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a b s t r a c t 

Gaussian process (GP) is a popular non-parametric model for Bayesian inference. However, the perfor- 

mance of GP is often limited in temporal applications, where the input–output pairs are sequentially- 

ordered, and often exhibit time-varying non-stationarity and heteroscedasticity. In this work, we propose 

two particle-based GP approaches to capture these distinct temporal characteristics. Firstly, we make use 

of GP to design two novel state space models which take the temporal order of input–output pairs into 

account. Secondly, we develop two sequential-Monte-Carlo-inspired particle mechanisms to learn the la- 

tent function values and model parameters in a recursive Bayesian framework. Since the model parame- 

ters are time-varying, our approaches can model non-stationarity and heteroscedasticity of temporal data. 

Finally, we evaluate our proposed approaches on a number of challenging time-varying data sets to show 

effectiveness. By comparing with several related GP approaches, we show that our particle-based GP ap- 

proaches can efficiently and accurately capture temporal characteristics in time-varying applications. 

Crown Copyright © 2017 Published by Elsevier B.V. All rights reserved. 
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. Introduction 

Gaussian process (GP) is a popular Bayesian nonparametric

odel due to its elegant inference framework [1] . However, the

erformance of GP is often limited in temporal applications [2–4] ,

ainly because of two following reasons. First , GP is a batch mod-

ling approach which may be not efficient to make online predic-

ion for the sequentially-ordered temporal data sets [2,4] . Second ,

t is difficult for GP to capture distinct characteristics such as non-

tationarity and heteroscedasticity which often exist in the tempo-

al applications [1,5] . 

To model temporal input–output data pairs sequentially, sev-

ral online variants of GP have been investigated by designing au-

oregressive models [6] ; local online GP approaches [2,7] ; Bayesian

nline learning with sparsification [4,8–10] ; GP-based state space

odels [11–14] with different Bayesian approximation techniques

uch as Kalman filter [15,16] , assumed density filter [17] , Monte

arlo sampling [18–20] . However, the model parameters in these

P approaches are often assumed to be time-invariant. As a result,

t may be restricted for these approaches to model time-varying

on-stationarity and heteroscedasticity. 
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In general, non-stationarity refers to the input-dependent

moothness, where the correlation between any two latent func-

ion values does not only depend on the similarity between two

orresponding input vectors, but it is also related to these two in-

ut vectors themselves [1] . Additionally, heteroscedasticity refers

o the input-dependent noise, where the output noise is changed

long with the location of the corresponding input vector [1] . To

apture these distinct data characteristics, a number of GP ex-

ensions have been investigated by designing non-stationary co-

ariance functions in GP [1,21,22] , adding another GP on the out-

ut noise [22–25] , warping GP with different nonlinear functions

26–29] , developing mixtures of GP experts [30–32] . However,

hese batch GP approaches are often inefficient to make online pre-

iction for time-varying applications. 

To address the difficulties above, we propose two novel particle-

ased GP approaches in this paper, where one can make online

rediction as well as model time-varying non-stationarity and het-

roscedasticity in two efficient and accurate recursive Bayesian

rameworks. Firstly , we take advantage of GP to develop two novel

tate space models (SSMs) in which the sequential order of tem-

oral data pairs is modeled to make efficient online prediction.

urthermore , the parameters in our two SSMs are time-varying

o capture non-stationarity and heteroscedasticity in the tempo-

al data sets. Note that, the differences between our two SSMs are

he different time-varying assumptions of these model parameters.

his mainly accounts the trade-off between efficiency and accuracy
 for time-varying applications: Particle-based Gaussian process 
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1 Note that it is straightforward to choose other mean functions to do mathemat- 
when performing online inference. Finally , based on our two time-

varying SSMs, we respectively design two effective particle mech-

anisms to infer the latent function values and model parameters

over time, in order to learn the distinct temporal characteristics in

time-varying applications. 

On one hand, our approaches are different from those online GP

variants, since our approaches can model non-stationarity and het-

eroscedasticity in the temporal applications. This is mainly because

we learn the model parameters over time. On the other hand, our

approaches are different from those non-stationary/heteroscedastic

GP variants, since our approaches can make efficient online pre-

diction for temporal data sets. This is mainly credited to our novel

GP-constructed SSMs with effective particle inference mechanisms.

The rest of this paper is organized as follows. In Section 2 , we

review the basics of GP. In Section 3 , we introduce our particle-

based GP approaches in detail. In Section 4 , we evaluate our pro-

posed approaches on five challenging time-varying applications, by

comparing them with several relevant GP approaches. Finally, we

conclude our paper in Section 5 . 

2. Background 

In this section, we first introduce the definition of Gaussian pro-

cess (GP). Then we review the standard GP regression approach.

Finally, we briefly discuss a conventional way to model temporal

data with GP regression. 

2.1. Definition of Gaussian process 

Gaussian process (GP) is a collection of random variables, any

finite number of which have a joint Gaussian distribution [1] . It

has been widely used as a Bayesian prior over the latent func-

tion, where the function values at any finite number of inputs are

Gaussian-distributed random variables [1,33–35] . Specifically, a GP

prior over the latent function f ( x ) is denoted by 

f (x ) ∼ GP (m (x ) , k (x , x 

′ )) , (1)

with a mean function m ( x ) and a covariance function k ( x, x ′ ) [1] , 

m (x ) = E[ f (x )] , (2)

k (x , x 

′ ) = E[( f (x ) − m (x ))( f (x 

′ ) − m (x 

′ ))] , (3)

where x , x ′ ∈ R 

d x are any two d x -dimension input vectors. 

According to the definition of GP, one can obtain that the prior

over the latent function values f (X ) = [ f (x 1 ) , . . . , f ( x T )] 
T at any T

input vectors X = [ x 1 , . . . , x T ] 
T is a jointly Gaussian distribution,

i.e., 

p( f (X )) = N (m (X ) , K(X, X )) , (4)

where the mean vector m ( X ) is computed from the mean function

m ( x ), 

m (X ) = 

[ 

m (x 1 ) 
· · ·

m (x T ) 

] 

, (5)

and the covariance matrix K ( X, X ) is computed from the covariance

function k ( x, x ′ ), 

K(X, X ) = 

[ 

k (x 1 , x 1 ) · · · k (x 1 , x T ) 
· · · · · · · · ·

k (x T , x 1 ) · · · k (x T , x T ) 

] 

. (6)

In this work, we follow [1,36] to choose a widely-used GP prior,

f (x ) ∼ GP (m (x ) = 0 , k (x , x 

′ )) , (7)

i

Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference
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here the mean function is zero for simplicity. 1 Furthermore, the

ovariance function is a popular squared exponential (SE) kernel

1,36] , i.e., 

 (x , x 

′ ) = σ 2 
f e 

−0 . 5(x −x ′ ) T L −1 (x −x ′ ) = σ 2 
f k � (x , x 

′ ) , (8)

here σ 2 
f 

is the amplitude parameter, k � (x , x ′ ) =
 

−0 . 5(x −x ′ ) T L −1 (x −x ′ ) is the unscaled covariance function in which L

s diagonal with the length-scale parameter vector � = [ l 1 , . . . , l d x ] 
T .

n the following, we illustrate how to use GP to address the stan-

ard nonlinear regression task from a Bayesian view. 

.2. Gaussian process regression 

Suppose that there is a training set D = (X, y ) = { (x t , y t ) } T t=1

ith T input–output data pairs, where x t ∈ R 

d x , y t ∈ R , X =
 x 1 , . . . , x T ] 

T , y = [ y 1 , . . . , y T ] 
T . Each output is assumed to be gen-

rated from 

 = f (x ) + εy , (9)

here the Gaussian noise is εy ∼ N (0 , σ 2 
y ) with variance σ 2 

y . Fur-

hermore, the GP prior over the latent function is assumed to be

f (x ) ∼ GP (0 , k (x , x ′ )) with the SE covariance function k (x , x ′ ) =
2 
f 

k � (x , x ′ ) in Eq. (8) . For convenience, we collect the parameters

f the SE covariance function ( σ 2 
f 
, � ) and the noise variance σ 2 

y 

nto a parameter vector � = [ σ 2 
f 
, �, σ 2 

y ] 
T . 

Given the training set D = (X, y ) and M test inputs X � =
 x 1 � , . . . , x 

M 

� ] 
T , the regression task can be addressed by using GP

n the following Bayesian manner. Specifically, predicting the test

utput vector y � and the model parameters � can be interpreted

o learn the predictive distribution over y � and �, 

p(y � , �| X � , X, y ) = p(y � | X � , X , y , �) p(�| X , y ) . (10)

Parameter learning by p ( �| X , y ): As p ( �| X , y ) ∝ p ( y | X, �), a pop-

lar approach to infer � is to minimize the negative log likelihood

ith gradient optimization [1] 

− log p(y | X, �) 

= 

1 

2 

y T [ K(X, X ) + σ 2 
y I] 

−1 y + 

1 

2 

log | K(X, X ) + σ 2 
y I| + 

n 

2 

log 2 π, 

(11)

here K ( X, X ) is constructed by using Eq. (6) . In practice, this ap-

roach works well [1] and thus we apply it for the standard GP

egression in this paper. 

Output inference by p ( y � | X � , X , y , �): After � is learned, one

an make prediction at test inputs X � by using p ( y � | X � , X , y ,

). Firstly , due to the fact that f (x ) ∼ GP (0 , k (x , x ′ )) and the

oise in Eq. (9) is Gaussian, the joint distribution over the train-

ng outputs y and latent function values at test inputs f (X � ) =
 f (x 1 � ) , . . . , f (x M 

� )] T is Gaussian [1] , 

p(y , f (X � ) | X, X � , �) = N 

(
0 , 

[
K(X, X ) + σ 2 

y I K(X, X � ) 
K(X � , X ) K(X � , X � ) 

])
, (12)

here K ( X � , X ) and K ( X � , X � ) are constructed by using X � and X in

q. (6) . Secondly , based on the conditional property of a joint mul-

ivariate Gaussian distribution (Appendix A of [1] ), one can obtain

hat the conditional distribution p ( f ( X � )| X � , X , y , �) is Gaussian, 

p( f (X � ) | X � , X, y , �) = N (μ� , �� ) , (13)

ith the following mean vector μ� and covariance matrix �� 

hich are computed from the corresponding joint distribution p ( y ,

 ( X � )| X, X � , �) in Eq. (12) [1] , 

� = K (X � , X )[ K (X, X ) + σ 2 
y I] 

−1 y , (14)
cal derivations without difficulties. 

 for time-varying applications: Particle-based Gaussian process 
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� = K(X � , X � ) − K(X � , X )[ K(X, X ) + σ 2 
y I] 

−1 K(X � , X ) T . (15) 

inally , because p ( f ( X � )| X � , X , y , �) in Eq. (13) and the noise in Eq.

9) are Gaussian, the target distribution p ( y � | X � , X , y , �) is also

aussian, 

p(y � | X � , X, y , �) = N (μ� , �� + σ 2 
y I) . (16)

ote that, the computation complexity of this GP regression is

ainly governed by the covariance matrix inversion of T train-

ng pairs in Eqs. (11) , (14) , and (15) . This computation results in

(T 3 ) which is often expensive when T is beyond a few thousand

1] . Next, we briefly discuss a conventional way to model temporal

ata with the standard GP regression. 

.3. Temporal data modeling with GP regression 

For a temporal data set, the input–output pairs are sequentially-

rdered , i.e., the t th input–output pair D t = (x t , y t ) is made avail-

ble at time t . Hence, in this work we mainly focus on online

rediction , which is one of the most important tasks in temporal

ata modeling. Specifically, our goal is to predict the current out-

ut y t given the current input x t and the past input–output pairs

(x 1: t−1 , y 1: t−1 ) . In the following, we discuss a conventional way to

ddress this task with the standard GP regression. 

Suppose that the output at each time step is generated from

 = f (x ) + εy in Eq. (9) , the online prediction task can be inter-

reted as a predictive distribution within the setting of GP regres-

ion, 

p(y t | x t , x 1: t−1 , y 1: t−1 , �) , (17)

hich can be addressed by Eq. (16) when X = x 1: t−1 , y = y 1: t−1 ,

 � = x t , y � = y t . However, there are mainly two limitations in this

olution. Firstly , the standard GP regression addresses the online

rediction task in an inefficiently-offline way. In this case, the

omputational complexity would be cubic in t and keep grow-

ng when t increases. Secondly , the model parameter � in GP is

ime-invariant. As a result, it is difficult for this GP solution to

odel non-stationarity and heteroscedasticity in time-varying ap-

lications. 

To make online prediction with high efficiency and accuracy, we

ropose two novel particle-based GP approaches in the next sec-

ion to learn the distinct characteristics of temporal data sets over

ime. 

. Our particle-based Gaussian process approaches 

In this section, we describe our particle-based GP approaches

n detail. Firstly , we design two novel state space models by using

P, to take the sequential order of temporal data into account. Sec-

ndly , we derive two sequential-Monte-Carlo-inspired particle ap-

roaches on our state space models, to perform online prediction

fficiently and capture time-varying characteristics (such as non-

tationarity and heteroscedasticity) accurately. Finally , we take ad-

antage of backward smoothing to effectively infer the history of

atent function values given the history of temporal input–output

airs. 

.1. State space models 

To take the sequential order of temporal input–output pairs into

ccount, we make use of GP to develop two novel state space

odels (SSMs) in which the latent state at t is the function value

f (x t ) = f t . Furthermore, to reflect temporal characteristics such as

on-stationarity and heteroscedasticity, the model parameters in

ur SSMs are time-varying. 
Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference

approaches, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom
.1.1. Time-varying observation model 

Based on Eq. (9) , the observation model of our two SSMs is 

 t = f (x t ) + εy,t , εy,t ∼ N (0 , σ 2 
y,t ) . (18)

ne can see that, different from Eq. (9) , the Gaussian noise εy, t in

ur observation model is assumed to be time-varying in order to

apture heteroscedasticity of temporal data. 

.1.2. GP-based dynamical transition 

To make efficient online prediction, we propose to construct

 dynamical transition from f (x t−1 ) = f t−1 to f (x t ) = f t by tak-

ng advantage of GP. Since f (x ) ∼ GP (0 , k (x , x ′ ) = σ 2 
f 

k � (x , x ′ )) , one

an obtain that the joint distribution p( f t , f t−1 | x t , x t−1 , σ
2 
f 
, � ) is

aussian, 

p( f t , f t−1 | x t , x t−1 , σ
2 
f , � ) 

= N 

(
0 , 

[
σ 2 

f 
k � (x t , x t ) σ 2 

f 
k � (x t , x t−1 ) 

σ 2 
f 

k � (x t−1 , x t ) σ 2 
f 

k � (x t−1 , x t−1 ) 

])
. (19) 

n this case, the conditional distribution p( f t | f t−1 , x t , x t−1 , σ
2 
f 
, � ) is

lso Gaussian (according to Appendix A of [1] ), 

p( f t | f t−1 , x t , x t−1 , σ
2 
f , � ) = N (g(� ) f t−1 , σ

2 
f q (� )) , (20)

here 

(� ) = 

k � (x t , x t−1 ) 

k � (x t−1 , x t−1 ) 
, (21) 

 (� ) = k � (x t , x t ) − k 2 � (x t , x t−1 ) 

k � (x t−1 , x t−1 ) 
. (22) 

rom the view of Bayesian filtering [37] , p( f t | f t−1 , x t , x t−1 , σ
2 
f 
, � )

n Eq. (20) is equivalent to the following dynamical transition from

f t−1 to f t , with an additive Gaussian noise εf : 

f t = g(� ) f t−1 + ε f , ε f ∼ N (0 , σ 2 
f q (� )) . (23) 

his dynamical transition takes the temporal order into account,

ence it is suitable for efficient online prediction. However, the pa-

ameters σ 2 
f 

and � in this transition are time-invariant. As a result,

t would not effectively model the time-varying non-stationarity

such as sudden function shifts). Hence, we next propose two time-

arying transition models, based on Eq. (23) . The parameters in our

wo transition models are with different time-varying assumptions,

n order to balance the trade-off between efficiency and accuracy

hen modeling the temporal non-stationarity. 

.1.3. Time-varying transition model (I) 

We propose our time-varying transition model (I) as follows: 

f t = g(� ) f t−1 + ε(I) 
f,t 

, ε(I) 
f,t 

∼ N (0 , σ 2 
f,t q (� )) . (24)

ifferent from Eq. (23) , our transition model (I) is time-varying due

o the fact that σ 2 
f,t 

in the transition noise ε(I) 
f,t 

is time-varying. 

There are two important reasons for this design. Firstly, by

ssuming a time-varying σ 2 
f,t 

, our time-varying transition model

I) can adaptively adjust the transition noise ε(I) 
f,t 

to model the

on-stationary transition from f t−1 to f t . Secondly, σ 2 
f,t 

is linearly-

eparable with q ( � ) in the transition noise ε(I) 
f,t 

. In this case, an effi-

ient sequential inference framework, which is inspired by particle

earning [38] , can be developed to learn σ 2 
f,t 

over time. 
 for time-varying applications: Particle-based Gaussian process 
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Table 1 

Model parameter comparison. (−) Time-invariant, (+) Time-varying. 

Model parameters Standard GP Our SSM (I) Our SSM (II) 

Amplitude in SE kernel: σ 2 
f 

(−) : σ 2 
f 

(+) : σ 2 
f,t 

(+) : σ 2 
f,t 

Lengthscale in SE kernel: � (−) : � (−) : � (+) : � t 
Output noise variance: σ 2 

y (−) : σ 2 
y (+) : σ 2 

y,t (+) : σ 2 
y,t 
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3.1.4. Time-varying transition model (II) 

Note that, σ 2 
f,t 

in our time-varying transition model (I) can

represent non-stationarity to some degree, but the flexibility of

Eq. (24) may be still limited due to the fact that � in g ( � ) and q ( � )

is time-invariant. In fact, � is the length-scale parameter vector of

the SE kernel ( Eq. (8) ), which weights the importance of different

input dimensions. In this case, the time-invariant � may not cap-

ture the time-varying importance of different input dimensions in

temporal data. 

Hence, we propose our time-varying transition model (II) as fol-

lows: 

f t = g(� t ) f t−1 + ε(I I ) 
f,t 

, ε(I I ) 
f,t 

∼ N ( 0 , σ 2 
f,t q ( � t )) , (25)

where � t is also assumed to be time-varying for non-stationarity.

Furthermore, inspired by Rao-Blackwellized particle filtering [39] ,

we propose to design a small Gaussian random walk on the log of

model parameters, 2 i.e., φ = log (�) = log ([ σ 2 
f 
, �, σ 2 

y ] 
T ) to develop

efficient online inference mechanism later on, 

φt = φt−1 + v 
φ
t , v 

φ
t ∼ N (0 , τ 2 I ) , (26)

where τ 2 is the noise variance of this random walk, and it is a

predefined hyper-parameter in our experiments. 

To sum up, we design two GP-constructed state space models

(SSMs) to take the distinct time-varying characteristics of temporal

data into account. These two SSMs share the same time-varying

observation model ( Eq. (18) ) to learn the temporal heteroscedas-

ticity, while they have different time-varying transition models

( Eq. (24) or Eqs. (25) and (26) ) to learn the temporal non-

stationarity, depending on whether all the model parameters are

time-varying. The parameter assumptions of different models are

summarized in Table 1 . Compared to the standard GP, our GP-

constructed SSM (I) and (II) are more suitable to capture the tem-

poral characteristics, with different time-varying assumptions on

the model parameters. In the following, we take advantage of our

proposed SSMs to develop efficient sequential inference frame-

works for online prediction. 

3.2. Sequential Bayesian inference 

To make efficient online prediction, we propose to design

sequential-Monte-Carlo-inspired mechanisms to infer the latent

function values and model parameters over time. Specifically, we

make use of the conditionally-linear structures in our two GP-

constructed SSMs to improve efficiency and accuracy of sequen-

tial Bayesian inference, which is motivated by particle learning

[38] and Rao-Blackwellized particle filtering [39] respectively. 

3.2.1. Our PL-GP approach: particle learning for GP-constructed SSM 

(I) 

As mentioned before, our GP-constructed SSM (I) consists of the

time-varying observation model in Eq. (18) and the time-varying

transition model (I) in Eq. (24) , where σ 2 
f,t 

and σ 2 
y,t are time-

varying but � is time-invariant. Given the initialized � , our SSM (I)

becomes a conditionally-linear structure with respect to f (x t ) = f t ,
2 Note that the random walk is used on log ( �) because of � > 0. Directly adding 

a Gaussian random walk on � may lead to the unreasonable � < 0. 

T

w  
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here the time-varying model parameters σ 2 
f,t 

and σ 2 
y,t are un-

nown but linearly-separable. According to this fact, we propose

 novel sequential-Monte-Carlo-inspired particle approach for our

SM (I), which is based on particle learning (PL) [38] , to efficiently

pdate sufficient statistics of f t , σ 2 
f,t 

and σ 2 
y,t within a resampling-

ropagating framework. 

Specifically, we approximate the intractable posterior

p( f t , σ 2 
f,t 

, σ 2 
y,t | �, D 1: t ) which can be factorized as follows: 

p( f t , σ
2 
f,t , σ

2 
y,t | �, D 1: t ) = p(σ 2 

f,t , σ
2 
y,t | f t , �, D 1: t ) p( f t | �, D 1: t ) , (27)

here D 1: t = (x 1: t , y 1: t ) . 

(1) How to infer f t by p ( f t | � , D 1: t ) in Eq. (27) : Since our SSM (I)

s conditionally linear with regard to f t , the sufficient statistics of

 t are its posterior mean μt | t and variance �t | t [38] . For simplic-

ty, we denote the sufficient statistics of f t as S 
f 
t = ( μt | t , �t | t ) and

p( f t | S f t ) = N (μt| t , �t| t ) . According to the fact that 

p( f t | �, D 1: t ) = 

∫ 
p( f t | S f t ) p(S f t | �, D 1: t ) dS f t = E [ p( f t | S f t ) | �, D 1: t ] , 

(28)

e thus are more interested in how to infer p(S 
f 
t | �, D 1: t ) than

 ( f t | � , D 1: t ). This is mainly because we can directly obtain the es-

imation of f t after obtaining the approximation of p(S 
f 
t | �, D 1: t ) .

ence we use the Bayes rule to factorize p(S 
f 
t | �, D 1: t ) as follows: 

p(S f t | �, D 1: t ) = 

p(S f t , �, D 1: t ) 

p (�, D 1: t ) 
∝ p (S f t , �, D 1: t ) , (29)

here p(S 
f 
t , �, D 1: t ) can be computed by integrating S 

f 
t−1 

,

2 
f,t−1 

, σ 2 
y,t−1 

out of the joint distribution p(S 
f 
t , S 

f 
t−1 

, σ 2 
f,t−1 

, σ 2 
y,t−1 

,

, D 1: t ) , 

p(S f t , �, D 1: t ) 

= 

∫ ∫ ∫ 
p(S f t , S 

f 
t−1 

, σ 2 
f,t−1 , σ

2 
y,t−1 , �, D 1: t ) d S 

f 
t−1 

d σ 2 
f,t−1 d σ

2 
y,t−1 

∝ 

∫ ∫ ∫ 
p(S f t | S f t−1 

, σ 2 
f,t−1 , σ

2 
y,t−1 , �, D 1: t ) 

p(y t | x t , S 
f 
t−1 

, σ 2 
f,t−1 , σ

2 
y,t−1 , �, D 1: t−1 ) 

× p(S f 
t−1 

, σ 2 
f,t−1 , σ

2 
y,t−1 | �, D 1: t−1 ) d S 

f 
t−1 

d σ 2 
f,t−1 d σ

2 
y,t−1 . (30)

uppose that, at the (t − 1) th step, p(S 
f 
t−1 

, σ 2 
f,t−1 

, σ 2 
y,t−1 

| �, D 1: t−1 )

n Eq. (30) is approximated by N particles { S f 
t−1 

[ n ] , σ 2 
f,t−1 

[ n ] ,

2 
y,t−1 

[ n ] } N 
n =1 

. Then, the posterior p(S 
f 
t | �, D 1: t ) in Eq. (29) can be

pproximated in the following way, based on the integral in

q. (30) . 

First , we compute the weights of those particles at t − 1 by us-

ng the prediction distribution p(y t | x t , S f t−1 
, σ 2 

f,t−1 
, σ 2 

y,t−1 , �, D 1: t−1 )

n Eq. (30) , 

 t−1 [ n ] = p(y t | x t , S 
f 
t−1 

[ n ] , σ 2 
f,t−1 [ n ] , σ 2 

y,t−1 [ n ] , �, D 1: t−1 ) 

(n = 1 , . . . , N) , (31)

here p(y t | x t , S f t−1 
, σ 2 

f,t−1 
, σ 2 

y,t−1 
, �, D 1: t−1 ) can be computed by 

p(y t | x t , S 
f 
t−1 

, σ 2 
f,t−1 , σ

2 
y,t−1 , �, D 1: t−1 ) 

= 

∫ ∫ 
p(y t | f t , σ 2 

y,t−1 ) p( f t | f t−1 , σ
2 
f,t−1 , �, x t−1: t ) p( f t−1 | S f t−1 

) df t−1 df t

= N (g(� ) μt −1 | t −1 , g 2 ( � )�t −1 | t −1 + σ 2 
f,t−1 q ( � ) + σ 2 

y,t−1 ) . (32)

hen, the weights are normalized as 

ˆ 
 t−1 [ n ] = 

w t−1 [ n ] ∑ N 
n =1 w t−1 [ n ] 

(n = 1 , . . . , N) . (33)
 for time-varying applications: Particle-based Gaussian process 
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t  
ith the probabilities proportional to the corresponding normal-

zed weights { ̂  w t−1 [ n ] } N n =1 , we draw N new particles { S f 
t−1 

[ k ] ,

2 
f,t−1 

[ k ] , σ 2 
y,t−1 

[ k ] } N 
k =1 

from N old particles { S f 
t−1 

[ n ] , σ 2 
f,t−1 

[ n ] ,

2 
y,t−1 [ n ] } N n =1 . This procedure is called resampling which can in-

rease importance of particles to approximate the underlying dis-

ribution [37] . 

Second , after resampling , the new particles { S f 
t−1 

[ k ] , σ 2 
f,t−1 

[ k ] ,

2 
y,t−1 

[ k ] } N 
k =1 

at (t − 1) are propagated to p(S 
f 
t | S f t−1 

, σ 2 
f,t−1 

, σ 2 
y,t−1 

,

, D 1: t ) in Eq. (30) . Due to the conditionally-linear structure in our

SM (I), p(S 
f 
t | S f t−1 

, σ 2 
f,t−1 

, σ 2 
y,t−1 

, �, D 1: t ) is a Kalman filter [38] , 

t | t −1 = g(� ) μt −1 | t −1 , (34) 

t | t −1 = g 2 (� )�t −1 | t −1 + σ 2 
f,t−1 q ( � ) , (35) 

t| t = μt | t −1 + (y t − μt | t −1 )�t | t −1 / (�t | t −1 + σ 2 
y,t−1 ) , (36) 

t| t = �t | t −1 − �2 
t | t −1 / (�t | t −1 + σ 2 

y,t−1 ) . (37) 

n this case, we feed { S f 
t−1 

[ k ] , σ 2 
f,t−1 

[ k ] , σ 2 
y,t−1 

[ k ] } N 
k =1 

at (t − 1) into

qs. (34) –(37) to obtain the particles { S f t [ k ] } N k =1 
of the sufficient

tatistics S 
f 
t = (μt| t , �t| t ) at t . Note that, { S f t [ k ] } N k =1 

is the particle

pproximation of p(S 
f 
t | �, D 1: t ) in Eq. (29) . Consequentially, the pos-

erior p ( f t | � , D 1: t ) in Eq. (28) can be approximated as a Gaussian

ixture by using { S f t [ k ] } N k =1 
, 

p( f t | �, D 1: t ) = 

∫ 
p( f t | S f t ) p(S f t | �, D 1: t ) dS f t 

≈ 1 

N 

N ∑ 

k =1 

N (μt| t [ k ] , �t| t [ k ]) , (38) 

here N particles { f t [ k ] } N k =1 
of the latent function value f t can be

ampled from this Gaussian mixture, in order to infer σ 2 
f,t 

and σ 2 
y,t 

n the following. 

(2) How to infer σ 2 
f,t 

and σ 2 
y,t by p(σ 2 

f,t 
, σ 2 

y,t | f t , �, D 1: t ) in Eq. (27) :

nspired by [38,40] , we propose to take advantage of the conjugate

rior to update the sufficient statistics of σ 2 
f,t 

and σ 2 
y,t recursively.

uppose that the distributions over σ 2 
f,t 

and σ 2 
y,t are 

p(σ 2 
f,t | f t , �, D 1: t ) = IG (0 . 5 α f 

t , 0 . 5 β f 
t ) , (39) 

p(σ 2 
y,t | f t , �, D 1: t ) = IG (0 . 5 αy 

t , 0 . 5 βy 
t ) , (40) 

here IG represents the inverse Gamma distribution. In this case,

he sufficient statistics of σ 2 
f,t 

and σ 2 
y,t are ( α f 

t , β
f 

t ) and ( αy 
t , β

y 
t ).

or simplicity, we denote sufficient statistics of all these parame-

ers as S θt = (α f 
t , β

f 
t , α

y 
t , β

y 
t ) . Due to the conditionally-linear struc-

ure in our SSM (I), one can obtain the following updates by mak-

ng use of the conjugate property between a Gaussian distribution

nd an inverse Gamma distribution [38,40] , 

f 
t = α f 

t−1 
+ 1 , (41) 

f 
t = β f 

t−1 
+ ( f t − g(� ) f t−1 ) 

2 /q (� ) , (42) 

y 
t = αy 

t−1 
+ 1 , (43) 

y 
t = βy 

t−1 
+ (y t − f t ) 

2 . (44) 
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hen, we can obtain { S θt [ k ] } N k =1 
(the particles of sufficient statis-

ics of model parameters at t ), by feeding { S θ
t−1 

[ k ] } N 
k =1 

, { f t−1 [ k ] } N k =1 

nd { f t [ k ] } N k =1 
into Eqs. (41) –(44) . Finally, we use { S θt [ k ] } N k =1 

in Eqs.

39) and (40) to sample the particles of model parameters at t , i.e.,

 σ 2 
f,t 

[ k ] , σ 2 
y,t [ k ] } N k =1 

. 

(3) Summary of our PL-GP approach : The above-mentioned par-

icle mechanism of our PL-GP approach is illustrated in Alg.

 . Based on our PL-GP approach, one can efficiently approxi-

lgorithm 1 Our PL-GP approach. 

1: —————————– Resampling —————————————————

2: Computing the weights of particles at (t − 1) by Eqs. (31) and

(32) . 

3: Resampling N new particles at (t − 1) , i.e., { S f 
t−1 

[ k ] , f t−1 [ k ] } N k =1 

and { S θ
t−1 

[ k ] , σ 2 
f,t−1 

[ k ] , σ 2 
y,t−1 [ k ] } N k =1 

from N old particles at (t −
1) , based on the normalized weights in Eq. (33) . 

4: —————————– Propagating ————————————————–

5: Propagating these resampled particles at (t − 1) into Eqs. (34)–

(37) and (38) to obtain { S f t [ k ] } N k =1 
and { f t [ k ] } N k =1 

at t . 

6: Propagating these resampled particles at (t − 1) into Eqs. (41)–

(44) and (39)–(40) to obtain { S θt [ k ] } N k =1 
and { σ 2 

f,t 
[ k ] , σ 2 

y,t [ k ] } N k =1 
at t . 

ate p( f t , σ 2 
f,t 

, σ 2 
y,t | �, D 1: t ) in Eq. (27) via a resampling-propagating

echanism. It is worth mentioning that, online prediction in

ection 2.3 is addressed by Eq. (32) in our PL-GP. Since online pre-

iction is based on sequential Monte Carlo framework, the com-

utation complexity at the t th step of our PL-GP is O(t N + t d x ) ,

here N is the number of the particles, d x is the dimension of

he input vector, tN is the main complexity of particle sampling,

nd td x is the main complexity of input vector multiplication in

qs. (21) and (22) . One can see that the computation of our PL-

P is linear to t , while the computation of GP is cubic to t in

ection 2.3 . This indicates that our PL-GP is more efficient for

equential data modeling. Moreover, unlike Eq. (17) in GP, Eq.

32) in our PL-GP contains the time-varying model parameters
2 
f,t 

and σ 2 
y,t . As a result, our PL-GP is more suitable to capture

on-stationarity and heteroscedasticity in temporal data than GP.

owever, � in our PL-GP is time-invariant, which may still re-

trict the performance of our PL-GP. As mentioned before, our GP-

onstructed SSM (II) is proposed to relax this limitation, by assum-

ng that � t is time-varying in our transition model (II) ( Eqs. (25)

nd (26) ). Hence, we next design an online inference mechanism

or our GP-constructed SSM (II) to make effective prediction. 

.2.2. Our RBPF-GP approach: Rao-Blackwellized particle filtering for 

P-constructed SSM (II) 

Different from the time-varying transition model (I) in Eq. (24) ,

he time-varying transition model (II) in Eqs. (25) and (26) is

ighly coupled due to the time-varying � t . In this case, it is not

easible to perform particle learning for our GP-constructed SSM

II), by updating the sufficient statistics of model parameters on-

ine. However, the transition from f t−1 to f t in Eq. (25) is still con-

itionally linear, given all the time-varying model parameters. This

act still allows us to update the sufficient statistics of f t online

hen performing sequential Monte Carlo. It mainly refers to the

dea of Rao-Blackwellized particle filtering [39] which is based on

n importance sampling-resampling framework. Specifically, we ap-

roximate the intractable posterior p ( f t , φ1: t | τ , D 1: t ), 

p( f t , φ1: t | τ, D 1: t ) = p( f t | φ1: t , τ, D 1: t ) p(φ1: t | τ, D 1: t ) , (45)

or our GP-constructed SSM (II) consisting of Eqs. (25 ), ( 26) and

18) . 

(1) How to infer f t by p ( f t | φ1: t , τ , D 1: t ) in Eq. (45) : Given φt , the

ransition from f t−1 to f t in Eq. (25) is conditionally linear. In this
 for time-varying applications: Particle-based Gaussian process 
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case, the sufficient statistics of f t are the posterior mean μt | t and

variance �t | t . As before, we denote S 
f 
t = ( μt | t , �t | t ) and p( f t | S f t ) =

N (μt| t , �t| t ) . Similar to Eq. (28) in our PL-GP approach, we express

p ( f t | φ1: t , τ , D 1: t ) as 

p( f t | φ1: t , τ, D 1: t ) = 

∫ 
p( f t | S f t ) p(S f t | φ1: t , τ, D 1: t ) dS f t , (46)

and we mainly focus on how to infer p(S 
f 
t | φ1: t , τ, D 1: t ) . In particu-

lar, this posterior p(S 
f 
t | φ1: t , τ, D 1: t ) can be computed by 

p(S f t | φ1: t , τ, D 1: t ) 

= 

∫ 
p(S f t | S f t−1 

, φ1: t , τ, D 1: t ) p(S f 
t−1 

| φ1: t−1 , τ, D 1: t−1 ) dS f 
t−1 

. (47)

Due to the conditionally-linear structure of Eq. (25) ,

p(S 
f 
t | S f t−1 

, φ1: t , τ, D 1: t ) in the integral of Eq. (47) is a Kalman

filter [39] , 

μt | t −1 = g(� t ) μt −1 | t −1 , (48)

�t | t −1 = g 2 (� t )�t −1 | t −1 + σ 2 
t q ( � t ) , (49)

μt| t = μt | t −1 + (y t − μt | t −1 )�t | t −1 / (�t | t −1 + σ 2 
y,t ) , (50)

�t| t = �t | t −1 − �2 
t | t −1 / (�t | t −1 + σ 2 

y,t ) . (51)

In this case, one can approximate p(S 
f 
t | φ1: t , τ, D 1: t ) with N

particles { S f t [ n ] } N n =1 
which are obtained by feeding { S f 

t−1 
[ n ] } N 

n =1

and { φt [ n ] } N n =1 into Eqs. (48) –(51) . Consequentially, the posterior

p ( f t | φ1: t , τ , D 1: t ) in Eq. (46) can be approximated as a Gaussian

mixture by using { S f t [ n ] } N n =1 
, 

p( f t | φ1: t , τ, D 1: t ) ≈ 1 

N 

N ∑ 

n =1 

N (μt| t [ n ] , �t| t [ n ]) . (52)

(2) How to infer φt by p ( φ1: t | τ , D 1: t ) in Eq. (45) : According to

the Bayes rule, this posterior can be factorized as 

p(φ1: t | τ, D 1: t ) = 

p(φ1: t , τ, D 1: t ) 

p(τ, D 1: t ) 
∝ p(φ1: t , τ, D 1: t ) , (53)

where the joint distribution can be expressed by 

p(φ1: t , τ, D 1: t ) ∝ p(y t | y 1: t−1 , φ1: t , τ, x 1: t ) 

p(φt | φt−1 , τ ) p(φ1: t−1 | τ, D 1: t−1 ) , (54)

and p(φt | φt−1 , τ ) = N (φt−1 , τ
2 I ) which is obtained from Eq. (26) .

In the following, we approximate the posterior p ( φ1: t | τ , D 1: t ) by

taking advantage of Bayesian factorization in Eq. (54) . 

First , suppose that N particles of model parameters at the

(t − 1) th step are { φt−1 [ n ] } N n =1 
, which can be obtained from

p(φ1: t−1 | τ, D 1: t−1 ) in Eq. (54) . One can feed { φt−1 [ n ] } N n =1 into the

conditional distribution p(φt | φt−1 , τ ) and sample N particles of

model parameters at the t th step, { φt [ n ] } N n =1 
. 

Second , we weight these particles { φt [ n ] } N n =1 according to the

prediction distribution p(y t | y 1: t−1 , φ1: t , τ, x 1: t ) in Eq. (54) , 

w t [ n ] = p(y t | y 1: t−1 , φ1: t [ n ] , τ, x 1: t ) , (55)

where p(y t | y 1: t−1 , φ1: t , τ, x 1: t ) can be computed by 

p(y t | y 1: t−1 , φ1: t , τ, x 1: t ) 

= 

∫ ∫ 
p(y t | f t , φt ) p( f t | f t−1 , φt , x t−1: t ) 

p( f t−1 | φ1: t−1 , τ, D 1: t−1 ) df t df t−1 

= N (μt | t −1 , �t | t −1 + σ 2 
y,t ) , (56)
 d
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nd μt | t −1 , �t | t −1 are computed by Eqs. (48) and (49) . This weight-

ng procedure is called importance sampling , since the importance

f the drawn { φt [ n ] } N n =1 
is weighted by using the current y t . 

Finally , we compute the normalized weights of these particles

y 

ˆ 
 t [ n ] = 

w t [ n ] ∑ N 
n =1 w t [ n ] 

(n = 1 , . . . , N) . (57)

ith the probabilities proportional to { ̂  w t [ n ] } N n =1 
, we draw N new

articles for S 
f 
t and φt to increase importance of particles for the

ext step. This procedure is called resampling as mentioned before.

(3) Summary of our RBPF-GP approach : The above-mentioned

article mechanism of our RBPF-GP approach is illustrated in Al-

orithm 2 . Based on our RBPF-GP approach, one can efficiently ap-

lgorithm 2 Our RBPF-GP approach. 

1: ———————– Importance Sampling ——————————————

2: Propagating { φt−1 [ n ] } N n =1 to the conditional distribution

p(φt | φt−1 , τ ) in Eq. (54) to obtain { φt [ n ] } N n =1 . 

3: Propagating { φt [ n ] } N n =1 
and { S f 

t−1 
[ n ] } N 

n =1 
to Eqs. (48)–(51) to

obtain { S f t [ n ] } N n =1 . 

4: Computing the weights of { φt [ n ] , S 
f 
t [ n ] } N n =1 

by Eq. (55) . 

5: ————————– Resampling —————————————————

6: Resampling N new particles at t from { φt [ n ] , S 
f 
t [ n ] } N n =1 

, based

on the normalized weights in Eq. (57) . 

roximate p ( f t , φ1: t | τ , D 1: t ) in Eq. (45) via an importance sampling-

esampling mechanism. It is worth mentioning that, online predic-

ion in Section 2.3 is addressed by using Eq. (56) in our RBPF-GP.

ased on sequential Monte Carlo, the computation complexity at

he t th step of our RBPF-GP is O (t N + t Nd x ) , where N is the num-

er of the particles, d x is the dimension of the input vector, tN is

he main complexity of particle sampling. Note that, the computa-

ion difference between our RBPF-GP and PL-GP refers to the input

ector multiplication in Eqs. (21 ) and ( 22) , where RBPF-GP is tNd x 
hile PL-GP is td x . This is mainly because that � is time-invariant

n our PL-GP but time-varying in our RBPF-GP. Hence, the input

ector multiplication is only implemented once at each time step

f our PL-GP, while this operation needs to be implemented for N

articles of � t at each time step of our RBPF-GP. However, com-

ared to our PL-GP, our RBPF-GP may achieve a better prediction

ccuracy by learning � t over time. 

.2.3. Backward smoothing 

So far, our PL-GP and RBPF-GP approaches are mainly designed

or online prediction in Section 2.3 . One may be also interested in

ow to estimate the history of latent function values given the his-

ory of observations, i.e., p( f 1: T , σ
2 
f, 1: T 

, σ 2 
y, 1: T 

| �, D 1: T ) for our SSM (I)

nd p ( f 1: T , φ1: T | τ , D 1: T ) for our SSM (II), where T is the total num-

er of time steps for a temporal data set. This task refers to a

ackward smoothing task [37,41] . Fortunately, the standard back-

ard smoothing mechanism [42] can be straightforwardly imple-

ented to our PL-GP and RBPF-GP without any difficulties. In order

o avoid unnecessary content redundancy in our paper, we recom-

end [42] for further reading about backward smoothing. 

In the following, we show the effectiveness of our proposed PL-

P and RBPF-GP approaches on a number of challenging temporal

ata sets, in comparison with several relevant GP approaches. 
 for time-varying applications: Particle-based Gaussian process 
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Table 2 

The evaluation (MNLP) for time-varying properties of our approaches. Note that, 

both of σ 2 
f 

and σ 2 
y are time-varying in our PL-GP, while all of σ 2 

f 
, � and σ 2 

y are 

time-varying in our RBPF-GP. Hence, we implement two baselines for our PL-GP, 

where either σ 2 
f 

or σ 2 
y is set to be time-varying. Furthermore, we implement six 

baselines for our RBPF-GP, where one or two of σ 2 
f 
, � and σ 2 

y are set to be time- 

varying. 

Methods σ 2 
f 

� σ 2 
y Synthetic Motor Heart rate S&P Bike sharing 

PL-GP (σ 2 
f 
) � × × 9.31 11.37 3.640 4.33 17.34 

PL-GP (σ 2 
y ) 

× × � 9.83 11.68 4.648 4.39 17.49 

Our PL-GP � × � 8.08 10.35 3.623 4.26 17.27 

RBPF-GP (σ 2 
f 
) � × × 7.93 11.22 4.661 4.25 16.88 

RBPF-GP ( � ) × � × 7.91 10.66 4.828 4.35 16.84 

RBPF-GP (σ 2 
y ) 

× × � 7.83 10.20 4.690 4.55 16.82 

RBPF-GP (σ 2 
f 
,� ) � � × 7.86 10.56 3.668 4.25 16.84 

RBPF-GP (σ 2 
f 
,σ 2 

y ) 
� × � 7.71 10.09 3.671 4.21 16.81 

RBPF-GP (�,σ 2 
y ) 

× � � 7.72 10.19 3.780 4.30 16.81 

Our RBPF-GP � � � 7.58 9.96 3.646 4.13 16.80 

Table 3 

Comparison (MNLP) with related GP approaches for online prediction. 

Methods Synthetic Motor Heart rate S&P Bike sharing 

ARGP 14.33 11.61 3.757 6.61 17.92 

NHARGP 9.14 10.43 3.640 5.38 17.36 

LGP 10.27 10.63 3.720 4.54 17.22 

SOGP 13.27 10.94 3.751 4.80 18.03 

KRLST 8.12 10.38 3.730 4.71 17.38 

GP-PF 11.56 11.33 3.795 4.85 18.02 

MPGP 12.64 11.07 3.742 4.36 17.38 

DGP 8.32 10.80 3.779 4.67 17.87 

Our PL-GP 8.08 10.35 3.623 4.26 17.27 

Our RBPF-GP 7.58 9.96 3.646 4.13 16.80 
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. Experiments 

In this section, we evaluate our PL-GP and RBPF-GP approaches

n five challenging temporal data sets: synthetic, motor, 3 heart

ate, 4 S&P , 5 and bike sharing. 6 The synthetic data set consists of

0 0 0 (time/output) pairs which are generated from 

 t = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

− 30 + ε1 
t , ε1 

t ∼ N (0 , 1) , (t = 0 . 01 : 0 . 01 : 2) ;
50 sin (0 . 5 πt) + ε2 

t , ε2 
t ∼ N (0 , 9) , (t = 2 . 01 : 0 . 01 : 5) ;

20 cos (πt + 0 . 5 π) + ε3 
t , ε3 

t ∼ N (0 , 100) , 

(t = 5 . 01 : 0 . 01 : 10) . 

(58) 

he motor data set consists of 94 (time/motor acceleration) pairs.

he heart rate data set consists of 300 (time/heart rate) pairs. The

&P data set consists of 500 (input/output) pairs which are weekly

ecorded from 20 0 0-01-03 to 20 09-08-03. Its input vector is 4-

imension, i.e., time, S&P 100 index, S&P 400 Midcap index, S&P

00 index ; the output is volatility S&P 500 . The bike sharing data

et consists of 731 (input/output) pairs from 2011 to 2012, where

ts input vector is 4-dimension, i.e., normalized temperature in Cel-

ius, normalized feeling temperature in Celsius, normalized hu-

idity, normalized wind speed; the output is the count of total

ental bikes in Capital Bikeshare System. 7 Note that, all these tem-

oral data sets exhibit time-varying non-stationarity and/or het-

roscedasticity. 

.1. Online prediction 

We first evaluate our PL-GP and RBPF-GP for online prediction ,

ccording to Eq. (32) for our PL-GP and Eq. (56) for our RBPF-

P. Unless otherwise stated, the number of particles N in our PL-

P and our RBPF-GP is 200 for all data sets. The pre-defined τ
n our RBPF-GP is 0.05/0.1/0.05/0.2/0.05 for synthetic / motor / heart

ate / S&P / bike sharing . The model parameters � = [ σ 2 , �, σ 2 
y ] 

T in

ll related approaches are initialized by minimizing the negative

og likelihood ( Eq. (11) ) of the first 30 0/50/20 0/20 0/30 0 tempo-

al data pairs in synthetic / motor / heart rate / S&P / bike sharing , with

he standard gradient optimization in GPML toolbox. 8 The evalua-

ion of online prediction is based on the rest data pairs of all data

ets, where the prediction performance is evaluated by the mean

egative log probability (MNLP) [1,17] . Since MNLP penalizes both

odel uncertainty and inference inconsistency, it is a reliable eval-

ation criterion for non-stationarity and heteroscedasticity [1,17] .

inally, for all data sets, we run all the methods 20 times and re-

ort the average MNLP. 

.1.1. Time-varying properties of our approaches 

As mentioned in Section 3 , both of σ 2 
f 

and σ 2 
y are time-varying

n our PL-GP, while all of σ 2 
f 
, � and σ 2 

y are time-varying in

ur RBPF-GP. To evaluate the time-varying properties of our ap-

roaches, we implement two baselines for our PL-GP, where either
2 
f 

or σ 2 
y is set to be time-varying. Furthermore, we implement six

aselines for our RBPF-GP, where one or two of σ 2 
f 
, � and σ 2 

y are

et to be time-varying. 

The results are shown in Table 2 . First, for both PL-GP and

BPF-GP, the prediction performance is getting better, when more
3 http://www.stat.cmu.edu/ ∼larry/all- of- statistics/=data/motor.dat . 
4 http://www-psych.stanford.edu/ ∼andreas/Time-Series/SantaFe.html . 
5 http://finance.yahoo.com/stock-center/ . 
6 http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset . 
7 http://www.capitalbikeshare.com/system-data . 
8 http://www.gaussianprocess.org/gpml/code/matlab/doc/ . 

s  

t  

t  

t  

p  

[

fi  

Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference

approaches, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom
arameters are set to be time-varying. This illustrates that time-

arying parameters can help to capture the distinct temporal char-

cteristics in these time-varying data sets. Second, for the same

ime-varying parameter setting, RBPF-GP generally outperforms PL-

P. It may be credited to the utility of Rao-Blackwellized particle

ltering in our RBPF-GP. Finally, RBPF-GP with our proposed set-

ing ( σ 2 
f 
, � , σ 2 

y are time-varying) achieves a better performance

han PL-GP with our proposed setting ( σ 2 
f 
, σ 2 

y are time-varying),

ith assistance of the time-varying � . 

.1.2. Comparison with related GP approaches 

Next, we compare our PL-GP and RBPF-GP with a number

f related online GP approaches, including the autoregressive GP

ARGP) which is trained on pairs of (y t , y t+1 ) within the stan-

ard GP regression framework; the high-order ARGP with a non-

tationary neural network kernel in [1] (NHARGP), where the or-

er is 10/10/20/20/20 for synthetic / motor / heart rate / S&P / bike shar-

ng to balance the tradeoff between computation and accuracy;

ocal GP (LGP) [2] ; sparse online GP (SOGP) [8] ; kernel recursive

east-squares tracker (KRLST) [4] ; GP particle filter (GP-PF) [18] ;

arginalized particle GP (MPGP) [19] ; and deep GP (DGP) with se-

uential inference mechanism [10] . 

To be fair, for LGP, the prediction at the current step is based on

ll the local experts generated until this step (due to online con-

truction of GP experts in [2] ). For SOGP and KRLST, the prediction

or the current step is based on all the data until this step without

parsification. The reason is that we tend to use the best results of

hese online GPs. For GP-PF and MPGP, the latent state is f t , similar

o our approaches. For DGP, the number of latent layers is one and

he dimension of this latent layer is equal to the dimension of in-

ut vector. Note that, the sequential inference framework of DGP in

10] is based on sequential Monte Carlo sampling by using particle 

lter, and hence this DGP can be straightforwardly applied for on-
 for time-varying applications: Particle-based Gaussian process 
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Fig. 1. MNLP ( synthetic ) as a function of the number of particles N . 

Fig. 2. MNLP ( motor ) as a function of the number of particles N . 

Fig. 3. MNLP ( heart rate ) as a function of the number of particles N . 

Fig. 4. MNLP ( S&P ) as a function of the number of particles N . 

Fig. 5. MNLP ( bike sharing ) as a function of the number of particles N . 
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line prediction without any difficulties. Furthermore, the number

of particles N in all the particle-based approaches (GP-PF, MPGP,

DGP) is 200, which is the same as the one in our PL-GP and RBPF-

GP for fairness. 

The results are shown in Table 3 . One can see that, our PL-

GP and RBPF-GP consistently outperform other online GP ap-
Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference

approaches, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom
roaches for all the time-varying data sets. This illustrates that

ur approaches can successfully capture non-stationarity and/or

eteroscedasticity in these time-varying applications, compared to

ther online GP approaches. Moreover, our RBPF-GP achieves a bet-

er accuracy than our PL-GP for most cases, which is mainly due
 for time-varying applications: Particle-based Gaussian process 
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Fig. 6. Posterior of y 1: T ( synthetic ). The observations are the black circles and the ground truth of latent function is the blue line. We show the estimated mean ± 2 ×
standard deviation (red line with yellow interval) of GP, our PL-GP-S and our RBPF-GP-S. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 7. Posterior of log (σ 2 
f 
) over time ( synthetic ). Note that log (σ 2 

f 
) is time-invariant in GP, hence the estimated log (σ 2 

f 
) in GP is a constant over time (red line in (a)). On 

the contrary, log (σ 2 
f 
) is time-varying in our approaches. We thus show the estimated mean ± 2 × standard deviation of log (σ 2 

f 
) in our PL-GP-S and our RBPF-GP-S (red line 

with yellow interval in (b) and (c)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Posterior of log ( � ) over time ( synthetic ). Note that log ( � ) is time-invariant in GP and our PL-GP-S, hence the estimated log ( � ) in GP and our PL-GP-S is a constant 

over time (red line in (a) and (b)). On the contrary, log ( � ) is time-varying in our RBPF-GP-S. We thus show the estimated mean ± 2 × standard deviation of log ( � ) in our 

RBPF-GP-S (red line with yellow interval in (c)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Posterior of log (σ 2 
y ) over time ( synthetic ). The ground truth of log (σ 2 

y ) is the blue line. Note that log (σ 2 
y ) is time-invariant in GP, hence the estimated log (σ 2 

y ) in GP 

is a constant over time (red line in (a)). On the contrary, log (σ 2 
y ) is time-varying in our approaches. We thus show the estimated mean ± 2 × standard deviation of log (σ 2 

y ) 

in our PL-GP-S and our RBPF-GP-S (red line with yellow interval in (b) and (c)). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 10. Posterior of y 1: T ( motor ). The observations are the black crosses. We show the estimated mean ± 2 × standard deviation (red line with yellow interval) of GP, our 

PL-GP-S and our RBPF-GP-S. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Posterior of log (σ 2 
f 
) over time ( motor ). The time-invariant estimation by GP is the red line in (a). The time-varying estimations by our PL-GP-S and our RBPF-GP-S 

are the red lines with yellow intervals in (b) and (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference for time-varying applications: Particle-based Gaussian process 
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Fig. 12. Posterior of log ( � ) over time ( motor ). Note that log ( � ) is time-invariant in GP and our PL-GP-S. Hence, the estimations by these two approaches are the red lines in 

(a) and (b). The time-varying estimation by our RBPF-GP-S is the red line with yellow interval in (c). (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 13. Posterior of log (σ 2 
y ) over time ( motor ). The time-invariant estimation by GP is the red line in (a). The time-varying estimations by our PL-GP-S and our RBPF-GP-S 

are the red lines with yellow intervals in (b) and (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 14. Posterior of y 1: T ( heart rate ). The notations are the same as Fig. 10 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 15. Posterior of log (σ 2 
f 
) over time ( heart rate ). The notations are the same as Fig. 11 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 16. Posterior of log ( � ) over time ( heart rate ). The notations are the same as Fig. 12 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 17. Posterior of log (σ 2 
y ) over time ( heart rate ). The notations are the same as Fig. 13 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 18. Posterior of y 1: T ( S&P ). The notations are the same as Fig. 10 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 19. Posterior of log (σ 2 
f 
) over time ( S&P ). The notations are the same as Fig. 11 . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 20. Posterior of log ( � ) over time ( S&P ). Since the input of S&P is four dimension, the length-scale � is a four dimension vector in all approaches, where different colors 

represent different dimensions in (a)–(c) . Furthermore, � is time-invariant in GP and our PL-GP-S, hence the estimations of these two approaches are lines in (a)–(b) . The 

time-varying estimations of our RBPF-GP-S are lines with their corresponding intervals in (c) . (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 21. Posterior of log (σ 2 
y ) over time ( S&P ). The notations are the same as Fig. 13 . (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 22. Posterior of y 1: T ( bike sharing ). The notations are the same as Fig. 10 . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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o the fact that all the model parameters are time-varying in our

BPF-GP. 

Additionally, since our approaches are based on sequential

onte Carlo, the number of particles N is an important factor

or the prediction accuracy of our approaches. We thus compare
Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference

approaches, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom
ur PL-GP and RBPF-GP approaches to other particle-based GP ap-

roaches, i.e., GP-PF [18] , MPGP [19] and DGP [10] , by evaluat-

ng MNLP as a function of N for all the data sets. The results are

hown in Figs. 1 –5 . As expected, the prediction performance of all

he particle-based GP approaches tends to be improved when N
 for time-varying applications: Particle-based Gaussian process 
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Fig. 23. Posterior of log (σ 2 
f 
) over time ( bike sharing ). The notations are the same as Fig. 11 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 24. Posterior of log ( � ) over time ( bike sharing ). Since the input of bike sharing is four dimension, the length-scale � is a four dimension vector in all approaches, where 

different colors represent different dimensions in (a)–(c). Furthermore, � is time-invariant in GP and our PL-GP-S, hence the estimations of these two approaches are lines 

in (a) and (b). The time-varying estimations of our RBPF-GP-S are lines with their corresponding intervals in (c). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 25. Posterior of log (σ 2 
y ) over time ( bike sharing ). The notations are the same as Fig. 13 . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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increases. Furthermore, our PL-GP and RBPF-GP approaches out-

perform other particle-based GP approaches, since we learn the

model parameters over time to capture non-stationarity and/or

heteroscedasticity. 

4.2. Backward smoothing 

After analyzing online prediction, we focus on backward

smoothing in Section 3.2.3 to further validate the effectiveness

of our approaches. Hence, we perform our PL-GP and RBPF-GP

with the standard backward smoothing approach [42] , given all the

temporal input–output pairs in the history. For clarity, we denote

our approaches with backward smoothing as our PL-GP-S and our

RBPF-GP-S in the following. 

4.2.1. Qualitative evaluation 

To illustrate that our approaches can model time-varying non-

stationarity and heteroscedasticity correctly, we first implement

our PL-GP-S and RBPF-GP-S to visualize the posterior of output

and the posterior of log model parameters log (σ 2 
f 
) , log ( � ), log (σ 2 

y )

over time, in comparison with GP. 

The synthetic data set exhibits both time-varying non-

stationarity (two discontinuities in the latent function) and het-

eroscedasticity (three levels of observation noise). As shown in

Fig. 6 , these distinct temporal characteristics are mistakenly inter-

preted by GP, but successfully modeled by our PL-GP-S and RBPF-

GP-S approaches. This is mainly because the model parameters are

time-invariant in GP but time-varying in our approaches. The pos-

teriors of all the model parameters in Figs. 7 –9 can be a clear proof

of this fact. 

The motor data set exhibits heteroscedasticity that consists of a

flat low noise region, a curve region and flat high noise region at

different time periods [30] . As shown in Figs. 10 and 13 , GP fails

to model the low-noise region, while our PL-GP-S and RBPF-GP-S
Please cite this article as: Y. Wang, B. Chaib-draa, Bayesian inference

approaches, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom
uccessfully explain all three noise regions by learning the time-

arying log (σ 2 
y ) . More interestingly, our RBPF-GP-S in Fig. 13 (c)

odels the decreasing noise in the flat high noise region [24] . Fi-

ally, we show the posteriors over other parameters of our ap-

roaches in Figs. 11 and 12 . 

The heart rate data set mainly exhibits non-stationarity that

onsists of sudden signal shifts. We thus show the posterior for

he sudden shift region (from the 150th to 230th step) in Fig. 14 .

o capture this sudden change (around the 180th step), GP inter-

rets it as a large noise which can be seen in Fig. 17 . It introduces

he unnecessary high uncertainty in other time periods in Fig. 14 .

n the contrary, both our PL-GP-S and RBPF-GP-S correctly capture

his sudden shift with a compact confidence interval, by learning

odel parameters over time in Figs. 15 and 16 . 

The S&P and bike sharing data sets contain both non-stationarity

nd heteroscedasticity. Moreover, the input for these two data sets

s a multi-dimensional vector which is not only related to the time

tep. All these facts make Bayesian inference quite challenging. We

how the posteriors of these two data sets, along with the time

xis in Figs. 18 and 22 . As expected, the performance of GP is

imited due to non-stationarity and heteroscedasticity. Addition-

lly, the power of our PL-GP-S tends to be reduced for these two

ulti-dimensional-input cases. This may be because the length-

cale parameter � is time-invariant for our PL-GP-S, as shown in

igs. 20 and 24 . Finally, our RBPF-GP-S achieves the best perfor-

ance for these two temporal data sets by learning all the param-

ters over time in Figs. 19 –21 and 23 –25 . 

.2.2. Quantitative evaluation 

Since the ground truth of latent function values at all time

teps is known in the synthetic data set, we further evaluate the

ackward smoothing accuracy of our approaches on this data set.

pecifically, we compare our PL-GP-S and RBPF-GP-S with sev-

ral widely-used batch GP approaches which can capture non-

tationarity and heteroscedasticity, including sparse pseudo-input
 for time-varying applications: Particle-based Gaussian process 
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Fig. 26. Posterior of f t ( synthetic ) at t = 0.54, 1.93, 5.07 (from left to right column). 

Table 4 

MSE between the ground truth and 

the estimation of latent function val- 

ues ( synthetic ). RT represents the 

running time. 

Methods MSE RT (s) 

GP 9.43 150 

SPGP 9.40 50 

MLHGP 7.48 350 

VI-IMGP 7.39 1010 

NNGP 7.12 80 

NSGP 6.80 1800 

HO-GPDM 6.38 736 

Our PL-GP-S 6.10 30 

Our RBPF-GP-S 5.80 55 
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P (SPGP) which is originally used for computation reduction but

an model non-stationarity and heteroscedasticity [43] , most likely

eteroscedastic GP (MLHGP) [24] , GP with a non-stationary Neu-

al Network covariance function (NNGP) [1] , non-stationary GP

NSGP) [22] , infinite mixtures of Gaussian processes with varia-

ional inference (VI-IMGP in which T is 5, C is 200 and S is 200)

32] , and high-order Gaussian process dynamical model (HO-GPDM

n which state space model is four-order and the latent state is

ne-dimension) [14] . Additionally, we use the mean squared error

MSE) between the ground truth and the estimation of latent func-

ion values to evaluate accuracy, and use the running time (RT) of

ifferent approaches to evaluate efficiency. 

The results in Table 4 clearly indicate that our PL-GP-S and

BPF-GP-S outperform other non-stationary and/or heteroscedastic 

P approaches, in terms of both accuracy and efficiency. Note that,

he accuracy of our RBPF-GP-S is higher than our PL-GP-S but the

fficiency is lower than our PL-GP-S, as expected. The main reason

s that all the time-varying parameters are learned in our RBPF-GP-

 but � is time-invariant in our PL-GP-S. But still, our RBPF-GP-S is

aster than most of related GP approaches. Hence, both our PL-GP-

 and RBPF-GP-S are efficient and accurate for time-varying data

odeling. 

Finally, we show the posterior of f t at t = 0.54, 1.93, 5.07 by

sing different GP approaches above. The choice of these three

ime steps is based on the fact that, t = 0.54 is within the

ime period which is strongly influenced by heteroscedasticity;

 = 1.93 and 5.07 are within the time periods which are strongly

nfluenced by non-stationarity. In Fig. 26 , the posteriors of GP,

PGP, VI-IMGP, NNGP, HO-GPDM at t = 0.54 are relatively flat-

haped. This illustrates that these approaches may be limited with

trong heteroscedasticity. As a result, these approaches may make

 relatively-uncertain estimation of latent function value, even

hough t = 0.54 is at the small-noise-level region of this data

et. On the contrary, MLHGP, NSGP, our PL-GP-S and RBPF-GP-S

an take heteroscedasticity into account for uncertainty reduction.

ence, the posteriors of these approaches are peak-shaped at t =
.54. Furthermore, at t = 1.93 and 5.07, our PL-GP-S and RBPF-GP-

 can successfully model non-stationarity (sudden function shifts)

ith a low uncertainty, while the rest GP approaches tend to esti-

ate the latent function values mistakenly. 

. Conclusion 

To model the challenging temporal characteristics (such as

equential-order, non-stationarity and heteroscedasticity) in the 

ime-varying applications, we proposed two particle-based GP ap-

roaches in this paper. First, we take advantage of GP to design

wo novel state-space models in order to model the sequential or-

er of temporal data. Then, we develop two particle mechanisms

o infer the latent function values and the model parameters in a
 for time-varying applications: Particle-based Gaussian process 
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a  
recursive Bayesian framework. Because the parameters of our mod-

els are time-varying, we can capture the temporal non-stationarity

and heteroscedasticity. Finally, we show the effectiveness of our

approaches on a number of challenging time-varying applications,

in comparison with several relevant GP approaches. In the future,

it would be interesting to use other particle smoothing methods

[44] or design the non-stationary covariance function [22] for our

particle-based GP approaches to further improve computation effi-

ciency and model flexibility. 
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