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Abstract
In this work, we develop a fast sequential low-
rank tensor regression framework, namely recur-
sive higher-order partial least squares (RHOPLS).
It addresses the great challenges posed by the lim-
ited storage space and fast processing time required
by dynamic environments when dealing with large-
scale high-speed general tensor sequences. Smart-
ly integrating a low-rank modification strategy of
Tucker into a PLS-based framework, we efficient-
ly update the regression coefficients by effectively
merging the new data into the previous low-rank
approximation of the model at a small-scale fac-
tor (feature) level instead of the large raw data (ob-
servation) level. Unlike batch models, which re-
quire accessing the entire data, RHOPLS conducts
a blockwise recursive calculation scheme and thus
only a small set of factors is needed to be stored.
Our approach is orders of magnitude faster than
other sequential methods while maintaining a high-
ly comparable predictability with the best batch
methods, as verified on challenging real-life tasks.

1 Introduction
Tensor-variate regression approaches arise frequently in the
machine learning community because of the increasing de-
mands to deal with the problems that usually involve large-
scale higher-order data with complex structures. Such prob-
lems abound in a broad range of applications, including com-
puter vision [Zhao et al., 2014], neural signal processing
[Zhao et al., 2011; 2013; Eliseyev and Aksenova, 2013], med-
ical imaging data analysis [Zhou et al., 2013], climate da-
ta analysis [Bahadori et al., 2014], and are in general very
challenging to solve. One of these approaches in widespread
use is N-way partial least squares (NPLS) [Bro, 1996] which
carries out a joint CP (CANDECOMP/PARAFAC) decom-
position [Harshman, 1970] of tensorial input and output into
sum of rank-one tensors. To overcome the low predictabili-
ty and the slow convergence rate of NPLS, the state-of-the-
art higher-order partial least squares (HOPLS) [Zhao et al.,
2011; 2013] has been proposed based on the joint orthogonal
block Tucker decomposition [De Lathauwer et al., 2000a] of
input and output tensors. The most preferable property of

HOPLS over NPLS lies in its power to provide superior pre-
dictability with optimal balance between fitness and model
complexity [Zhao et al., 2013].

For many real-world applications, however, high-order big
size tensorial data often take the form of extremely large or
even infinite tensor sequences, especially in time-critical dy-
namic environments, where the new data keep coming fast
over time. Although we can apply the batch method to all
the data each time a new pair arrives, in this case HOPLS can
quickly become computationally prohibitive or merely infea-
sible. Moreover, it is often impossible to store the whole data
or require them to be available up front. Thus, the memory
efficient sequential methods are absolutely essential.

Among the methods that can recursively handle the data,
the recursive N-way partial least squares (RNPLS) [Eliseyev
and Aksenova, 2013] processes the tensor sequences by uni-
fying a recursive calculation scheme with the multiway data
representation of NPLS. Inheriting the drawbacks of NPLS,
RNPLS likewise suffers from the lack of adequate accuracy
and the slow convergence rate because of its CP-based solu-
tion. Thus, the speed is rather slow especially when a relative-
ly larger number of latent vectors are required for sufficient
accuracy, significantly reducing the applicability of RNPLS
in many time-critical applications [Zhao et al., 2013]. An-
other recent work named accelerated low-rank tensor online
learning (ALTO) [Yu et al., 2015] has been proposed for the
speed of processing spatio-temporal tensor sequence using a
random low-rank projection technique. However, ALTO is
only restricted to spatio-temporal data structure which de-
mands the input and output tensors are at least in common
on structures along the spatial and temporal modes.

In this paper, we introduce a super-fast tensor regression
framework, called recursive higher-order partial least squares
(RHOPLS), for sequential blockwise processing of general
tensor sequences. Our contributions are: (i) designing a re-
cursive framework that efficiently updates the regression co-
efficients (factors) at a small-scale factor (feature) level in-
stead of the large raw data (observation) level by integrat-
ing a low-rank modification strategy of the Tucker [O’Hara,
2010] into PLS; (ii) developing an efficient algorithm based
on a series of computationally advantageous calculations yet
with only a small number of factors for storage; (iii) apply-
ing RHOPLS to several challenging tasks such as estimation
of human pose from videos, showing the great potentiality



for fast real-time predictions of human pose positions. In
brief, our framework does not suffer from neither inferior pre-
dictability nor poor convergence rate of NPLS-based models.
It is also free from the computational issues related to the
HOPLS-based models when the data order, “sample” or “di-
mensionality” complexity is high. Finally, our RHOPLS ex-
hibits highly competitive accuracy with the best batch meth-
ods but is extremely faster than other sequential methods.

2 Recursive Higher-order PLS
2.1 Preliminaries and Problem Setting
Throughout the paper, higher-order tensors will be denot-
ed as X ∈ RI1×I2×···×ID in calligraphy letters, where D
is the order of X . The d-mode unfolding of X , defined
as X(d) ∈ RId×I1···Id−1Id+1···ID , is the process of rear-
ranging the d-mode vectors into the columns of the result-
ing matrix. We refer to d-mode product of tensor X ∈
RI1×I2×···×ID and matrix A ∈ RJd×Id as Y = X ×d

A ∈ RI1×···×Id−1×Jd×Id+1×···×ID . We use contracted
product of tensors X ∈ RI1×···×IC×J1×···×JP and Z ∈
RI1×···×IC×K1×···×KQ along the same C modes to define the
cross-covariance tensor [Zhao et al., 2013] Y as

Y =< X ,Z >{1,...,C,1,...,C}=

I1∑
i1=1

···
IC∑

iC=1

xi1,...,iC ,j1,...,jP

zi1,...,iC ,k1,...,kQ
∈ RJ1×···×JP×K1×···×KQ .

The Tucker decomposition can be expressed as Y ≈ G ×1

A(1)×2 · · ·×D A(D), where A(d) ∈ RId×Rd is the factor ma-
trix. G ∈ RR1×R2×···×RD represents the core tensor indicat-
ing the interaction among factor matrices in different modes.
Rd serves as the d-rank of Y in mode d.

Without the loss of generality, we consider an N th-order
input tensor X ∈ RI1×···×IN and an M th-order output tensor
Y ∈ RJ1×···×JM with coupled observations, namely I1 =
J1 and we process the data in terms of mini-batch of size b,
say {X (t) ∈ Rb×I2×···×IN ,Y(t) ∈ Rb×J2×···×JM } for mini-
batch t. I0 will stand for the number of initial observations.
We use I to denote the maximum index of all modes, while
R is the maximum d-rank of all modes which are supposed to
be small in practice, i.e., R� I . Finally, F is the number of
latent vectors, while L and K are used to denote the collection
of d-ranks for the input and output loadings, respectively.

2.2 General Framework
As mentioned in Section 1, sequential approaches to regres-
sion are capable of handling big data as well as online data.
In this context, the key idea behind RNPLS [Eliseyev and
Aksenova, 2013] is to directly add the old tensor data, rep-
resented by refolding the previous set of factors into a fixed
data size, to the new arriving tensor data to generate the joint
tensor data, and then applies NPLS to joint tensor data to es-
timate the new set of factors. Although recursively handling
the new data, RNPLS has one major disadvantage in that it
has to perform a slow iterative NIPALS-style procedure on
the joint tensor data at the level of original dimensionality I .
Furthermore, RNPLS represents the old tensor via a refolding

operation of the factor matrices into tensor, which may cause
undesired errors of approximating the old tensor data.

Different from RNPLS, we propose to recursively merge
the new data into the old one in terms of the factors rather
than considering the raw tensor data. Our framework directly
updates the PLS-related parameters at much smaller scale us-
ing a closed-form solution, thus inexpensively keeping track
of the subspace patterns and the summary of model status.

Generally speaking, up to the point t − 1, the set of old
factors representing the model summarizes the total variation
in all previous mini-batches, and hence approximates the cur-
rent modeling state. Then, a newly arriving mini-batch t is de-
composed into a set of incremental factors which contain the
variation merely corresponding to the new data. Our frame-
work carries out a recursive update procedure that effectively
yet inexpensively “absorbs” the incremental factors into the
old ones to produce a set of new factors at t. Continuing in
the same spirit, we are able to efficiently process the new data
in a mini-batch way over time. Figure 1 illustrates the whole
scheme that consists of the following principal steps as be-
low. We choose N = 3 order input tensor and M = 2 order
output tensor for simplicity of visualization.

In what follows, Step 0 is a preprocessing step that exe-
cutes only once, while the other steps are conducted repeat-
edly for each new mini-batch. With the extracted loadings
and individual core tensors in hand, the PLS-based regression
coefficients can be formed in terms of these extracted factors
and the prediction can be made similar to the one in HOPLS
[Zhao et al., 2013].

Step 0: Initial Approximation (red arrow)
As for the initial tensor pair {X (0) ∈ RI0×I2×···×IN ,Y(0) ∈
RI0×J2×···×JM }, we aim to extract a set of initial factors. In-
stead of using a deflation process of block tensor terms in HO-
PLS [Zhao et al., 2011; 2013], we simply apply the standard
Tucker to jointly decompose the initial data pair such that the
latent components extracted from X (0) and Y(0) have the
maximum pairwise covariance, which is of the form

X (0) ≈ Gx(0)×1 T(0)×2 P(2)(0) · · · ×NP(N)(0), (1)

Y(0) ≈ Gy(0)×1 T(0)×2 Q(2)(0) · · · ×MQ(M)(0), (2)

where Gx(0) ∈ RL1×L2×···×LN and Gy(0) ∈
RK1×K2×···×KM serve as core tensors with L1 = K1.
T(0) ∈ RI0×L1 is the common latent matrix, while
{P(n)(0)}Nn=2 ∈ RIn×Ln and {Q(m)(0)}Mm=2 ∈ RJm×Km

are the loadings corresponding to X (0) and Y(0), respec-
tively. To solve above factors, we first form the 1-mode
cross-covariance tensor C(0) =< X (0),Y(0) >{1:1} which
follows by estimating the loadings using a higher-order
orthogonal iteration (HOOI) [De Lathauwer et al., 2000b]

C(0) ≈ Gxy(0)×1 Q(2)(0)×2 · · · ×M−1 Q(M)(0)

×M P(2)(0)×M+1 · · · ×M+N−2 P(N)(0).

Here, Gxy(0) ∈ RK2×···×KM×L2×···×LN is said to be 1-mode
cross-covariance core tensor. Having obtained all the load-
ings, the core tensors and common latent matrix can be calcu-
lated according to (1) and (2) using higher-order singular vec-
tor decomposition (HOSVD) [De Lathauwer et al., 2000a].



Figure 1: Our RHOPLS framework. This framework generates a set of initial factors for the initial data (Step 0 red arrow). At every
iteration, the framework first generates a set of incremental factors for the new data (Step 1 yellow arrow). Then, the information contained
in new data, represented in terms of factors, is added to current model by an appending operation (Step 2 blue arrow). Next, the augmented
set of factors are truncated back into original sizes to yield new loadings (Step 3 purple arrow). Finally, the new individual core tensors are
produced using an internal tensor representation of model (in terms of factors) under the projection of the new loadings (Step 4 green arrow).

These factors (common latent matrix, loadings, core tensors
and the 1-mode cross-covariance core tensor), indicating the
initial modeling state, are to be updated on new mini-batch.

Step 1: Incremental Approximation (yellow arrow)
Turning to mini-batch t, a new tensor pair {X (t) ∈
Rb×I2×···×IN ,Y(t) ∈ Rb×J2×···×JM } with small size b
comes into the picture. To approximate the incremental da-
ta efficiently, we propose to collect the set of factors by first
performing partial Tucker to X (t) and Y(t) separately, such
that all the modes except the first mode are decomposed with
d-ranks rank-(L̄2, ..., L̄N ) and rank-(K̄2, ..., K̄M )

X (t) ≈ Ǧx(t)×2 P̄(2)
(t)×3 · · · ×N P̄(N)

(t),

Y(t) ≈ Ǧy(t)×2 Q̄(2)
(t)×3 · · · ×M Q̄(M)

(t).

Thereafter, the 1-mode cross-covariance core tensor Ḡxy(t)
is immediately formed exploiting only the core tensors
Ǧx(t) and Ǧy(t) as Ḡxy(t) =< Ǧx(t), Ǧy(t) >{1:1},
where Ḡxy(t) ∈ RK̄2×···×K̄M×L̄2×···×L̄N can be cal-
culated using only O(RM+N−2). In total, the cost
for approximating the incremental data requires merely
O(max(RM+N−2, RIM−1, RIN−1)). Note that the HOPLS
has to compute and decompose the 1-mode cross-covariance
tensor of size J2× · · · × JM × I2× · · · × IN using entire da-
ta when estimating each one of R latent vectors [Zhao et al.,
2013], leading to total cost as large asO(RIM+N−1). In HO-
PLS, calculating and decomposing such huge tensor R times
yields substantial costs especially when data dimensionality,
data order and d-ranks are large. In contrast to HOPLS, our
Step 1 overcomes this drawback by first partially decompos-
ing only the new mini-batch input and output individually via
Tucker and then calculating the desired cross-covariance core
tensor to gather the incremental factors. This step contributes
to the speed-ups mainly from the perspective of significant-
ly reducing the “dimensionality” complexity, because we ex-

tract eigenvectors on two much smaller-scale individual mini-
batch tensors instead of on a massive cross-covariance tensor,
and we also form the cross-covariance core tensor at the core
tensor scale of R instead of at the original dimensionality I .

Step 2: Expansion (blue arrow)
Inspired by the work [O’Hara, 2010], we first append the set
of incremental factors associated with the new mini-batch to
the set of old factors that corresponds to the current mod-
el status, resulting in an augmented set of factors. Unlike
[O’Hara, 2010], we apply this strategy to the cross-covariance
core tensor in a PLS framework involving both input-output
tensors rather than just single tensor as in [O’Hara, 2010].
Specifically, concatenating the variation captured by load-
ing P̄(n)

(t) ∈ RIn×L̄n to P(n)(t − 1) ∈ RIn×Ln , we can

get the augmented variation via loading P̂
(n)

(t) = [P(n)(t −
1) P̄(n)

(t)] ∈ RIn×(Ln+L̄n), where n = 2, ..., N . Likewise,

we obtain the loading Q̂
(m)

(t) = [Q(m)(t − 1) Q̄(m)
(t)] ∈

RJm×(Km+K̄m) for m = 2, ...,M . We can also get the
augmented 1-mode cross-covariance core tensor Ĝxy(t) ∈
R(K2+K̄2)×···×(KM+K̄M )×(L2+L̄2)×···×(LN+L̄N ) by append-
ing Ḡxy(t) ∈ RK̄2×···×K̄M×L̄2×···×L̄N to Gxy(t − 1) ∈
RK2×···×KM×L2×···×LN in a super block-diagonal manner,
leaving other new entries to be zeros.

Step 3: Compression (purple arrow)
We next truncate the set of augmented factors back into the set
of factors with the size of original d-ranks, which means find-
ing the most dominant principal components in the subspaces
of loadings out of the augmented set of loadings. To this

end, the augmented factors {P̂
(n)

(t)}Nn=2, {Q̂
(m)

(t)}Mm=2

and Ĝxy(t) described in last step are truncated to produce
new loadings {P(n)(t)}Nn=2 ∈ RIn×Ln , {Q(m)(t)}Mm=2 ∈
RJm×Km as well as 1-mode cross-covariance core tensor



Gxy(t) ∈ RK2×···×KM×L2×···×LN , hence keeping track of
the change of patterns in each loading subspace, leading to

1. compute QR factorization on the augmented loadings

P̂
(n)

(t) = Ux(n)Vx(n), where Ux(n) ∈ RIn×(Ln+L̄n)

and Vx(n) ∈ R(Ln+L̄n)×(Ln+L̄n) for n = 2, ..., N ;

Q̂
(m)

(t) = Uy(m)Vy(m), Uy(m) ∈ RJm×(Km+K̄m) and
Vy(m) ∈ R(Km+K̄m)×(Km+K̄m) for m = 2, ...,M .

2. transform cross-covariance core tensor Ĝxy(t) to get

G̃xy(t) = Ĝxy(t)×1 Vy(2) ×2 ...×M−1 Vy(M)

×M Vx(2) ×M+1 ...×M+N−2 Vx(N).

3. calculate the rank-(L2, ..., LN ,K2, ...,KM ) orthogonal
Tucker on the core G̃xy(t) to get the resulting 1-mode
cross-covariance core tensor Gxy(t) for mini-batch t

G̃xy(t) ≈ Gxy(t)×1 Zy(2) ×2 ...×M−1 Zy(M)

×M Zx(2) ×M+1 ...×M+N−2 Zx(N),

where Gxy(t) ∈ RL2×···×LN×K2×···×KM , Zx(n) ∈
R(Ln+L̄n)×Ln and Zy(m) ∈ R(Km+K̄m)×Km .

4. compute the loadings P(n)(t) = Ux(n)Zx(n) ∈ RIn×Ln ;
Q(m)(t) = Uy(m)Zy(m) ∈ RJm×Km .

The purpose of above operations is to maintain computations
at small cross-covariance core tensor level of R instead of at
huge cross-covariance tensor level of I , the dominating cost is
thus reduced to O(RN+M−1) from O(IN+M−1). In a word,
Steps 2 and 3 together are applied to 1-mode cross-covariance
core tensor for purpose of updating the loading factors, which
contributes in part to the speed-ups from perspective of reduc-
ing the “sample” complexity to a low constant level.

Step 4: Projection (green arrow)
Finally, we propose to update the individual core tensors of
input and output from the internal representation of model un-
der the projection of loadings obtained in the last step. These
individual core tensors in conjunction with loadings are ex-
ploited to produce the final prediction. Specifically, we begin
with reconstruction of the old internal tensor representation
Xint(t−1) ∈ RI0×L2×···×LN from the latent matrix T(t−1),
the loadings {P(n)(t− 1)}Nn=2 and the core tensor Gx(t− 1)

under the projection of current loadings {P(n)(t)}Nn=2 as

Xint(t−1) = Gx(t−1)×1 T(t−1)×2 P(2)(t)TP(2)(t−1)

×3 · · · ×N P(N)(t)TP(N)(t− 1).

Meanwhile, we also reconstruct the incremental internal ten-
sor representation X̄int(t) ∈ Rb×L2×···×LN from the core
tensor Ǧx(t) and loadings {P̄(n)

(t)}Nn=2 obtained in Step
1 by projecting onto the subspaces of the current loadings
{P(n)(t)}Nn=2, which becomes

X̄int(t) = Ǧx(t)×2P(2)(t)TP̄(2)
(t)×3···×NP(N)(t)TP̄(N)

(t).

After concatenating X̄int(t) to Xint(t− 1), we get Xint(t) ∈
R(I0+b)×L2×···×LN as the augmented internal representation.

Then, Xint(t) is decomposed using Tucker-1 model [Cichoc-
ki et al., 2009] to get the common internal latent matrix
Tint(t) ∈ R(I0+b)×L1 and core Gx(t) ∈ RL1×L2×···×LN as

Xint(t) ≈ Gx(t)×1 Tint(t),

where Tint(t) is thereafter truncated to keep the very last I0

rows, leading to the common T(t) ∈ RI0×L1 for the purpose
of internal representation reconstruction of the model in the
subsequent mini-batch. Similarly, we finally have Yint(t) ∈
R(I0+b)×K2×···×KM and Gy(t) ∈ RK1×K2×···×KM for the
output side. By employing our proposed projection strate-
gy, the dominating cost of this step is substantially cut down
from O(max(I0I

N , IN+1)) to O(max(I0R
N , RN+1)), be-

cause we equivalently represent the model and calculate the
new factors in terms of projected internal tensors that lie in
the tensor space with small scale R but large original I . Step
4 is responsible for efficiently updating the individual core
tensors, which also contributes in part to the total accelera-
tion by reducing the “sample” complexity.

Note that RHOPLS demands a minimum space complexity
in the sense that only a small number of factors, dominating
by O(max(RN+M−2)) of cross-covariance core tensor, are
needed to be stored to represent the running model.

2.3 Related Work
In contrast to the standard (batch) Tucker, incremental ten-
sor analysis (ITA) [Sun et al., 2008] has been proposed as an
incremental tensor approximation tool that dynamically up-
dates a Tucker approximation using new arriving data. How-
ever, ITA is a component model that is restricted to unsuper-
vised learning settings only, focusing only on a single tensor
rather than input-output tensor pairs in supervised regression
settings. As an another incremental tensor approximation
tool, incremental Tucker (IT) [O’Hara, 2010] additively up-
dates the Tucker model using a low-rank subspace truncation
strategy. Like ITA, IT is a component model that considers
single tensor in the context of unsupervised learning only and
cannot be directly applied to the tensor regression tasks. Our
Step 2 and 3 are adapted from the basic idea of this tool, how-
ever, we here propose to integrate IT as just one part of our
whole PLS-based framework to extract loadings. Notice that
the major contribution of our RHOPLS is from the system
level, all the steps are essential to the whole framework and
should not be treated separately. Moreover, we like to stress
that the concepts of tensor decomposition tool, i.e., Tucker,
ITA or IT, are fundamentally different from tensor regression
models w.r.t. the targeted goal, algorithm and applications.

3 Experimental Results
In our experiments, the root mean squares of prediction (RM-
SEP) [Kim et al., 2005] as well as the Q index [Luo et al.,
2015] are used to quantitatively gauge the predictive perfor-
mance of our approach. We recorded the CPU learning time
per new mini-batch for all recursive methods, and we also
gave CPU learning time for batch methods using the entire
training set. We compared RHOPLS with NPLS [Bro, 1996],
RNPLS [Eliseyev and Aksenova, 2013], HOPLS [Zhao et
al., 2013] and IHOPLS [Hou and Chaib-draa, 2016] on gen-
eral tensorial sequences with no special structures assumed



UMPM 24× 32 Scenario “triangle” X ∈ R1230×24×32 Scenario “table” X ∈ R1430×24×32

Methods Hyper-params Q RMSEP Time (s) Q RMSEP Time (s)
NPLS F = 25(triangle), 30(table) .8431 (.0070) 132.0 (6.3) 16.0 (2.6) .8240 (.0067) 151.2 (6.0) 25.4 (2.7)

RNPLS F is as above, γ = 1 .8011 (.0092) 169.4 (8.7) 6.17 (1.25) .7865 (.0083) 184.7 (7.1) 8.06 (1.47)

HOPLS F = 40, L = [8, 12], K = [3, 9] .8480 (.0019) 127.8 (2.2) 6.47 (0.34) .8388 (.0045) 139.1 (3.8) 6.94 (0.38)
F = 40, L = [12, 16], K = [3, 9] .8462 (.0016) 129.0 (2.3) 5.94 (0.22) .8341 (.0058) 142.7 (4.8) 6.04 (0.80)

IHOPLS F = 40, L = [12, 16], K = [3, 9] .7034 (.0104) 248.5 (8.8) 4.48 (0.45) .7393 (.0069) 227.2 (8.1) 4.53 (0.42)

RHOPLS F = 40, L = [8, 12], K = [3, 9] .8453 (.0035) 129.6 (2.8) 0.25 (0.01) .8304 (.0058) 145.3 (5.7) 0.24 (0.01)
F = 40, L = [12, 16], K = [3, 9] .8430 (.0039) 132.3 (3.0) 0.26 (0.01) .8294 (.0072) 146.8 (6.0) 0.25 (0.01)

Table 1: Performance comparison on UMPM with frame size 24× 32 for I0 = 200 and b = 2.

UMPM 240× 320 “triangle” “table”
Methods Q Time (s) Q Time (s)

NPLS .8604 540.8 .8454 849.7
RNPLS .8105 39.9 .7997 58.3

HOPLS .8774 53.0 .8670 57.8
.8801 56.1 .8709 59.1

IHOPLS .7115 26.3 .7519 27.4

RHOPLS .8722 0.26 .8524 0.27
.8786 0.28 .8602 0.30

Table 2: Performance on UMPM with same hyper-parameters
as Table 1 for all methods for frame size 240× 320.

in contrast to spatio-temporal data. To show the robustness,
each sequence was randomly shuffled into 10 instances for e-
valuation, because our framework is designed for the general
setting of sequence though it could be applied to the infinite
stream. One half of the shuffled sequence served as training
set while the remaining half was used for test. The optimal
hyper-parameters of all methods were determined by cross-
validation, so that their best performance could be exhibited
balancing between speed and accuracy. In particular, the con-
vergence criterion and the maximum iterations of RNPLS for
were selected to 10−5 and 40. For RHOPLS, the initial num-
ber of latent vectors F and initial input loadings L and output
loadings K are needed to be tuned, so are the incremental
loadings ∆L and ∆K. For simplicity, we assumed L = ∆L
and K = ∆K just to reduce the number of hyper-parameters,
and L, K are tuned by conducting a grid search on the combi-
nation of typical values, i.e., for L of a 3rd-order input tensor,
we might search on [4, 8], [8,12], [12,16], [16,20] ... and so
on. All tests were done on a server of 12 cores 3.20GHz CPU.

3.1 Utrecht Multi-Person Motion Database
We first tested RHOPLS on the Utrecht Multi-Person Mo-
tion (UMPM) benchmark [Van Der Aa et al., 2011], which
provides the simultaneous recordings of video sequences and
3D ground truth positions of human natural motions in dai-
ly life activities. For our test, the input data was an intensity
image sequence from the front camera at 25fps, taking the
form of a 3rd-order predictor tensor (i.e., frames × width ×
height). On the other hand, the corresponding output contain-
ing 3D positions of 37 reflective markers can be represented
as a 3rd-order tensor (i.e., samples× 3D positions×marker).
The averaged predictive performance as well as learning time
are compared in Table 1. As we can see, RHOPLS achieves
highly comparable accuracy with the batch HOPLS but is ex-
tremely faster. Spectacularly, the speed-ups of RHOPLS over
RNPLS and NPLS for “table” scenario are more than 30 and
100 times, the acceleration rates are even higher with the larg-

er numbers of latent vectors. Figure 2 shows that, for both
scenarios, the predictive error of RHOPLS keeps decreasing
at a faster rate as the iteration goes on, while the CPU cost
remains as a low constant trend over time. We can also ob-
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Figure 2: For ’triangle’ and ’table’ scenarios, learning error
and learning time versus the iteration with frame size 24×32.
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Figure 3: Performance versus the number of latent vectors
and initial samples sizes with frame size 24× 32.

serve that, as illustrated in Figure 3, the prediction accuracy
of RHOPLS stays very close to that of HOPLS as the number
of latent vectors ranges from 10 to 90 for different loadings.
However, the CPU time just slightly increases from 0.19s to
0.38s for RHOPLS with input loading [8, 12], which is in
contrast to that of HOPLS from 1.79s to 19.22s, indicating



ECoG Frequency 1hz X ∈ R900×10×10×16 Frequency 5hz X ∈ R4500×10×10×16

Methods Hyper-params Q RMSEP Time (s) Hyper-params Q RMSEP Time (s)
NPLS F = 10 .7014 (.0072) 33.5 (0.7) 3.15 (0.46) F = 25 .7338 (.0023) 29.9 (0.4) 28.6 (1.0)

RNPLS F = 5, γ = 1 .7096 (.0071) 32.6 (0.6) 1.70 (0.35) F = 8, γ = 1 .7197 (.0049) 31.6 (0.5) 4.87 (0.69)
HOPLS F = 12 .7336 (.0039) 29.9 (0.4) 1.86 (0.34) F = 15 .7343 (.0011) 29.7 (0.2) 9.07 (0.74)
IHOPLS F = 10 .7044 (.0082) 33.1 (0.9) 1.64 (0.32) F = 10 .7058 (.0086) 33.0 (0.8) 1.74 (0.48)
RHOPLS F = 10 .7308 (.0027) 30.3 (0.3) 0.16 (0.01) F = 12 .7330 (.0012) 30.0 (0.2) 0.20 (0.02)

Table 3: Performance comparison on ECoG for L = [6, 6, 10], K = [3, 4], I0 = 20% of the training set and b = 2.

the superior scalability of the RHOPLS with increasing num-
ber of latent vectors (d-ranks). The Q is given in Figure 3
with varying numbers of initial samples and mini-batch sizes.
We may notice that only 50 initial samples, which is 8% of
the whole training data, will suffice to guarantee a reasonably
good result, i.e., nearly 0.78 for mini-batch size of 2.
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Figure 4: Time versus input loading L with frame size 240×
320. Right plot zooms in on the lower region of the left plot.

To see how all the methods behave in large “dimensional-
ity” context, we fix the same hyper-parameters as in Table 1
but use frame size 240 × 320 instead of 24 × 32. Again, in
Table 2, RHOPLS is quite close to HOPLS in accuracy but
enormously enlarges the speed gaps against RNPLS and N-
PLS by more than 200 and 3000 times in “table” scenario, re-
spectively. Figure 4 demonstrates the scalability of RHOPLS
with increasing input loading size L. The right plot zoom-
ing in on the bottom of left plot shows that RHOPLS is much
less sensitive to the growing loading size compared to HO-
PLS. This reflects the fact that the impact of large d-ranks on
computational load when using HOPLS has been significant-
ly diminished by using our feature-based updating strategy.

3.2 Neurotycho Electrocorticography Dataset
In this section, the tests were carried out on a benchmark
tensor regression application, that is, decoding limb move-
ments from monkey’s brain signals using Neurotycho food
tracking Electrocorticography (ECoG) dataset [Chao et al.,
2010]. ECoG data contains a 15 minute-long recording and
we downsampled motion data to different frequencies, pro-
ducing various lengths of observations with different levels
of overlapped features. As for the input, the wavelet trans-
formed ECoG signal was represented as a 4th-order tensor
(i.e., samples × time × frequency × channel). A 3rd-order
tensor of 3D movement distances of the monkey’s limb on
4 markers was used as the output. In Table 3, RHOPLS a-
gain performs consistently better than NPLS, RNPLS, IHO-
PLS for the 4th-order’s input situation. In Figure 5, RHOPLS
maintains nearly the same predictability with HOPLS in the
settings of both low frequency (difficult case) and high fre-
quency (easy case). In the meantime, RHOPLS consumes
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Figure 5: Performance versus sequence length or frequency.

low CPU time regardless of the length of sequence, and ex-
hibits high speed-up rates over RNPLS, i.e., 24 times faster at
4500, and overall nearly 10 times faster than IHOPLS, while
NPLS and HOPLS are almost useless in fast time-critical ap-
plications. Note that the recursiveness property of RHOPLS
implies that any long (even infinite) low-rank sequence can be
handled by RHOPLS with a short constant processing time,
thus we will get similar result for sequence with even larger
“sample” complexity. Figure 6 visualizes an example of the
observed and the predicted trajectories of monkey’s hand.
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Figure 6: An example of ground truth (150s time window)
and the trajectories predicted by RHOPLS, HOPLS and RN-
PLS for Z-coordinate of the monkey’s hand.

4 Discussion
The drastic accelerations of our RHOPLS are realized in two
stages, the first, due to Step 1, focuses on the reduction of “di-
mensionality” complexity. On the basis of the first stage, the
second stage (i.e., Steps 2,3 and 4) concentrates on making
the low constant “sample” complexity possible. The over-
all speed-ups stem from directly updating the set of factors
(regression coefficients) in lightweight manner at a small-
scale factor (feature) level instead of the raw data level, such
that the relatively expensive eigenvector-style calculations are
able to execute a lot faster on the factor scale. All steps in
RHOPLS are essentially important and contribute to the over-
all speed-ups from different aspects. For future work, our re-
search of interest is to investigate how to adaptively select the
incremental loading size for each new arriving mini-batch,
rather than fixing the value for all subsequent mini-batches.
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