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Abstract. A fundamental difficulty faced by cooperative multiagent systems is 
to find how to efficiently coordinate agents. There are three fundamental proc-
esses to solve the coordination problem: mutual adjustment, direct supervision 
and standardization. In this paper, we present our results, obtained in the Ro-
boCupRescue environment, comparing those coordination approaches to find 
which one is the best for a complex real-time problem like this one. Our results 
show that a decentralized approach based on mutual adjustment can be more 
flexible and give better results than a centralized approach using direct supervi-
sion. Also, we have obtained results showing that a standardization rule like the 
partitioning of the map can be helpful in those kind of environments. 

1   Introduction 

Cooperative multiagent systems in which agents must interact together to achieve 
their goals is a very active field of research [13]. A fundamental difficulty faced by 
such systems is to find how to efficiently coordinate the actions of different agents 
(independent software entities) to make them help each other, instead of harming each 
other [3,4,6]. The coordination in multiagent systems is the process used to manage 
the dependencies between different activities [5]. 

There are three fundamental processes to solve the coordination problem [7]: mu-
tual adjustment [11,12], direct supervision and standardization [9,10]. Mutual adjust-
ment means that each agent is trying to adapt its behaviour to improve the coordina-
tion. Direct supervision, means that there is one agent that can send orders to other 
agents. Finally, standardization means that there are some social laws enforcing the 
coordination among the agents. 

In this paper, we present some tests comparing a decentralized approach (mutual 
adjustment) against a centralized approach (direct supervision). We also have made 
another test comparing the mutual adjustment with the standardization approach. The 
results presented have been obtained in the RoboCupRescue simulation environment. 
This is a real-time environment where agents, representing firefighters, policemen and 
paramedics have to cooperate to save people after a natural disaster in a city [1,2]. 

In RoboCupRescue, the coordination is very important because there are strong 
dependencies between agents activities. For instance, a firefighter cannot extinguish a 



fire if the roads were not cleared by a policeman to enable him to reach the fire. In 
fact, for a complex problem like the RoboCupRescue, it is not obvious to see which 
coordination strategy is the most effective. It is why we have made some tests to 
compare different strategies and to find which one is the best for this kind of applica-
tion. 

This paper compares the usefulness of decentralisation on two different tasks: ex-
tinguishing fires and rescuing civilians. In addition, it studies the usefulness of parti-
tioning the environment when the tasks are really dynamic and only one agent has to 
be assigned to a specific task. The partitioning can be seen as a social law [9] dictat-
ing the responsibilities of each agent. Before explaining those strategies, we firstly 
present our test environment, the RoboCupRescue simulation. 

2   The RoboCupRescue Simulation: a Complex Environment 

The goal of the RoboCupRescue simulation project is to build a simulator of rescue 
teams acting in large urban disasters [1,2]. This project takes the form of an annual 
competition in which participants design rescue agents trying to minimize damages, 
caused by a big earthquake, such as civilians buried, buildings on fire and blocked 
roads. In the simulation, participants should have approximately 30 to 40 agents of six 
different types to manage: 

− FireBrigade: Their goal is to extinguish fires.  
− PoliceForce: Their goal is to clear roads to enable agents to circulate. 
− AmbulanceTeam: Their goal is to transport injured agents and search in shat-

tered buildings for buried civilians. 
− Center agents: There are three types of center agents: FireStation, PoliceOffice 

and AmbulanceCenter. The only actions those agents can make are to send and 
receive messages. A center agent can read more messages than a platoon agent 
(moving agents in the simulation), thus they can have a better global view of the 
situation, so center agents can serve as information centers and coordinators for 
their platoon agents. 

 

FireBrigade PoliceForce

AmbulanceTeam

AmbulanceCenter

FireStation PoliceOffice
 

Fig. 1. Communications' organization in RoboCupRescue. Links between types of agents indi-
cate that a communication is possible by radio between those types of agents. 

Fig. 1 shows the communications' organization between the different types of 
agents in the RoboCupRescue simulation. This organization limits the liberty of com-



munication between agents. As we can see, it takes at least three steps for a message 
to go from a FireBrigade agent to a PoliceForce agent. 

The RoboCupRescue environment is complex because it imposes some hard con-
straints such as: 

− a real-time constraint on the agents' response time because all agents have to be 
able to reason in less than 500 ms, 

− the agents' perceptions are limited, 
− the number of messages that an agent can send and hear is also limited. 

In the simulation, each individual agent receives visual information of only the re-
gion in its surroundings. Thus, no agent has a complete knowledge of the global state 
of the environment. Therefore the RoboCupRescue domain is in general, collectively 
partially observable [8]. This means that even if agents are putting all their percep-
tions together, they will not have a perfect perception of the environment. This uncer-
tainty complicates the problem greatly. Agents will have to explore the environment, 
as it would not be enough to limit themselves on the visible problems. They will also 
have to communicate to help each other to have a better knowledge of the situation. 

Another difficulty in the RoboCupRescue simulation comes from the fact that the 
agents are heterogeneous, they cannot do everything by themselves. Therefore, they 
need to cooperate in order to accomplish their goal efficiently. 

Furthermore, agents have to be really careful about the messages they send, be-
cause it is really easy to loose messages due to the limitations on the number of mes-
sages an agent can hear and also due to the organization presented in Fig. 1. 

3   Centralized Against Decentralized Decision Making 

In this section, we present two different tasks and for each of those two, we present a 
centralized and a decentralized decision process. First, we define the FireBrigades’ 
task that consists in choosing which fire to extinguish. Then, we present the Ambulan-
ceTeams’ task that consists in choosing which civilian to rescue. 

3.1   FireBrigade Agents 

The main task of the FireBrigade agents is to extinguish fires. Therefore, the main 
decision that those agents have to take is to decide which fire to extinguish among all 
visible fires. To address this, we have developed two different decision processes: one 
decentralized among all FireBrigade agents and one centralized in the FireStation. 

Decentralized Decision Process. In the decentralized process, each FireBrigade 
chooses the fire it wants to extinguish by itself, so all decisions concerning fire 
extinguishment is taken in a distributed manner, locally by each FireBrigade agent. 

Each FireBrigade agent is maintaining a list of all the buildings on fire which it 
knows about. This list is then sorted according to a certain function estimating how 
good the choice of each building is. With this function, FireBrigades are prioritizing 



certain categories of building. Empirically, we have chosen some weight to define the 
relative importance of fires’ characteristics to make agents prioritize : 

− the early fires, with an intensity of 1, because they are generally easy to extin-
guish and at the border of a zone on fire; 

− the fires that put the biggest area in danger, to protect the biggest area; 
− the closest fires, because it is faster to reach such fires; 
− the smallest fires, because they are easier to extinguish; 
− the fires with FireBrigades already on it, because it is faster to extinguish a fire 

in group; 
− the buildings that are not concrete reinforced, because those are harder to extin-

guish. 

Centralized Decision Process. In the centralized decision process, practically all 
decisions are made by the FireStation agent. Therefore, the decision process is 
centralized in one agent. The FireStation is informed of the situation, i.e. where the 
fires are, by messages sent by all agents in the simulation. At each turn, the 
FireStation agent uses a function, similar to the one described in the decentralized 
approach, to sort all fires according to their importance. 

Afterwards, the FireStation agent sends a message to each FireBrigade containing 
the two best fire it has identified. Those two fires are seen as orders by the FireBri-
gades, so they obey and try to extinguish the first fire on the list. When the first one is 
extinguished, they try to extinguish the second one. 

The FireBrigade agents blindly obey the FireStation. The only time they choose 
by themselves which fire to extinguish is when they do not receive a message from 
the FireStation. 

Results.  To test those two different coordination approaches, we have made some 
test runs on three different maps. To study the effectiveness of our agents at 
accomplishing the extinguishing task, we have recorded the surface burned in each 
situation. In Fig. 2, we can see two graphics representing the average surface burned 
during 20 runs on two different cities. In Fig. 2 a), the decentralized approach gives 
better results than the centralized approach, but on Fig. 2 b), it is the opposite. 

Those results show that there is not one approach that is better than the other in all 
situations. To explain that, we should note that one of the big difference between the 
two simulated cities is that at the beginning, the roads were more blocked in city a). 
This has an impact because the center in the centralized approach does not consider 
the agents’ positions, so if the roads are blocked, there is a good chance that the 
agents have some difficulties to reach the building on fire. Since each agent in the de-
centralized approach is considering its distance from the fire, it has more chance to 
reach the chosen fire as it is normally closer. 

With the centralized approach, if the roads are not too blocked, the results are bet-
ter because the center has the best global view and consequently it can choose the best 
fire to extinguish and the FireBrigades are able to reach the building more easily. 
When the roads are more blocked, the decentralized approach becomes better because 
each agent chooses closer fires, so it has more chance to reach them. 



That shows that the best approach would be to combine those two extremes by 
having an approach where the decision is made in a centralized way in some situa-
tions and in a decentralized way in other situations. The combination and the identifi-
cation of those situations will be the subject of future research. 

 

 
Fig. 2. Average surface burned during 20 runs of two different situations. 

3.2   AmbulanceTeam Agents 

The main task of the AmbulanceTeam agents is to rescue civilians. Therefore, the 
main decision those agents have to take is to decide which civilian to rescue between 
all known buried civilians. As for the FireBrigades, we have developed two different 
decision processes: one decentralized among all AmbulanceTeam agents and one cen-
tralized in the AmbulanceCenter. 

Decentralized Decision Process. In the decentralized process, all AmbulanceTeam 
agents choose which civilian to rescue by themselves. They use a greedy planning 
algorithm to try to maximize the number of civilians that could be saved. Each task, 
corresponding at saving a civilian, has a time length giving the necessary time to save 
the civilian. This time is the sum of: (a) the travel time to go to the civilian location, 
(b) the rescuing time and (c) the time to transport the civilian to the refuge. Each task 
also has a deadline representing the expected death time of the civilian. 

The chosen civilian is the one that maximizes the number of civilians that could be 
rescued after him. To do that, we count for each civilian how many other civilians we 
would have time to save before its expected death time. The “best one” is chosen by 
the AmbulanceTeam to be rescued. After this civilian has been rescued, the Ambulan-
ceTeam chooses the next one with the same algorithm. 

Centralized Decision Process. In the centralized decision process, all decisions are 
made by the AmbulanceCenter. At each turn of the simulation, this center agent sends 
the ordered list of civilians to rescue to the AmbulanceTeams. The center agent 
determines which civilians to save and in which order by using the same algorithm 



described before for the decentralized process. The only difference is that the center 
estimates the traveling time to be two times the time to reach a refuge from the 
civilian location. It has to do an estimation because it doesn’t know the position of 
each AmbulanceTeam, so it does not know the distance from the AmbulanceTeam to 
the civilian. At each turn, the center agent determines the two best civilians to rescue 
and sends this information to each AmbulanceTeam. Since all AmbulanceTeams 
receive the same messages, they are always rescuing the same civilian. This is a good 
behavior because they work faster when they work together. For example, if one 
AmbulanceTeam agent is rescuing a civilian, it could take 30 minutes, but if the are 
two rescuing the same civilian, it could take 20 minutes and with three it could take 
15 minutes. When they are in group, they can dig faster to find the civilian trapped in 
the building. 

Results. To test those two approaches, we have executed the simulation 20 times on 
three different maps and we have recorded the total HP of all agents in the simulation. 
The HP represents the healthiness of an agent. If the HP is 0, the agent is dead. 

Fig. 3 shows the average of the total HP for the centralized and the decentralized 
approaches. As we can see, the two approaches are quite similar. In our two other 
maps, the results are even more identical. One reason for this could be that the Ambu-
lanceTeam agents have practically the same vision of the situation as the Ambu-
lanceCenter. This is because they receive almost all the messages concerning the ci-
vilians. Therefore, since they are choosing the civilians based on the same function 
they have a good chance to choose the same civilian, thus generating the same behav-
ior as for the centralized process. 
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Fig. 3. The average total HP for the centralized and decentralized approaches. 

The little difference in favor of the decentralized process could be explained by the 
better individual choice of civilians at the beginning. In the decentralized way, each 
AmbulanceTeam agent chooses a closer civilian, so it can have more chance to be able 
to reach it if the roads are blocked. This distinction is rapidly lost because after a short 
time, the AmbulanceTeam agents can move more freely and since they all have ap-
proximately the same view of the situation, they almost choose the same civilian 
every time, thus generating the same behavior as in the centralized process. 



4   Partitioning the Environment 

In this section, we present our results showing the impacts of partitioning the envi-
ronment. In fact, this simplifies the coordination, because each agent has a region for 
which it is responsible for. To illustrate that, we present some results obtained with 
our PoliceForce agents in two different settings: with sectors or without sectors. 

PoliceForces are playing a key role in the rescue operation by clearing the roads, 
thus enabling all agents to circulate. Without them, some actions would be impossible 
because all other agents would be indefinitely blocked by roads' blockades. Therefore, 
it is really important for them to be fast and efficient. For those agents, we have de-
veloped two strategies: one where each agent is free to execute all tasks, no matter 
where they come from, and an other strategy where some agents are responsible for a 
specific sector assigned to them at the beginning of the simulation. 

4.1   Partitioning in Sectors 

For this strategy, we have divided the map in nine sectors to help agents with the task 
allocation problem. So, at the beginning of the simulation, when the agent receives 
the information of the city map, it begins by dividing the map in nine homogeneous 
sectors and sends its position to the PoliceOffice. When the PoliceOffice has received 
all the positions of the PoliceForce agents, it assigns a sector to the nine agents that 
are closer to the center of a sector. Thus, there is one and only one PoliceForce af-
fected to a sector and this agent has the responsibility of this sector. By doing so, we 
have divided our PoliceForces in two groups: those with a sector and those without a 
sector. Therefore, even in the strategy with sectors, we have some agents that do not 
have a sector because there are more agents than sectors. Those agents without a sec-
tor are in charge of clearing the roads around the closest fire. Here is a list of the 
strategies, in their priority order, that PoliceForce agents follow: 

1. Unblock other agents in its sector. 
2. Clear roads between fires and refuges in its sector. 
3. Clear roads around refuges in its sector. 
4. Clear all the roads in its sector. 

Thus, the highest priority task of a PoliceForce agent with a sector is to help the 
other agents in its sector. This is very important, because FireBrigades and Ambulan-
ceTeams would not be able to do their tasks if they are blocked. Therefore, when an 
agent is blocked it sends a message to the PoliceForces indicating its position. When 
it receives the message, the PoliceForce responsible for this sector adds it to the list 
of roads to clear. When a PoliceForce agent has to make a decision, it chooses the 
closest road to clear on this list. 

When the preceding list is empty, the PoliceForce agents with a sector try to open 
the roads for the FireBrigade agents by clearing all roads between a fire in the sector 
and the closest refuge. Notice that the refuge can be in its sector or not. This is a pro-
active action to help the FireBrigades, because there is a good chance that those 
agents would ask for a road clearing. FireBrigades have a good chance to use those 
roads because they have to refill their tank at the refuge, so they are often going from 



a fire to a refuge and in the other direction too. This strategy helps to reduce the 
communications and the agent movements. 

Afterwards, PoliceForce agents are clearing roads around refuges. They clear all 
roads in a perimeter of 40 meters around the refuge, if it is in their sector. This is also 
a proactive action, because refuges are intensively used by the FireBrigade and the 
AmbulanceTeam agents. 

When the three preceding tasks have been done, PoliceForces clear all the roads in 
their sector. They first calculate the best path to visit all the roads in their sector. After 
this, they will follow this path and clear all blocked roads on their path. Thus, when 
all those tasks are done, all roads on the map have been cleared. 

4.2   Without Partitioning 

In this case, PoliceForce agents have only two tasks. The first one is to clear roads to 
help the other agents. When they receive a message asking for a clearing, they add it 
to the list of roads to clear. From this list, they choose the closest road to clear. Since 
they do not have any sector, they try to help all agents, no matter where they are on 
the map. 

The second task is to clear roads on the path from a fire to a refuge. Unlike the 
other type of PoliceForces, they are not restrained to a specific sector, so they choose 
the closest fire. By clearing the path from a fire to a refuge, they clear the roads 
around fires and around refuges. This is interesting since they are really important 
spots to clear to help the other agents to move freely in the city. 

4.3   Results 

To test those two approaches, we have executed the simulation 20 times on three 
different maps. We have recorded the width of each road that is blocked in the 
simulation and the number of time that an agent is asking to clear a road. The graphic 
of Fig. 4 a) indicates that the PoliceForce agents with sectors gave better global 
results. In this graphic, the score is the total score given by the RoboCupRescue 
simulation. There is not a big difference, but in average, the partitioning of the map in 
sectors helped those agents. 

On the Fig. 4 b), we can see that the PoliceForces with sectors are more efficient at 
clearing roads, because there are less roads blocked in average at the end of the simu-
lation. The Fig. 4 c) shows that the number of clearing messages with or without the 
partitioning strategy is the same. One explication might be that PoliceForce agents 
with sectors are clearing all the roads in their sector, but they may clear roads that are 
not used by other agents. That could be why the number of clearing messages is the 
same even if there are less roads blocked when the agents are using sectors. 

 



 
Fig. 4. Comparison of the results obtain for the PoliceForce agents with and without sectors. a) 
the total score for the 20 simulations. b) The average roads’ width blocked during the 20 simu-

lations. c) The average number of clearing messages during the 20 simulations. 

5   Conclusion 

In this paper, we have compared a centralized approach with a decentralized approach 
on two different tasks. Our preliminary results show that the decentralized approach is 
better when the situation is more chaotic because the center agents do not know the 
position of each of their agent. Since platoon agents have some problems reaching the 
goal of the center agent, they obtain better results when they are deciding by them-
selves, because they can take their distance from the objective more into account. 

In the case of a centralized approach, we obtain better results when the agents are 
free to move, because in those situations, the distance from the goal is not important. 
Thus, the better global vision of the center can help to choose the best goal. 

For the task of rescuing civilians, we have seen that the difference is not significant 
between the centralized and the decentralized approach. This happens because the in-
formation concerning civilians is less dynamic and the messages are received by all 
agents. So, every AmbulanceTeam agent has sensibly the same view as the FireSta-
tion agent. Therefore, AmbulanceTeam agents often make the same decisions as the 
center agent. 



We have also tested in this paper the usefulness of partitioning the environment in 
sectors. As we have demonstrated with our results, the partitioning of the map is help-
ful for a task, like clearing the roads, that is very dynamic. In the RoboCupRescue en-
vironment, PoliceForce agents can receive a lot of messages asking to clear a road 
and the partitioning help in assigning a specific clearing task to an agent. Each agent 
knows the tasks that it is responsible for without any communication. So, there is al-
ways one and only one agent executing a specific task. The coordination is assured 
with those sectors and this can be seen as a coordination by social laws. 

In short, we have shown in this paper that when a task is complicated, it is useful to 
use a decentralized decision making process and also if possible to partition the envi-
ronment in sectors and assigning an agent to be responsible for each sector. 
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