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Abstract. Real world multiagent coordination problems are important
issues for reinforcement learning techniques. In general, these problems
are partially observable and this characteristic makes the solution com-
putation intractable. Most of the existing approaches calculate exact
or approximate solutions using the world model for only one agent. To
handle a special case of partial observability, this article presents an ap-
proach to approximate the policy measuring a degree of observability for
pure cooperative vehicle coordination problem. We compare empirically
the performance of the learned policy for totally observable problems
and performances of policies for different degrees of observability. If each
degree of observability is associated with communication costs, multi-
agent system designers are able to choose a compromise between the
performance of the policy and the cost to obtain the associated degree of
observability of the problem. Finally, we show how the available space,
surrounding an agent, influence the required degree of observability for
near-optimal solution.

1 Introduction

In real world cooperative multiagent problem, each agent has often a partial
view of the environment. If communication is possible without cost, the mul-
tiagent problem becomes totally observable and can be solved optimally using
reinforcement learning techniques. However, if the communication has a cost,
the multiagent system designer has to find a compromise between increasing the
observability and consequently the performance of the learned policy and the
total cost of the multiagent system. Some works present formal models to take
into account the communication decision into the multiagent decision problem
[1], [2]. For the non-cooperative multiagent problem, some works introduce also
explicitly communication into general sum games [3] [4].

To allow the multiagent system designer to choose a compromise between
performance and partial observability, we propose, in this article, to take into
account the degree of observability for a cooperative multiagent system by mea-
suring the performance of the associated learned policy. In this article, the degree



of observability is defined as the agent’s vision distance. Obviously, decreasing
the observability reduces the number of accessible states for agents and therefore
decrease the performance of the policy. A subclass of coordination problems is
purely cooperative multiagent problems where all agents have the same utility
function. This kind of problems is known as team games [5]. In this kind of
games, if we consider problems where agents’ designer neither has the transition
function nor the reward function, we can use learning algorithms. Many of these
algorithms have been proven to converge to Pareto-optimal equilibrium such
as Friend Q-learning [6] and OAL [7]. Consequently, one can take an optimal
algorithm to find the policy for the observable problem.

As we restrict our problem to team problems, the following assumptions are
defined: (1) Mutually exclusive observations, each agent sees a partial view of the
real state but all agents together see the real state. (2) Possible communication
between agents but not considered as an explicit part of the decision making. (3)
The problem involves only negative interactions between agents. One problem
which meets these assumptions is the choosing lane decision problem [8] related
to Intelligent Transportation Systems [9]. In this problem, some vehicles, which
have to share a part of the road, decide to change lane or not, in order to
increase traffic flow and reduce collisions. In this article, we show empirically
that the performance of the learning algorithm is closely related to the degree
of observability. Moreover, we show that there exists a relation between the
available space for each agent and a ”correct” degree of observability that allow
a good policy approximation.

This paper is organized as follows. Section 2 describes the formal model and
algorithms used in our approach. Section 3 describes the vehicle coordination
problem with more details. Section 4 explains our approach by introducing a
partial local state. Section 5 provides the results and a discussion about them.
Section 6 presents the related works and Section 7 concludes.

2 Formal Model and Algorithms

Reinforcement learning allows an agent to learn by interacting with its envi-
ronment. For a mono agent system, the basic formal model for reinforcement
learning is Markov Decision Process [10]. Using this model, Q-Learning algo-
rithm calculates the optimal values of the expected reward for the agent in a
state s if the action a is executed. To do this, the following update function is
used:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
a∈A

Q(s′, a)]

where r is the immediate reward, s′ is the next state and α is the learning rate.
An episode is defined as a sub-sequence of interaction between the agent and its
environment.

On the other hand, game theory studies formally the interaction of rational
agents. In a one-stage game, each agent i has to choose an action to maximize its
own utility U i(ai, a−i) which depends on the others’ actions a−i. An action can



be mixed if the agent chooses it with a given probability and can be pure if it is
chosen with probability 1. In game theory, the solution concept is the notion of
equilibrium. For an agent, the equilibria are mainly based on the best response
to other’s actions. Formally, an action ai

br is a best response to actions a−i of
the others agents if

U i(ai
br, a

−i) ≥ U i(a′i, a−i), ∀a′i.

The set of best responses to a−i is noted BRi(a−i).
The Nash equilibrium is the best response for all agents. Formally, a joint

action aN , which regroups the actions for all agents, is a Nash equilibrium if

∀i, ai
N ∈ BRi(a−i)

where ai
N is the action of the ith agent in the Nash equilibrium and a−i

N is the
actions of other agents at Nash equilibrium. A solution is Pareto optimal if there
does not exist any other solution such that one agent can improve its reward
without decreasing the reward of another.

The model which combines reinforcement learning and game theory, is stochas-

tic games [11]. This model is a tuple < Ag, S, Ai,P ,Ri > where

– Ag is the set of agents where card(Ag) = N ,
– S = {s0, · · · , sM} is the finite set of states where |S| = M ,
– Ai = {ai

0, · · · , ai
p} is the finite set of actions for the agent i,

– P : S × A1 × · · · × AN × S → ∆(S) is the transition function from current
state, agents actions and new state to probability distribution over state,

– Ri : S ×A1 × · · · ×AN → R is the immediate reward function of agent i. In
team Markov games, Ri = R for all agents i.

Among the algorithms which calculate a policy for team Markov games,
Friend Q-Learning algorithm, introduced by Littman [6], allows to build a policy
which is a Nash Pareto optimal equilibrium in team games. More specifically,
this algorithm, based on Q-Learning, uses the following function for updating
the Q-values:

Q(s, a) = (1 − α)Q(s, a) + α[r + γ max
a∈A

Q(s′, a)]

with a, the joint action for all agents (a = (a1, · · · , aN )).

3 Problem Description

Vehicle coordination is a sub-problem of Intelligent Transportation Systems
which aims to reduce congestion, pollution, stress and increase safety of the
traffic. Coordination of vehicles is a real world problem with all the difficulties
that can be encountered: partially observable, multi-criteria, complex dynamic,
and continuous. Consequently, we establish many assumptions to apply the mul-
tiagent reinforcement learning algorithm to this problem.



The vehicle coordination problem presented here is adapted from Moriarty
and Langley [8]. More precisely, three vehicles, each of them represented by
an agent, have to coordinate to maintain velocity and to avoid collisions. Each
vehicle is represented by a position and a velocity and can change lane to the
left, to the right or stay on the same lane. The objective for a learning algorithm
is to find the best policy for each agent in order to maximize the common reward
which is the average velocity at each turn and to avoid collision.

Figure 1 represents the initial state. The dynamic, the state and the actions
are sampled in the easiest way. The vehicles’ dynamic are simplified to the fol-
lowing first order equation with only velocity y(t) = v× t+y0. For this example,
we simulate the road as a ring meaning that a vehicle is placed on the left side
when it quits through the right side. The state of the environment is described
by the position xi, yi and the velocity vi of each agent i. Collisions occur when
two agents are in the same tile. The agents do not know the transitions between
states which is calculated according to the velocities of the agents and their ac-
tions. At every step, each vehicle tries to accelerate until a maximum of 5 m/s is
reached. If another vehicle is in front of him, the agent in charge of the vehicle,
sets its velocity to the front vehicle’s velocity. At each step, a vehicle can choose
three actions: stay on the same lane, change to the right lane and change to the
left lane. Each episode has a maximum of 10 steps. The reward at each step is
set to the average velocity among all vehicles. If a collision occurs, the episode
stops. The size of the set of states is in O((X×Y ×|V |)N ) with X the number of
lane, Y the length of the road, V the set of possible velocity and N the number
of agents. We assume, in this problem, that each agent is able to see only its own
local state (position, velocity). To obtain the states of other agents, we assume
that communication is needed.

Road direction

Come Back

Ag1Ag2

Ag3

Fig. 1. Initial state for problem

4 Partial Observability

In this section, we introduce our approach describing Friend Q-learning algo-
rithm with a local view for the agents. Then, we introduce the same algorithm
that use the partial local view for a distance d. This partial local view can reduce
the set of state and/or the set of joint actions. If no reduction is done, the exact



algorithm associated is Friend Q-learning. When only the set of states is reduced,
we propose Total Joint Actions Q-learning (TJA). From this algorithm, we re-
duce the set of joint actions and we propose another algorithm: Partial Joint
Actions Q-learning (PJA). In this article, we do not consider the reduction of
joint actions alone, because this reduction is lower than the reduction of the set
of states.

4.1 FriendQ with a local view

To introduce partial observability, we use the notion of local Q-Value and local
state. Each agent uses the same algorithm but on different state. A local state is
defined from the real state of the multiagent system for a center agent. All other
agents positions are defined relatively to this central agent. This means that the
same real state belongs to the set S will give different local states. For an agent
i, the set possible local state is Si. We introduce a function f i which transforms
the real state s to a local state si for agent i. Formally, ∀s ∈ S, ∃si ∈ Si such
that f i(s) = si for all agents i. In this version of the algorithm, each agent
uses Friend Q-learning algorithm as described in section 2 but by updating its
Q-values for the local states and not for the real state.

4.2 FriendQ with a partial local view

To measure the effect of partial observability on the performance we define the
partial state centered on one agent by introducing a distance of observalibity
d. Consequently, the initial problem becomes a d-partial problem. The distance
d can be viewed as an influence area for the agent. Increasing this distance
increases the degree of observability. We define dtotal as the maximal possible
distance of observability for a given problem. Moreover, from a communication
point of view, in real world problems, the communication cost between two
agents depends on the distance between them. Communicating with a remote
agent is costlier than with a close agent.

In d-partial problem, the new state is defined as the observation of the center
agent for a range d. More precisely, an agent j is in the partial state of a central
agent i if its distance is lower or equal than d from the central agent i. Formally,
the function f i

d uses the parameter d to calculate the new local state. Figure 2
provides an example of the application of f i

d on a state s and get the result partial
states for each agent with a distance d = 2. Agent 1 sees only Agent 3 but Agent
3 sees both other agents. The new size of the set of state is O(((2d+1)2×V )N ).
The number of state is divided by around (Y/(2d+1))N , if we neglect the number
of lanes which is often small compared to the length of the road.

TJA Q-Learning In a first step, as in classical Friend Q-learning, we consider
an algorithm that takes into account the complete joint actions. This assumption
implies that all agents are able to communicate their actions to others at each
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Fig. 2. State and Partial States for d = 2

step without cost. The Q-value update function is now :

Q(f i
d(s), a) = (1 − α)Q(f i

d(s), a) + α[r + γ max
a∈A

Q(f i
d(s

′), a)]

for agent i. When d = dtotal, we have a small reduction factor on the state set of
XY , because we do not take into account, in our specific problem, the absolute
position of the center agent.

PJA Q-learning In a second step, the algorithm takes into account only the
actions where agents are in the partial local view as specified by d. This reduce
dramatically the number of joint actions which have to be tested during the
learning. This partial local observability allows us to consider a variable number
of agents in the multiagent system.

Formally, we define a function gi which transforms the joint action a into a
partial joint action gi

d(a, s). This partial joint action contains all actions of agent
which are in the distance d of agent i. The Q-value update function is now :

Q(f i
d(s), g

i
d(a, s)) = (1 − α)Q(f i

d(s), g
i
d(a, s)) + α[r + γ max

ad∈Gi
d
(A,S)

Q(f i
d(s

′), ad)]

for agent i where Gi
d(A, S) returns the set of joint actions with a central agent i

and a distance d. We can see that the result of the partial joint action depends
on the current state.

5 Results

In this section, we compare empirically the performance of the totally observable
problem (FriendQ) and the performance of approximated policy (TJA and PJA).



We present three kind of results: first of all, we compare the algorithms on a small
problem P1 defined by size X = 3, Y = 7, the set of velocities V = 0, · · · , 5
and the number of agents N = 3. Consequently, in this problem, the maximal
distance that we can use to approximate the total problem is dtotal = 3. The
3-partial state is a local representation of the totally observable state because
we are sure that all agents are visible from others in this representation. In the
initial state (Figure 1), velocities of the agents are v1 = 1, v2 = 2 and v3 = 3.
We present, for all results, the average total sum reward over 25 learnings with
each episode lasts 10 steps.
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Fig. 3. Rewards for Total Joint Action Q-learning for problem P1
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Fig. 4. Rewards for Partial Joint Action Q-learning for problem P1



Figure 3 shows the result of TJA Q-learning with distance from d = 0 to
d = 3. This algorithm is compared to the total observation problem resolved
by Friend Q-Learning. For d = 0, d = 1 and d = 2, TJA converges to a local
maximum, which increases with d. In these cases, the approximated values are
respectively about 86%, 89% and 94% of the optimal value. When d = 3, that
is, when the local view is equivalent to the totally observable view, the average
sum rewards converges to the total sum rewards of Friend Q-learning. However,
since we do not take into account the absolute position of the center agent, TJA
converges quickly than Friend Q-learning. Figure 4 shows the results of PJA Q-
Learning on the same problem. As previously, for d = 0, d = 1 and d = 2, PJA
converges to local maxima respectively about 76%, 86% and 97% of the optimal
value. These values are lower than TJA’s values but, for d = 2, the value is still
close to the optimal.

For the second result, we compare PJA Q-learning for two different problems.
We define a correct approximation distance dapp for each problem, where the
associated policy is closed to the optimal value. The first problem is the same
as previously (Figure 4) and we can show that dapp = 3 for this problem. In the
second problem P2, we enlarge the number of lanes and the length of the road
(X = 5, Y = 20, V = 0, · · · , 5 and N = 3). This problem increases the number of
states but decreases the possible interactions between vehicles because they have
more space. For the second problem P2, Figure 5 shows the comparison between
Friend Q-learning and PJA Q-learning from d = 0 to d = 7. We can see that
from d = 4, there is only small differences between PJA and Friend Q-learning.
Consequently, for this problem, we can see that dapp = 4. The problem of this
approach is the need of calculating the optimal policy, which can be intractable,
to get dapp.
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Fig. 5. Rewards for Partial Joint Action Q-learning for problem P2

As we can see, we need to generalize this result to know the dapp parameter
without calculating the optimal policy, which can be absolutely intractable for



big problems. To present the third result, we calculate the ratio DS = XY/N
which represents the degree of space for each agent. Obviously, if the space
(X or Y ) increases, then each agent has more space for itself. As we study a
problem where the team of agent has to handle only negative interaction, the
higher the ratio, the more space agents have. We compare the performance of
our PJA algorithm for different ratios. The ratio for the two first problems is
respectively DSP1

= 7 and DSP2
= 33. We add two new problems P3 (X = 5,

Y = 20, V = 0, · · · , 5 and N = 5) and P4 (X = 6, Y = 28, V = 0, · · · , 5 and
N = 4) where the ratio are respectively 20 and 42. Table 1 presents the results
for each problem after 50000 episodes. For each problem, we define the correct

approximation distance dapp such as 1−(
Rdapp

RfriendQ
) < ǫ. When ǫ = 0.01, dP1

app = 3,

dP2

app = 4, dP3

app = 2 and dP4

app = 2.

Algorithms P1 ǫP1
P2 ǫP2

P3 ǫP3
P4 ǫP4

FriendQ 38.4 ± 1.1 - 40.6 ± 0.3 - 37.0 ± 1.2 - 37.6 ± 0.3 -

PJA d = 7 - - 40.6 ± 0.2 ∼ 0% 37.2 ± 0.7 ∼ 0% 38.4 ± 0.2 ∼ 0%
PJA d = 6 - - 40.5 ± 0.2 ∼ 0% 37.9 ± 0.7 ∼ 0% 38.8 ± 0.4 ∼ 0%
PJA d = 5 - - 40.6 ± 0.2 ∼ 0% 37.8 ± 0.9 ∼ 0% 38.7 ± 0.4 ∼ 0%
PJA d = 4 - - 40.5 ± 0.2 ∼ 0% 38.3 ± 0.8 ∼ 0% 38.7 ± 0.2 ∼ 0%
PJA d = 3 39.1 ±0.2 ∼ 0% 40.0 ± 0.2 ∼ 2% 38.7 ± 0.6 ∼ 0% 38.9 ± 0.2 ∼ 0%
PJA d = 2 37.3 ±0.2 ∼ 3% 38.6 ± 0.2 ∼ 5% 37.7 ± 0.5 ∼ 0% 38.5 ± 0.1 ∼ 0%
PJA d = 1 33.5 ±0.2 ∼ 14% 33.9 ± 0.3 ∼ 15% 35.2 ± 0.3 ∼ 5% 35.1 ± 0.4 ∼ 8%
PJA d = 0 29.4 ±0.3 ∼ 24% 34.4 ± 0.4 ∼ 15% 33.5 ± 0.4 ∼ 10% 34.3 ± 0.3 ∼ 11%

Table 1. Average Rewards and standard deviation after 50000 episodes

To discover a relation between the ratio DS and the value of dapp, we compare

in Figure 6, the link between DS and the degree of observability defined as
dapp

dtotal

where dtotal is the maximal distance for a given problem. For example, dtotal for
the problem P1 is 3. We can see that the degree of observability decreases with
the degree of space for each agent. We calculate an interpolated curve assuming
that the degree of observability cannot be higher than 1 when DS < 7. We can
see that the needed observability decreases and tends to 0 when DS increases.
With this relation between both parameters, observability and degree of space,
we can evaluate, for other problems how would be the dapp value.

Thus, introducing the locality of the view allows us to limit the observability
of the state. More precisely, this approach allows us to use partial version of
Friend Q-learning in real world problems where the state is always partially
observable. We obtain an approximation of the optimal policy without knowing
the transition function. This approximation can be very close to the optimal
policy.

In our approach, we do not take into account communication explicitly for
many reasons. First of all, in real world problem, choosing the right communica-
tion cost is not an easy task. Furthermore, as we said previously, the communica-
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Fig. 6. Link between observability and degree of space

tion cost depends not only on the sent message but also on the distance between
sender and receivers. This problem complicates design of communication cost.
Consequently, knowing the value of the approximated policy and the associated
communication policy (and consequently, the cost of this policy) to obtain the
n-partial state, the multiagent system designer can find a good approximation
for the real world problem.

6 Related Work

The most general model which is related to our work is Partially Observable
Stochastic Games (POSG). This model formalizes theoretically the observations
for each agent. The resolution of this kind of games has been studied by Emery-
Montermerlo [12]. This resolution is an approximation using Bayesian games.
However, this resolution is still based on the model of the environment unlike
our approach which do not take into account this information explicitly since we
assume that the environment is unknown.

Concerning the space search reduction, Sparse Cooperative Q-Learning [13]
allows agents to coordinate their actions only on predefined set of states. In the
other states, agents learn without knowing the existence of the other agents.
However, the states where the agents have to coordinate themselves are selected
statically before the learning process, unlike in our approach. The joint actions
set reduction has been studied by Fulda and Ventura who propose Dynamic Joint
Action Perception (DJAP) [14]. DJAP allows a multiagent Q-learning algorithm
to select dynamically the useful joint actions for each agent during the learning.
However, they concentrated only on joint actions and they tested only their
approach on problems with few states.

Introducing communication into decision has been studied by Xuan, Lesser,
and Zilberstein [1] who proposed a formal extension to Markov Decision Process
with communication when each agent observes a part of the environment but all
agents observe the entire state. Their approach proposes to alternate communi-
cation and action in the decentralized decision process. As the optimal policy



computation is intractable, the authors proposed some heuristics to compute
approximation solutions. The main differences with our approach is the implicit
communication and the model-free learning in our approach. More generally, Py-
nadath and Tambe [2] has proposed an extension to distributed POMDP with
communication called COM-MTDP, which take into account the cost of com-
munication during the decision process. They presented some complexity results
for some classes for team problems. As Xuan, Lesser, and Zilberstein [1], this
approach is mainly theoretical and does not present model-free learning.

The locality of interactions in an MDP has been theoretically developed by
Dolgov and Durfee [15]. They presented a graphical approach to represent the
compact representation of an MDP. However, their approach has been developed
to solve an MDP and not to solve directly a multiagent reinforcement learning
problem where the transition function is unknown.

Regarding the reinforcement learning in a vehicle coordination problem,
Ünsal, Kachroo and Bay [16] have used multiple stochastic learning automata
to control longitudinal and lateral path of one vehicle. However, the authors
did not extend their approach to multiagent problem. In his work, Pendrith [17]
presented a distributed variant of Q-Learning (DQL) applied to lane change
advisory system, that is closed to our problem described in this paper. His ap-
proach uses a local perspective representation state which represents the rela-
tive velocities of the vehicles around. Consequently, this representation state is
closely related to our 1-partial state representation. Contrary to our algorithms,
DQL does not take into account the actions of the vehicles around and update
Q-Values by an average backup value over all agents at each time step. The
problem of this algorithm is the lack of learning stability.

7 Conclusion

In this article, we proposed an approach to evaluate a good approximation of
a multiagent decision process, introducing a degree of observability for each
agents. Without taking into account explicit communication to obtain a degree
of observability, we proposed Friend Q-learning algorithms extension which uses
only observable state and observable actions from the other agents. We show
that only partial view is needed to obtain a good policy approximation for some
team problems, especially the changing lane problem between vehicles. We show
a relation between a good degree of observability and the space allowed for
each agent. However, this relation is only empirical and our approach is only
restricted to negative interaction management problems. It is possible that in
other problems, this relation could be different.

Adapting multiagent learning algorithm for real world problems is really
challenging and many works need to be done to achieve this goal. For future
work, we plan to evaluate more theoretically the relation between the degree of
observability, the performance of the learned policy and the speed of learning. To
define some formal bounds, we will certainly need to use complex communication
cost. Finally, introducing the distance for a measure of observability is basic. We



plan to discover others kind of distance between observability to generalize our
approach to positive and negative interaction management problems in teams.
Also, it will be very interesting to study the effect of partial local view to non
cooperative cases.
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