6

and Smith et al.7 suggested, in particular, an efficient trajectory of state updates

to further speed up the convergence, when upper and lower bounds are given.

In this paper, we propose a new algorithm to define upper and lower bounds in

the context of a RTDP heuristic search approach. We use, in particular, the concept

of marginal revenue11 to elaborate tight bounds. Our marginal revenue bounds

are compared theoretically and empirically to the bounds proposed by Singh and

Cohn.10 Also, even if the algorithm used to obtain the optimal policy is RTDP, our

bounds can be used with any other algorithm to solve an MDP. The only condition

on the use of our bounds is to be in the context of stochastic constrained resource

allocation.

To sum up, this paper describes two contributions for solving stochastic resource

allocation problems in multiagent environments. In the case where the resources are

distributed among agents a priori but rewards depend on actions of other agents, an

algorithm based on distributed Q-values is proposed. In the case where the resources

are not distributed among agents a priori, the use of an existing search procedure

is proposed. However this procedure is enforced by new lower/upper bounds which

improve the performance. The next section describes a general view of our problem

of interest. Section 3 depicts Markov Decision Processes (MDPs) which are used to

model our problem. Afterwards, Section 4 sketches the main contributions of this

paper. Section 5 details the experiments made and, finally, Section 6 concludes this

paper.

1250003-3



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

2. Problem Formulation

Our problem of interest are naval maritime environments which are known to be very

complex environments with tight real-time constraints. In case of an own platform

attack by incoming missiles, the commander must make fast decisions by considering

several factors to ensure himself of the best possible survival of the own platform and

its crew. Under such real-time constraints, it can often happen that the commander

makes errors because of the complexity of the environment or the stress which the

situation can generate. In these conditions, a computer is tremendously faster than

a human and consequently, it can suggest decisions in time, thus, facilitating the

task of resource allocation by a commander. In this context, we are developing a

Decision-Support System (DSS) that focusses specifically on some particular aspects

of such maritime environments, in order to reduce the complexity of the domain.

Our primary focus is on the Resource allocation process.

A simple resource allocation problem, as illustrated on Figure 2(a), is one where

there are the following two tasks to realize: ta1 = {wash the dishes}, and ta2 =

{clean the floor}. These two tasks are either, or not, in the realized state. To realize

them, two types of resources are assumed: res1 = {brush}, and res2 = {detergent}.

A computer has to compute the optimal allocation of these resources to cleaning

robot agents which are in charge of the two tasks. In this problem, a state represents

a conjunction of the particular state of each task, and the available resources. The

resources may be constrained by the amount that may be used simultaneously (local

constraint), and in total (global constraint).

When executing an action a (an action here is a resource allocation) in state s,

the specific states of the tasks change stochastically, and the remaining resources

are determined as the resources available in s, minus the resources used by action a,

if the resource is consumable. In our example, a brush is a non-consumable resource,

while the detergent is a consumable resource.

and
vacuum 

done

Dishes
washed and

floor dirty

Dishes
and floor

dirty

Vacuum
done and

dishes dirty

Dishes

} Limited resources
to allocate to 
execute tasks

(a) An example of resource allocation.

…

(b) task transition graph.

Fig. 2. An example of resource allocation (a) and its task transition graph (b).

1250003-4



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

As shown on Figure 2(b), the system is in a state s with a set of tasks Ta

to realize, and a set Resc of consumable resource available. A possible action, as

illustrated on Figure 2(b), in this state may be to allocate one unit of detergent to

task ta1, and one brush to task ta2. The state of the system changes stochastically,

as each task’s state does. For example, the floor may be clean or not with a certain

probability, after having allocated the brush to clean it. In this example, the state of

the tasks may change, for example, in n new possible states. For all these n possible

state transitions after s, the consumable resources available (Resc) are Resc\res(a)

(Resc minus res(a)), where res(a) is the consumable resources used by action a.

3. Markov Decision Processes (MDPs): A Slight Overview

There is an extremely large body of research studying MDPs, and the basic algo-

rithmic techniques are presented in some detail in Section 3.1. The most commonly

used formulation of MDPs assumes full observability and stationarity, and uses as

its optimality criterion the maximization of expected total reward over a finite hori-

zon, maximization of expected total discounted reward over an infinite horizon, or

minimization of the expected cost to go. MDPs were introduced by Ref. 12 and

have been studied in depth in the fields of decision analysis and Operation Re-

search, including the seminal work of Ref. 13. During the recent decades, they have

been extensively studied in many fields including Operation Research and Manage-

ment,1,14 Control15 and Machine Learning.2,3 MDPs are very suitable to model a

stochastic environment where the outcome of an agent’s action is probabilistic and

the environment is modified by some unpredictable exogenous events. For example,

suppose that a detergent resource has been allocated to clean the floor. After ex-

ecuting this action, the floor may be cleaned or not. Part of the MDP process for

this scenario is illustrated in Figure 3.

0.8

0.2

UseDetergent(      )
¬ FloorClean(                  )

FloorClean(                                  )

¬ FloorClean(                                  )

Fig. 3. A fragment of an MDP.

A Markov decision process is 4-tuple (S,A, P.(.|.), R(.)), where

• S is a finite set of states,

• A is a finite set of action, and A(s) ⊆ A is the finite set of actions applicable in

state s ∈ S.

• Pa(s
′|s) = Pr(st+1 = s′|st = s, at = a) is the probability that action a in state s

at time t will lead to state s′ at time t+ 1.

1250003-5



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

• R(s′) is the immediate reward received after transition to state s′ from state s

with transition probability Pa(s
′|s).

A discount factor γ, a real number between 0 and 1, complete these tuples and

it describes the preference of an agent for current rewards over future rewards. In

MDPs, the state s′ that results from an action a is not predictable but is observable,

providing feedback for the selection of the next action a′. As a result, a solution of

an MDP is not an action sequence, but a function π mapping state s into actions a ∈

A(s). Such a function is called a policy. These policies are defined to be applicable

no matter what state (or distribution over states) one finds oneself in — action

choices are defined for every possible state or history.

3.1. Dynamic programming approaches

Suppose that an MDP is given with a state space S, action space A, a transition

matrix Pa(s
′|s) for each action a, a reward function r. The main problem is to

find the policy that maximizes the expected total reward for the planning horizon.

Bellman’s principle of optimality12 forms the basis of the stochastic dynamic pro-

gramming algorithms used to solve MDPs. In particular, the optimal value of a

state is the immediate reward for that state plus the expected discounted value of

the next state transition probability, assuming that the agent chooses the optimal

action. That is, the value of a state when its expected reward is maximized, is given

by:

V (s) = R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′) . (1)

A concept that is often useful is that of a Q-function (or Q-value). Intuitively, it

denotes the expected value of performing action a at state s.16 Given an arbitrary

value function V , Q(a, s) is defined as

Q(a, s) = R(s) + γ
∑

s′∈S

Pa(s|s
′) max

a′∈A(s′)
Q(a′, s′) (2)

where V (s′) = maxa′∈A(s′) Q(a′, s′).

The V (or Q-value) functions are usually computed using dynamic programming

(DP). DP is said to be an implicit-enumeration approach because it finds an optimal

solution, to a given problem, without evaluating all possible solutions. Once an

optimal solution for a state is found, Bellman’s principle of optimality allows us to

infer that an optimal solution that reaches this state must include the solution that is

optimal for this state. Using Bellman’s principle of optimality to avoid enumerating

all possible solutions is sometimes called pruning by dominance. In particular, the

standards dynamic programming algorithms to solve an MDP are value iteration

and policy iteration. We now detail these two iterations.

1250003-6



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

3.1.1. Policy and value iteration

General Policy iteration proceeds as follows: at each iteration consider changing

the action at each state while keeping the actions for all the other states fixed to

the current policy. Some such single-state action changes will improve upon the

current policy. Different variants of policy iteration differ in which single-action

improvement they adopt at each step. Usually, we also alternate the following two

steps, beginning from some initial policy π0:

• Policy evaluation: given a policy πi, calculate Vi = V πi , that is the value of each

state if πi is adopted;

• Policy improvement: calculate a new Policy πi+1 according to

πi+1 ← argmaxa∈A(s)

∑
s′ Pa(s

′|s)V πi(s′)

This algorithm terminates when the policy improvement step yields no change

in the utilities.

Equation (1) forms the basis of the value iteration algorithm for solving MDPs.

In value iteration, called also backward induction, π is not used, it is calculated just

whenever it needed. To iterate values, we reformulate equation Equation (1) as the

following iteration

V (s)←− R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′) .

Thus, value iteration propagates utilities from a state s to its neighbor states s′

iteratively. Indeed, value iteration can be viewed as propagating information through

the state space by means of local updates. Value iteration terminates when the value

change between two iterations is bounded by an indifference constant ǫ. Notice that

the model may also include a time horizon which might be finite or infinite.

Real-Time search which has been proven more efficient than value iteration is

now introduced.

3.1.2. Real-time search

Russel and Norvig17 distinguish two types of search. Firstly, an offline search algo-

rithm computes a complete solution before setting foot in the real world, and then

executes the solution without recourse to their percept. In contrast, an online search

agent operates by interleaving computation and action: first it takes an action, then

it observes the environment and computes the next action. Online search is a good

idea in dynamic domains when there is a penalty for computing too long. Online

search is an even better idea for stochastic domains. In general, an offline search

would have to come up with an exponentially large contingency plan that considers

all possible happenings, while an online search needs only consider what actually

does happens.

An optimal policy can be found using an offline dynamic programming algo-

rithm such as policy iteration or value iteration. But a disadvantage of dynamic

1250003-7



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

programming is that it evaluates the entire state space. In effect, it finds a policy

for every possible starting state. By contrast, heuristic search algorithms solve a

problem for a particular starting state and use an admissible heuristic to focus the

search, and remove from consideration regions of the state space that cannot be

reached from the start state by an optimal solution. For problems with large state

spaces, heuristic search has an advantage over dynamic programming because it

can find an optimal solution for a start state without evaluating the entire state

space.

This advantage is well-known for problems that can be solved by A∗.18 In fact,

an important theorem about the behavior of A∗ is that (under certain conditions) it

evaluates the minimal number of states among all algorithms that find an optimal

solution.19 The A∗ algorithm lies the foundation of the online Real-time Dynamic

Programming (RTDP), Labelled RTDP (LRTDP), Bounded RTDP (BRTDP), and

Focused RTDP (FRTDP) algorithms. These algorithms reflecting real-time dynamic

programming are now presented.

RTDP. In the value iteration algorithm, the updates are performed over all states

in parallel. On the other hand, in the Real-Time Dynamic Programming (RTDP)

algorithm,4 the updates are performed on the states visited by a greedy search

guided by the value function V .

Real-Time Dynamic Programming (RTDP) is a probabilistic version of

LRTA∗,20 which in turn has emerged from A∗.18 A good advantage of RTDP, just

like all MDP algorithms, is that it is an anytime algorithm. This algorithm can also

be viewed as a greedy version of the dynamic programming algorithms for solving

MDPs. Indeed, at each state s, a local choice is made based on the selection of the

optimal action a based on a selection function h(s) to search in the state space S.

Notice that h(s) should be an admissible heuristic — that is, the value given by

the heuristic has to overestimate (or underestimate) the optimal value when the

objective function is maximized (or minimized) — heuristic which defines an initial

value for state s′. Furthermore, RTDP is an on-line algorithm because it interleaves

planning and execution.

LRTDP. Bonnet5 proposed LRTDP (Algorithm 1) as an improvement to RTDP.4

LRTDP is a simple dynamic programming algorithm that involves a sequence of

trial runs, each starting in the initial state s0 and ending in a goal or a solved state.

Each LRTDP trial (Line 6 to 11) is the result of simulating the policy π, through the

PICK-NEXT-STATE(a) function, while updating the values V (s) using a Bellman

backup (Eq. (1)) over the states s that are visited.

It has been proven that LRTDP, given an admissible initial heuristic on the

value of states cannot be trapped in loops, and eventually yields optimal values.5

The convergence is accomplished by means of a labeling procedure called CHECK-

SOLVED(s, ǫ) (Line 14 of the algorithm). This procedure tries to label as solved

each traversed state in the current trajectory. When the initial state is labelled as

1250003-8



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

Algorithm 1 The LRTDP algorithm.5

1: Function LRTDP(S)

2: returns a value function V

3: repeat

4: s← s0
5: visited← null

6: repeat

7: visited.push(s)

8: V (s) ← R(s) + max
a∈A(s)

γ
∑
s′∈S

Pa(s
′|s)V (s′) {where V (s′) = h(s′) when s′ is

not yet visited}

9: a = s.GREEDY-ACTION()

10: s← s.PICK-NEXT-STATE(a)

11: until s is a goal

12: while visited 6= null do

13: s← visited.pop()

14: if ¬ CHECK-SOLVED(s, ǫ) then

15: break

16: end if

17: end while

18: until s0 is solved

19: return V

solved, the algorithm has converged. LRTDP uses only an upper bound (h(s)) to

guide the search.

Using both an upper bound and a lower bound permits to prune the action

space and to guide the search more effectively. The next sections describe BRTDP

and FRTDP which both use an upper bound and a lower bound.

BRTDP. The pseudocode for Bounded RTDP (BRTDP)6 is given in Algorithm 2.

BRTDP has many differences from RTDP: The first is when a policy is requested

for BRTDP (before or after convergence), it is returned based on the lower bound L.

The second difference is that L helps guide exploration in simulation, as computed

in Lines 11 to 16 of the algorithm. In particular, when trajectories are sampled in

simulation, the outcome distribution is biased to prefer transitions to states with a

large gap: U(x′) − L(x′), where U(x′) is the upper bound of state x′, and L(x′) is

the lower bound of state x′. Furthermore, BRTDP maintains a list of states on the

current trajectory, and when the trajectory terminates, it does backups in reverse

order along the stored trajectory (Lines 18 to 22 of the BRTDP function). Finally,

like LRTDP, simulated trajectories terminate when they reach a state that has a

“well-known” value, rather than when they reach the goal. The adaptive criterion

τ is a constant > 1.

1250003-9



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

Algorithm 2 The BRTDP algorithm.6

1: Function BRTDP(S)

2: returns a value function V

3: while U(s0)− L(s0) > ǫ do

4: x← s0
5: traj ← emptyStack

6: while true do

7: traj.PUSH(x)

8: U(x) ← R(x) + γ
∑

x′∈S

Pa(x
′|x)U(x′) {where U(x) ← hU (x) when x is not

yet visited}

9: a← argmax
a∈A(s)

QL(x, a)

10: L(x) ← R(x) + γ
∑

x′∈S

Pa(x
′|x)L(x′) {where L(x) ← hL(x) when x is not

yet visited}

11: ∀x′, b(x′)← Pa(x
′|x)(U(x′)− L(x′))

12: B ←
∑

x′∈S

b(x′)

13: if B < (U(s0)− L(s0))/τ then

14: break

15: end if

16: x← sample from distribution b(x′)/B

17: end while

18: while traj 6= null do

19: x← traj.POP()

20: U(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)U(x′)

21: L(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)L(x′)

22: end while

23: end while

24: return V

FRTDP. Focused RTDP is also an RTDP based algorithm proposed by Ref. 7. As

in RTDP, FRTDP’s execution consists in trials that begin in a given initial state

s0 and then explore reachable states of the state space, selecting actions according

to an upper bound. Once a final state is reached, it performs Bellman updates on

the way back to s0. FRTDP uses a priority value for selecting actions outcomes

and detecting trial termination. The lower bound (L(s)) is used to establish the

policy by contributing in the priority calculation of states to expand on the fringe

of the search tree. Furthermore, in this algorithm, trial termination detection has

been modified and improved from RTDP by adding an adaptive maximum depth

D in the search tree in order to avoid over-committing to long trials early on. More

1250003-10



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

Table 1. General comparison between RTDP, LRTDP, BRTDP and FRTDP.

RTDP LRTDP FRTDP BRTDP

Optimality Infinite Yes Yes Yes
Upper bound Yes Yes Yes Yes
Lower bound No No Yes Yes

Speed of convergence + ++ +++ +++

Note: Here, “+” should be read as follows6,7: LRTDP converges faster than RTDP;
FRTDP converges faster than LRTDP; FRTDP and BRTDP are comparable in
terms of speed of convergence.

precisely, the maximum depth D is updated by kD ×D (where kD is the increasing

ratio) each time the trial is not useful enough. This usefulness is represented by δW

where δ measures how much the update changed the upper bound value of s and W

the expected amount of time the current policy spends in s, adding up all possible

paths from s0 to s.

Table 1 presents a broad comparison of RTDP, LRTDP, BRTDP, and FRTDP.

All these approaches converge to an optimal policy, however, RTDP does it in an

infinite amount of time. All these algorithms implement a lower bound, but only

BRTDP and FRTDP implement an upper bound. BRTDP and FRTDP are also the

ones that converge the fastest to the optimal solution.6,7

One should however emphasized that the choice of the initial value function

(heuristic) is essential for the convergence of RTDP type solutions.

4. Resource Allocation using MDPs

An MDP in the context of our resource allocation problem with limited resources

is defined as a tuple 〈Res, Ta, S,A, P,W,R〉, where:

• Res = 〈res1, . . . , res|Res|〉 is a finite set of resource types available for a planning

process. These resources might be discrete (machine, processor, etc.) or contin-

uously divisible (power, detergent, paint, etc.). Each resource type may have a

local resource constraint Lres on the number that may be used in a single step,

and a global resource constraint Gres on the number that may be used in total.

The global constraint only applies for consumable resource types (Resc) and the

local constraints always apply to consumable and non-consumable resource types.

• Ta is a finite set of tasks with ta ∈ Ta to be accomplished.

• S is a finite set of states with s ∈ S. A state s is a tuple 〈Ta, 〈res1, ..., res|Resc |〉〉,

which is the characteristic of each unaccomplished task ta ∈ Ta in the environ-

ment, and the available consumable resources. sta is the specific state of task ta.

Furthermore, S contains a non empty set sg ⊆ S of goal states. A goal state is a

sink state where an agent stays forever.

• A is a finite set of actions (or assignments). The actions a ∈ A(s) applicable in

a state are the combination of all resource assignments that may be executed,

according to the state s. In particular, a is simply an allocation of resources

1250003-11



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

to the current tasks, and ata is the resource allocation to task ta. The possible

allocations are limited by Lres and Gres.

• Transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s).

• W = [wta] is the relative weight (criticality) of each task.

• State rewards R = [rs] :
∑

ta∈Tarsta ← ℜsta × wta. The relative reward of the

state of a task rsta is the product of a real number ℜsta by the weight factor wta.

For our problem, a reward of 1×wta is given when the state of a task (sta) is in

an achieved state, and 0 in all other cases.

• A discount (preference) factor γ, which is a real number between 0 and 1.

A solution of an MDP is a policy π mapping state s into actions a ∈ A(s). In

particular, πta(s) is the action that should be executed on task ta, considering the

global state s. In this case, an optimal policy is one that maximizes the expected

total reward for accomplishing all tasks. The optimal value of a state, V (s), is given

by previous equation (1) in which the remaining consumable resources in state s′

are Resc \ res(a) and where res(a) are the consumable resources used by action a.

Similarly, one may compute the Q-Values Q(a, s) of each state action pair using the

equation (2).

The policy is subjected to the local resource constraints res(π(s)) ≤ Lres; ∀ s ∈

S, and ∀ res ∈ Res. The global constraint is defined according to all system tra-

jectories tra ∈ TRA. A system trajectory tra is a possible sequence of state-action

pairs, until a goal state is reached under the optimal policy π. For example, state

s is entered, which may transit to s′ or to s′′, according to action a. The two pos-

sible system trajectories are 〈(s, a), (s′)〉 and 〈(s, a), (s′′)〉. If we express res(tra) as

a function which returns the resources used by trajectory tra, then the global re-

source constraint is res(tra) ≤ Gres; ∀ tra ∈ TRA, and ∀ res ∈ Resc. Furthermore,

the model is Markovian and consequently the history need not be considered in the

state space.

Now we investigate the distributed Q-values approach.

4.1. Distributed Q-values for resource allocation

4.1.1. The distributed Q-values approach

In the Case 2 (as depicted in Figure 1) , resources are already distributed to agents

and actions of ones may influence the reward obtained by others. This is for instance

the case when agents are in charge of tasks which are not complectly independent

and they have precedence constraint between them as for instance: “Task1 should

be executed before Task2” or “Task1 facilitates Task3” or “It would be better to

do Task2 and Task5 in parallel”, etc. To use efficiently resources in this case, we

use distributed Q-values (adapted from Ref. 21). The primary assumption under-

lying distributed Q-values is that the overall reward function R can be additively

decomposed into separate rewards Ri for each distinct agent i ∈ Ag, where |Ag| is

the number of agents. That is, R =
∑

i∈Ag Ri. In this case, it requires each agent

1250003-12



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

to compute a value, from its perspective, for every action. To coordinate with each

other, each agent i reports its action values Qi(ai, si) for each state si ∈ Si to an

arbitrator at each planning iteration. The arbitrator then chooses an action max-

imizing the sum of the agent Q-values for each global state s ∈ S. The next time

state s is then updated, an agent i considers its Q-value as its respective contribu-

tion to the global maximal Q-value. That is, Qi(ai, si) is the value of a state such

that it maximizes maxa∈A(s)

∑
i∈Ag Qi(ai, si).

The fact that the agents use a determined Q-value as the value of a state is an

extension of the Sarsa on-policy algorithm22 to distributed Q-values. In this way, an

ideal compromise can be found for the agents to reach a global optimum. Indeed,

rather than allowing each agent to choose the successor action, each agent i uses

the action a′i chosen by the arbitrator in the successor state s′i:

Qi(ai, si) = Ri(si) + γ
∑

s′i∈Si

Pai
(s′i|si)Qi(a

′
i, s

′
i) (3)

where the remaining consumable resources in state s′i are Resci \ resi(ai) for a

resource allocation problem.

We can then apply an optimal Bellman backup in a state as in Algorithm 3. In

Line 5 of the DISTQ-BACKUP function, each agent managing a task computes

its respective Q-value. Here, Q⋆
i (a

′
i, s

′) determines the optimal Q-value of agent i

in state s′. An agent i uses as the value of a possible state transition s′ its Q-value

which is part of the maximal global Q-value for state s′. In brief, for each visited

state s ∈ S, each agent computes its respective Q-values with respect to the global

state s. So the state space is the joint state space of all agents.

The arbitrator functionalities are depicted in Lines 8 to 20 of Algorithm 3. The

global Q-value is the sum of the Q-values produced by each agent managing each

task as shown in Line 11, considering the global action a. In this case, when an

action of an agent i cannot be executed simultaneously with an action of another

agent i′, the global action is simply discarded from the action space A(s). Line 14

simply allocates the current value with respect to the highest global Q-value, as in

a standard Bellman backup. Then, the optimal policy and Q-value of each agent is

updated in Lines 16 and 17 to the sub-actions ai and specific Q-values Qi(ai, s) of

each agent for action a.

The behavior of DISTQ-BACKUP is now discussed and we start it by proving

the optimality of DISTQ-BACKUP. This proof requires to demonstrate that the

DISTQ-BACKUP function outputs the same optimal value as a standard Bellman

backup.

Lemma 4.1. A state for DISTQ-BACKUP is updated in the same manner as for

a standard Bellman backup.

Proof. The following equation is used in DISTQ-BACKUP to compute a Q-value:

Q(a, s) =
∑

i∈Ag

Ri(s) + max
ai∈Ai(s)

γ
∑

s′i∈S′

i

Pai
(s′i|s)Q

⋆
i (a

′
i, s

′) . (4)

1250003-13



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

Algorithm 3 The distributed Q-values Bellman Backup algorithm.23

1: Function DISTQ-BACKUP(s)

2: V (s)← 0

3: for all i ∈ Ag do

4: for all ai ∈ Ai(s) do

5: Qi(ai, s) ← Ri(s) + γ
∑

s′i∈Si

Pai
(s′i|s)Q

⋆
i (a

′
i, s

′) {where Q⋆
i (a

′
i, s

′) = hi(s
′)

when s′ is not yet visited, and s′ has Resci \resi(ai) remaining consumable

resources for each agent i}

6: end for

7: end for

8: for all a ∈ A(s) do

9: Q(a, s)←
∑

i∈Ag Qi(ai, s)

10: if Q(a, s) > V (s) then

11: V (s)← Q(a, s)

12: for all i ∈ Ag do

13: πi(s)← ai
14: Q⋆

i (ai, s)← Qi(ai, s)

15: end for

16: end if

17: end for

Since the reward can be additively decomposed for each task, Eq. (4) may be rewrit-

ten as:

Q(a, s) = R(s) +
∑

i∈Ag

max
ai∈Ai(s)

γ
∑

s′i∈S′

i

Pai
(s′i|s)Q

⋆
i (a

′
i, s

′) . (5)

Since Q(a, s) =
∑

i∈Ag Qi(a, s) when the transition probability of each task consid-

ers the actions performed on other tasks, Eq. (5) may be rewritten as:

Q(a, s) = R(s) + max
a∈A(s)

γ
∑

s′∈S′

Pa(s
′|s)Q(a′, s′) (6)

where Q(a′, s′) is the maximal Q-value for state s′. Indeed, since the arbitrator

determines the maximal Q-value for a state, Q(a′, s′) = V (s′). Since Eq. (6) is the

same as a Bellman backup, and Q(a′, s′) is the same as V (s), a Q-value is updated

in the same manner in DISTQ-BACKUP as for a standard Bellman backup.

4.1.2. Complexity of distributed Q-values

Some of the gain in complexity to use distributed Q-values lies in the∑
s′i∈Si

Pai
(s′i|s) part of the equation. An agent considers as a possible state tran-

sition only the possible states of the set of tasks it manages. Since the number of

states is exponential with the number of tasks, using distributed Q-values should

1250003-14



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

reduce the planning time significantly. Furthermore, the action space of the agents

takes into account only their available resources which is much less complex than a

standard action space, which is the combination of all possible resource allocation

in a state for all agents.

More formally, a standard “multiagent” Bellman backup has a complexity of

O(|A|× |SAg |), where |SAg| is the number of joint states for all agents excluding the

resources, and |A| is the number of joint actions. On the other hand, the distributed

Q-values Bellman backup has a complexity of O((|Ag|× |Ai|× |Si)|)+ (|A|× |Ag|)),

where |Si| is the highest number of states for an agent i, excluding the resources,

and |Ai| is the highest number of actions for an agent i. Since |SAg| is combinatorial

with the number of tasks, so |Si| ≪ |S|. Also, |A| is combinatorial with the number

of resource types. If the resources are already shared among the agents, the number

of resource types for each agent will usually be lower than the set of all available

resource types for all agents. In these circumstances, |Ai| ≪ |A|. In a standard

Bellman backup, |A| is multiplied by |SAg|, which is much more complex than

multiplying |A| by |Ag| with the distributed Q-values Bellman backup. Thus, the

distributed Q-values Bellman backup is much less complex than a standard Bellman

backup.

In fact even with the cost of communication induced, the distributed Q-values

remains much better than the global Q based on the complete standard Bellman

backup, as shown by Ref. 21.

We now present our tight bounds for improving the existing real-time dynamic

programming algorithms.

4.2. A new bounded RTDP approach

4.2.1. Singh and Cohn bounds

In the third case when all resources are available to all agents, then they can perform

tasks simultaneously. We then need a modified value iteration algorithm for dynam-

ically merging MDPs. The approach proposed by Singh and Cohn10 is suitable for

this. These authors defined lower and upper bounds to prune the action space in the

context of dynamically merging multiple MDPs. In their approach, a value function

is computed for all tasks to realize, using a standard RTDP approach. Then, using

these task -value functions, a lower bound hL, and upper bound hU are defined as

follows :

hL(s) = max
ta∈Ta

Vta(sta), and hU (s) =
∑

ta∈Ta

Vta(sta) .

Indeed, for any composite state, the sum of the optimal values of the component

states is an upper bound to the optimal value of the composite states, i.e., V (sta) ≤∑
ta∈Ta Vta(sta). Similarly, for any composite state, the maximum of the optimal

values of the component states is a lower bound to the optimal value of the composite

states, i.e., V (sta) ≥ maxta∈Ta Vta(sta).

1250003-15



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

The admissibility of these bounds has been proven by Singh and Cohn. Thus,

the upper bound always overestimates the optimal value of each state, while the

lower bound always underestimates the optimal value of each state. However, these

bounds are somehow large and we propose to tight them in the next two sections.

Notice that for readability, we have named the upper bound and the lower bound

of Singh and Cohn, respectively: SinghU and SinghL. Furthermore, the bounds

defined by Singh and Cohn that we have implemented using BOUNDED-RTDP is

named SINGH-RTDP.

4.2.2. A tight upper bound

The SinghU bound as proposed by Singh and Cohn10 includes actions which may

not be possible to execute because of resource constraints and which outputs too

high values for the upper bound. To consider only possible actions (i.e, a ∈ S(s)),

our upper bound,23 named maxU is introduced:

hU (s) = max
a∈A(s)

∑

ta∈Ta

Qta(ata, sta) (7)

where Qta(ata, sta) is the Q-value of task ta for state sta, and action ata computed

using a standard LRTDP approach.

Theorem 4.1. The upper bound defined by Eq. (7) is admissible.

Proof. The local resource constraints are satisfied because the upper bound is

computed using all global possible actions a. However, hU (s) (as reflected by equa-

tion (7)) still overestimates V ⋆(s) because the global resource constraint is not

enforced. Indeed, each task may use all consumable resources for its own purpose.

Doing this produces a higher value for each task, than the one obtained when plan-

ning for all tasks globally with the shared limited resources.

Computing our maxU bound in a state has a complexity of O(|A| × |Ta|). A

standard Bellman backup has a complexity of O(|A| × |STa|), where STa is the

number of joint states for all the agents excluding the resources. Since |A|× |Ta| ≪

|A| × |STa|, the computation time to determine the upper bound of a state, which

is done one time for each visited state, is much less than the computation time

required to compute a standard Bellman backup for a state, which is usually done

many times for each visited state. Thus, the computation time induced by our upper

bound is negligible.

4.2.3. A tight lower bound

Our tight lower bound is formulated by allocating the resources a priori among

the tasks.23 When each task has its own set of resources, each task may be solved

independently. The allocation a priori of all the resources is made using marginal

1250003-16



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

revenue, which is a highly used concept in microeconomics,11 and has recently been

used for coordination of a decentralized MDP.24 In brief, marginal revenue is the

extra revenue that an additional unit of product will bring to a firm. Thus, for a

stochastic resource allocation problem, the marginal revenue of a resource is the

additional expected value it involves. The marginal revenue of a resource res; for a

task ta in a state sta is defined as follows:

mrta(sta)← Vta(sta(Res))− Vta(sta(Res \ res)) . (8)

To determine a lower bound, here how we proceed. At the beginning, the

REVENUE-BOUND function is called (Algorithm 4) with the set of tasks to

execute and the set of available resources. Then, the ASSIGN-RESOURCE func-

tion (Algorithm 5) assigns each resource type to a task using the concept of marginal

revenue. Finally, with the resource being shared, we compute, using a LRTDP al-

gorithm, the value function of each task with its designated set of resource. A lower

bound for a state can then be obtained by summing the respective value functions.

Algorithm 4 The marginal revenue lower bound algorithm.23

1: Function REVENUE-BOUND(s)

2: returns a lower bound LowTa

3: for all ta ∈ Ta do

4: Vta ←LRTDP(Sta) {Same value functions as used by the upper bound.}

5: valueta ← 0

6: end for

7: ResTa ←ASSIGN-RESOURCES(S, valueTa)

8: for all ta ∈ Ta do

9: Lowta ←LRTDP(Sta)

10: end for

11: return LowTa

We now describe the Algorithm 4, which uses the concept of marginal revenue

of a resource to allocate the resources a priori among the tasks, thus enabling to

define the lower bound value of a state. In Line 4 of the algorithm, a value function is

computed for all tasks in the environment using a standard LRTDP5 approach. This

value function, which is also used for the upper bound, is computed considering that

each task may use all available resources. The Line 5 initializes the valueta variable.

This variable is the estimated value of each task ta ∈ Ta. In the beginning of the

algorithm, no resources are allocated to a specific task, thus the valueta variable is

initialized to 0 for all ta ∈ Ta.

Then, the execution shifts to the ASSIGN-RESOURCES function (Algorithm 5).

In Line 5, a resource type res (consumable or non-consumable) is selected to be allo-

cated. Here, a domain expert may separate all available resources in many types or

1250003-17



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

Algorithm 5 The assign resource algorithm.23

1: Function ASSIGN-RESOURCES(S, valueTa)

2: returns a lower bound LowTa

3: s← s0
4: repeat

5: res← Select a resource type res ∈ Res

6: for all ta ∈ Ta do

7: if res is consumable then

8: mrta(sta)← Vta(sta)− Vta(sta(Res \ res))

9: else

10: mrta(sta)← 0

11: repeat

12: mrta(sta)← mrta(sta) + Vta(sta)− max
(ata∈A(sta)|res/∈ata)

Qta(ata, sta)

13: Rescta ← Rescta \ res(π(sta))

14: sta ← sta.PICK-NEXT-STATE(Rescta)

15: until sta is a goal

16: s← s0
17: end if

18: mrrvta(sta)← mrta(sta)×
Vta(sta)−valueta

R(sgta )

19: end for

20: ta← Task ta ∈ Ta which maximizes mrrvta(sta)

21: Resta ← Resta
⋃
{res}

22: temp← ∅

23: if res is consumable then

24: temp← res

25: end if

26: valueta ← valueta + ((Vta(sta)− valueta)×
max

ata∈A(sta,res)
Qta(ata,sta(temp))

Vta(sta)
)

27: until all resource types res ∈ Res are assigned

28: return ResTa

parts to be allocated. The resources are allocated in the order of their specialization.

In other words, the more a resource is efficient on a small group of tasks, the earlier

it is allocated. Allocating the resources in this order improves the quality of the

resulting lower bound. The Line 8 computes the marginal revenue of a consumable

resource res for each task ta ∈ Ta.

The approach adopted here is to sum the difference between the real value of a

state to the maximal Q-value of this state if resource res cannot be used for all states

in a trajectory given by the policy of task ta. This heuristic proved to obtain good

results, but other ones may be tried, for example Monte-Carlo simulation. In Line

18, the marginal revenue is updated in function of the resources already allocated

1250003-18



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

to each task. R(sgta) is the reward to realize task ta. Thus, Vta(sta)−valueta
R(sgta )

is the

residual expected value that remains to be achieved, knowing current allocation to

task ta, and normalized by the reward of realizing the tasks. The marginal revenue

is multiplied by this term to indicate that, the higher the task’s residual value, the

higher its marginal revenue.

Then, a task ta is selected in Line 20 with the highest marginal revenue, adjusted

with residual value. In Line 21, the resource type res is allocated to the group of

resources Resta of task ta. Afterwards, Line 26 recomputes valueta. The first part

of the equation to compute valueta represents the expected residual value for task

ta. This term is multiplied by

max
ata∈A(sta)

Qta(ata, sta(res))

Vta(sta)
,

which is the ratio of the efficiency of resource type res. In other words, valueta is

assigned to valueta + (the residual value × the value ratio of resource type res). For

a consumable resource, the Q-value considers only resource res in the state space,

while for a non-consumable resource, no resources are available.

All consumable and non-consumable resource types are allocated in this manner

until Res is empty. When all resources are allocated, the lower bound components

Lowta of each task are computed in Line 9 of the REVENUE-BOUND function.

When the global solution is computed, the lower bound is as follow:

hL(s) = max( max
ta∈Ta

Vta(sta),
∑

ta∈Ta

Lowta(sta)) . (9)

We use the maximum of the maximal value functions and the sum of the lower

bound components Lowta, thus hL(s) ≥ SinghL. We call this new bound RbL.

The main difference of complexity between SinghL and RbL comes from∑
ta∈TaLowta(sta) which is computed via REVENUE-BOUND via Line 9 where

a value for each task has to be computed with the shared resources. However, since

the resources are shared, the state and action space is greatly reduced for each task,

reducing greatly the calculus compared to the value functions computed in Line 4

which is done for both SinghL and REVENUE-BOUND.

Theorem 4.2. The lower bound of Eq. (9) is admissible.

Proof. Lowta(sta) is computed with the resources being shared. Summing the

Lowta(sta) value functions for each ta ∈ Ta does not violates the local and global

resource constraints. Indeed, as the resources are shared, the tasks cannot overuse

them. Thus, hL(s) is a realizable policy, and consequently an admissible lower

bound.

5. Discussion and Experiments

In our case, the experimental test have performed in the domain of a naval plat-

form which must counter incoming missiles (i.e. tasks) by using its resources (i.e.,

1250003-19



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

weapons, movements). For the experiments, 100 random resource allocation prob-

lems were generated for each approach, and possible number of tasks. In our prob-

lem, |Sta| = 4, thus each task can be in four distinct states, which are: (1) the

incoming missile is searching the platform; (2) the incoming missile is locked on the

platform; (3) the incoming missile is countered; and (4) the incoming missile hit

the platform. There are two types of states, firstly, states where actions modify the

transition probabilities; and then, there are goal states. The state transitions are

all stochastic because when a missile is in a given state, it may always transit in

many possible states. In particular, each resource type has a probability to counter

a missile between 45% and 65% depending on the state of the task.

When a missile is not countered, it transits to another state, which may be

preferred or not to the current state, where the most preferred state for a task is

when it is countered. The effectiveness of each resource is modified randomly by

±15% at the start of a scenario. There are also local and global resource constraints

on the amount that may be used. For the local constraints, at most 1 resource of

each type can be allocated to execute tasks in a specific state. This constraint is

also present on a real naval platform because of sensor and launcher constraints and

engagement policies. Furthermore, for consumable resources, the total amount of

available consumable resource is between 1 and 2 for each type. The global constraint

is generated randomly at the start of a scenario for each consumable resource type.

The number of resource types has been fixed to 5, where there are 3 consumable

resource types and 2 nonconsumable resources types.

For this problem the LRTDP, FRTDP and BRTDP approaches have been

implemented using different bounds. For FRTDP, the initial length D of a trajec-

tory is 3 and the increasing ratio (kD) is 1.2. For BRTDP the constant τ was set

to 10. We tried different variations of settings and this one provided a fast con-

vergence. Also, as Singh and Cohn10 proposed, we pruned the action space when

QU (a, s) < L(s) for the implementations of FRTDP and BRTDP. Lets summarize

the implemented approaches here:

5.1. Experiments for Case 2 of Figure 1

The following approaches were implemented considering that each task possesses

its own set of resources:

• LRTDP: The upper bound of maxU has been used for LRTDP.

• R-BRTDP: The RbL and maxU bounds have been used for BRTDP.

• R-FRTDP: The RbL and maxU bounds have been used for FRTDP.

• DISTQ-LRTDP: The backups have been computed using the DISTQ-BACKUP

function (Algorithm 3), in a LRTDP context. The upper bound used was maxU.

• DISTQ-FRTDP: The backups has been computed using the DISTQ-BACKUP

function, but in a FRTDP context. The RbL and maxU bounds have been used.

• DISTQ-BRTDP: The backups have been computed using the DISTQ-BACKUP

function, but in a FRTDP context. The RbL and maxU bounds have been used.

1250003-20



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

Table 2. Planning time in seconds for our resource allocation problem where each task possesses
its own set of resource.

|Ta| 5 6 7 8 9 10 11 12

LRTDP 36.5 614 8243 – – – – –
DISTQ-LRTDP 1.24 3.78 10.65 38.56 122.62 457 1646 7654.45
R-FRTDP 8.3 56 412 3876 – – – –
DISTQ-FRTDP 0.85 2.28 5.65 11.45 25.63 74.23 258 1192
R-BRTDP 9.2 62 445 4287 – – – –
DISTQ-BRTDP 0.87 2.45 6.64 11.97 29.73 76.38 285 1359

To implement distributed Q-values, we divided the set of tasks in two equal

parts. The set of tasks Tai, managed by agent i, can be accomplished with the set

of resources Resi, while the second set of task Tai′ , managed by agent Agi′ , can be

accomplished with the set of resourcesResi′ . Resi had one consumable resource type

and one non-consumable resource type, while Resi′ had two consumable resource

types and one non-consumable resource type. When the number of tasks is odd, one

more task was assigned to Tai′ . There are constraints between the group of resources

Resi and Resi′ such that some assignments are not possible. These constraints are

managed by the arbitrator as described in Section 4.1.

Distributed Q-values permits to diminish the planning time significantly in our

problem settings, as seen in Table 2. Thus, distributed Q-values seems a very efficient

approach when a group of agents have to allocate resources which are only available

to themselves, but the actions made by an agent may influence the reward obtained

by at least another agent.

5.2. Experiments for Case 3 of Figure 1

We also compared the performance of LRTDP, FRTDP and BRTDP on our

resource allocation problem when the resources are available to all agents. The

following approaches are implemented with the resources available to all agents:

• LRTDP: The upper bound of maxU has been used for LRTDP.

• S-BRTDP: The SinghL and SinghU bounds have been used for BRTDP.

• S-FRTDP: The SinghL and SinghU bounds have been used for FRTDP.

• R-BRTDP: The RbL and maxU bounds have been used for BRTDP.

• R-FRTDP: The RbL and maxU bounds have been used for FRTDP.

• L-FRTDP: The RbL and SinghU bounds have been used for FRTDP.

• U-FRTDP: The SinghL and maxU bounds have been used for FRTDP.

• NPR-FRTDP: The same than R-FRTDP, but without action pruning.

As one can notice in Table 3, and in Figures 4 and 5, the efficient trajectories of

the two bounded approaches BRTDP and FRTDP coupled with our tight bounds

reduce the planning time significantly. Indeed, the LRTDP approach for resource

allocation, which does not prune the action space, is much more complex. For in-

1250003-21



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

Table 3. Planning time in seconds of FRTDP and BRTDP for our
resource allocation problem.

|Ta| 3 4 5 6 7 8

S-BRTDP 0.34 2.4 29 287 2373 –
S-FRTDP 0.3 2.1 23 202 1745 –
R-BRTDP 0.23 1.5 12.4 76 482 3987
R-FRTDP 0.21 1.4 11.2 69 450 3550
L-FRTDP 0.23 1.5 13.2 79 510 4150
U-FRTDP 0.27 1.8 18.2 180 1467 –

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8

T
im

e 
in

 s
ec

on
ds

Number of tasks

R-FRTDP
S-FRTDP

LRTDP

Fig. 4. Computational efficiency of S-FRTDP, R-FRTDP and LRTDP.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8

T
im

e 
in

 s
ec

on
ds

Number of tasks

R-FRTDP
NPR-FRTDP

LRTDP

Fig. 5. Computational efficiency of R-FRTDP, NPR-FRTDP and LRTDP.

1250003-22



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

Table 4. Average number of backups and average number
of actions performed for each backup made at s0, (|A(s0)|),
for our resource allocation problem.

|Ta| 4 5 6

LRTDP 58 (625) 316 (3125) 1038 (15625)

S-FRTDP 34 (214) 173 (956) 533 (4276)

R-FRTDP 23 (152) 122 (644) 345 (2604)

stance, it took an average of 1512 seconds to plan for the LRTDP approach with

six tasks. The S-FRTDP approach diminished the planning time by using a lower

and upper bound to prune the action space and with the efficient trajectories. R-

FRTDP further reduce the planning time by providing very tight initial bounds. In

particular, S-FRTDP needed 202 seconds in average to solve problem with six tasks

and R-FRTDP required 69 seconds. Indeed, the time reduction is quite significant

compared to LRTDP, which demonstrates the efficiency of using bounds to prune

the action space and produce efficient trajectories. Finally, in Table 3 the gain in

speed of R-FRTDP compared to S-FRTDP is mainly due to the lower bound as the

planning time is less for L-FRTDP than for U-FRTDP.

Table 4 details the average number of Bellman backups made for LRTDP,

S-FRTDP, and R-FRTDP for problems of 4 to 6 tasks. The average number

of actions performed for each backup made at s0 are in parenthesis. The results

demonstrate that tights initial bounds helps to reduce the number of backup to

perform. Indeed the number of backups required for convergence is significantly

smaller for R-FRTDP and S-FRTDP than for LRTDP. Indeed, the tighter the

bounds are, the faster these bounds converge to the optimal value. Furthermore,

since the action space is pruned for the bounded versions, the backups becomes less

complex, even if two values are computed.

6. Conclusion

This paper has contributed to solve complex stochastic resource allocation problems.

First, a distributed Q-values approach has been proposed when the resources are

distributed among agents a priori, but the actions made by an agent may influence

the reward obtained by at least another agent. In this case, the experiments have

shown that the proposed approach is very efficient.

Then, when the available resource are available to all agents and no distributed

Q-values is possible, we proposed tight bounds with heuristic search based on real-

time dynamic programming. In this context, we have implemented BRTDP and

FRTDP two existing real-time dynamic programming with two new tight bounds.

The experiments have shown a faster convergence of these two algorithms with the

proposed tight bounds.

1250003-23



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

P. Plamondon & B. Chaib-draa

The only condition for the use of our proposed bounds is that each task pos-

sesses consumable and/or nonconsumable limited resources, which we feel is a very

frequent problem in resource allocation domains.

As future work, we plan to complete our experiments with a rollout

algorithm,25 which is an approximation of dynamic programming where the value

of the states are initialized using a lower bound heuristic and a backup is performed

on reachable states until a certain depth is reached. In this context, the value of the

further states can be approximated using monte-carlo simulation and our marginal

revenue lower bound can be used as its initial heuristic.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Council of

Canada and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

We would also like to thank the anonymous reviewers for their helpful comments

and suggestions.

References

1. W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimension-
ality, volume 703. Wiley-Blackwell, 2007.

2. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, volume 116.
Cambridge Univ Press, 1998.

3. C. Szepesvári. Algorithms for reinforcement learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 4(1):1–103, 2010.

4. A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic program-
ming. Artificial Intelligence, 72(1):81–138, 1995.

5. B. Bonet and H. Geffner. Labeled LRTDP approach: Improving the convergence of
real-time dynamic programming. In Proceedings of the Thirteenth International Con-
ference on Automated Planning & Scheduling (ICAPS-03), pages 12–21, Trento, Italy,
2003a.

6. H. B. McMahan, M. L., and G. J. Gordon. Bounded real-time dynamic program-
ming: RTDP with monotone upper bounds and performance guarantees. In ICML
’05: Proceedings of the Twenty-Second International Conference on Machine learn-
ing, pages 569–576, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-180-5.
http://doi.acm.org/10.1145/1102351.1102423.

7. T. Smith and R. Simmons. Focused real-time dynamic programming for MDPs:
Squeezing more out of a heuristic. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence (AAAI), Boston, USA, 2006.

8. B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with uncer-
tainty and full feedback. In Proceedings of the Eighteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), August 2003b.

9. E. A. Hansen and S. Zilberstein. LAO⋆: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence, 129(1-2):35–62, 2001.

10. S. Singh and D. Cohn. How to dynamically merge markov decision processes. In Ad-
vances in Neural Information Processing Systems, volume 10, pages 1057–1063, Cam-
bridge, MA, USA, 1998. MIT Press. ISBN 0-262-10076-2.

11. R. S. Pindyck and D. L. Rubinfeld. Microeconomics. Prentice Hall, 2000.

1250003-24



February 15, 2012 10:17 WSPC/INSTRUCTION FILE
S0218213012500030

Stochastic Resource Allocation in Multiagent Environments

12. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jer-
sey, 1957.

13. R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge,
Massachusetts, 1960.

14. M. L. Puterman. Markov decision processes: Discrete stochastic dynamic program-
ming. John Wiley & Sons, Inc. New York, NY, USA, 1994.

15. D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming: An overview. In
Decision and Control, 1995. Proceedings of the 34th IEEE Conference on, volume 1,
pages 560–564. IEEE, 1996.

16. C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.
17. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 3rd edition.

Prentice-Hall, Englewood Cliffs, 2009.
18. B. Raphael P. Hart, and N. Nilsson. A formal basis for the heuristic determination of

minimum cost paths. IEEE Trans. Syst. Science and Cybernetics, 4(2):100–107, 1968.
19. Rina Dechter and Judea Pearl. Generalized best-first search strategies and the

optimality of A∗. Journal of the ACM, 32(3):505–536, 1985. ISSN 0004-5411.
http://doi.acm.org/10.1145/3828.3830.

20. R. E. Korf. Real-time heuristic search. Artificial Intelligence, 42(3):189–211, 1990.
21. S. J. Russell and A. Zimdars. Q-decomposition for reinforcement learning agents. In

International Conference on Machine Learning (ICML), pages 656–663, 2003.
22. G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems.

Technical report CUED/FINFENG/TR 166, Cambridge University Engineering De-
partment, 1994.

23. P. Plamondon, B. Chaib-draa, and A. Benaskeur. A q-decomposition and bounded
RTDP approach to resource allocation. In Proceedings of the Sixth International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2007), May 2007.

24. A. Beynier and A. I. Mouaddib. An iterative algorithm for solving constrained de-
centralized markov decision processes. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI-06), 2006.

25. D. Bertsekas. Rollout algorithms for constrained dynamic programming. Technical
report 2646, Lab. for Information and Decision Systems, MIT, Mass., USA, 2005.

1250003-25


